Skip to content

Instantly share code, notes, and snippets.

@yohanesgultom
Last active February 1, 2023 18:12
Show Gist options
  • Save yohanesgultom/78467788a5421a318c860a3b0f85b5a4 to your computer and use it in GitHub Desktop.
Save yohanesgultom/78467788a5421a318c860a3b0f85b5a4 to your computer and use it in GitHub Desktop.
Python machine learning scripts
Python machine learning scripts
# Rainfall time series prediction usint LSTM and Dropout
# Base on:
# http://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
# http://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
import numpy
import matplotlib.pyplot as plt
import pandas
import math
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
# convert an array of values into a dataset matrix
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset) - look_back - 1):
a = dataset[i:(i + look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return numpy.array(dataX), numpy.array(dataY)
# load the dataset of rainfall per month from salidas.csv
# data samples:
# 73.2
# 60.3
# 32.0
# 41.9
dataframe = pandas.read_csv('salidas.csv', usecols=[0], engine='python')
dataset = dataframe.values
dataset = dataset.astype('float32')
# normalize the dataset
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
# split into train and test sets
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :]
# reshape into X=t and Y=t+1
look_back = 12
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# reshape input to be [samples, time steps, features]
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
# create and fit the LSTM network
model = Sequential()
model.add(LSTM(4, input_dim=look_back))
model.add(Dropout(0.2))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
history = model.fit(trainX, trainY, validation_split=0.33, nb_epoch=100, batch_size=1)
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
# # make predictions
# trainPredict = model.predict(trainX)
# testPredict = model.predict(testX)
#
# # invert predictions
# trainPredict = scaler.inverse_transform(trainPredict)
# trainY = scaler.inverse_transform([trainY])
# testPredict = scaler.inverse_transform(testPredict)
# testY = scaler.inverse_transform([testY])
#
# # calculate root mean squared error
# trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:, 0]))
# print('Train Score: %.2f RMSE' % (trainScore))
# testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:, 0]))
# print('Test Score: %.2f RMSE' % (testScore))
#
# # shift train predictions for plotting
# trainPredictPlot = numpy.empty_like(dataset)
# trainPredictPlot[:, :] = numpy.nan
# trainPredictPlot[look_back:len(trainPredict) + look_back, :] = trainPredict
#
# # shift test predictions for plotting
# testPredictPlot = numpy.empty_like(dataset)
# testPredictPlot[:, :] = numpy.nan
# testPredictPlot[len(trainPredict) + (look_back * 2) + 1:len(dataset) - 1, :] = testPredict
#
# # plot baseline and predictions
# plt.plot(scaler.inverse_transform(dataset))
# plt.plot(trainPredictPlot)
# plt.plot(testPredictPlot)
# plt.show()
from keras.models import Sequential
from keras.layers.core import Flatten, Dense, Dropout
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
from keras.optimizers import SGD
import cv2, numpy as np
import linecache
import sys
import h5py
def VGG_16(weights_path=None):
model = Sequential()
model.add(ZeroPadding2D((1,1),input_shape=(3,300,300)))
#model.add(ZeroPadding2D((1,1),input_shape=(3,224,224)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
# load weights
if weights_path:
f = h5py.File(weights_path)
for k in range(f.attrs['nb_layers']):
if k >= len(model.layers) - 1:
# we don't look at the last two layers in the savefile (fully-connected and activation)
break
g = f['layer_{}'.format(k)]
weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
layer = model.layers[k]
#if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D', 'Convolution3D', 'AtrousConvolution2D']:
# weights[0] = np.transpose(weights[0], (2, 3, 1, 0))
layer.set_weights(weights)
# freeze
layer.trainable = False
f.close()
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))
return model
def print_weights(model):
for layer in model.layers:
print(layer)
print(layer.get_weights())
if __name__ == "__main__":
img_filename = 'husky.jpg'
img_label_index = 250
#im = cv2.resize(cv2.imread(img_filename), (224, 224)).astype(np.float32)
im = cv2.resize(cv2.imread(img_filename), (300, 300)).astype(np.float32)
im[:,:,0] -= 103.939
im[:,:,1] -= 116.779
im[:,:,2] -= 123.68
im = im.transpose((2,0,1))
X = np.expand_dims(im, axis=0)
Y = np.zeros(1000)
Y[img_label_index] = 1
Y = np.expand_dims(Y, axis=0)
print(X.shape)
print(Y.shape)
# load custom vgg16 and train 1 epoch
model = VGG_16('vgg16_weights.h5')
#print_weights(model)
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy')
model.fit(X, Y, batch_size=1, nb_epoch=1, validation_data=(X, Y))
'''
Update of example of Keras VGG16 custom input shape
Using:
Keras==2.2.4
tensorflow-gpu==1.13.1
'''
import h5py, pickle
import numpy as np
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D, Dropout
from keras.applications.vgg16 import VGG16
from keras.utils import to_categorical
vgg16_weights = '/home/yohanesgultom/Downloads/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5'
dir_path = '/home/yohanesgultom/Downloads/cifar-10-python/cifar-10-batches-py'
def load_cfar10_batch(cifar10_dataset_folder_path, batch_id):
with open(cifar10_dataset_folder_path + '/data_batch_' + str(batch_id), mode='rb') as file:
# note the encoding type is 'latin1'
batch = pickle.load(file, encoding='latin1')
features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1)
labels = batch['labels']
return np.array(features), to_categorical(labels)
X, y = load_cfar10_batch(dir_path, 1)
base_model = VGG16(include_top=False, weights=vgg16_weights, input_shape=(32, 32, 3))
# add a global spatial average pooling layer
# fully-connected layer and prediction layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.3)(x)
predictions = Dense(10, activation='softmax')(x)
# freeze vgg16 layers
for layer in base_model.layers:
layer.trainable = False
model = Model(inputs=base_model.input, outputs=predictions)
model.summary()
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
model.fit(X, y)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment