Skip to content

Instantly share code, notes, and snippets.

@yongjun823
Created November 4, 2019 02:12
Show Gist options
  • Save yongjun823/62054a2e5bdfbb8ae4b6a1c9933ef370 to your computer and use it in GitHub Desktop.
Save yongjun823/62054a2e5bdfbb8ae4b6a1c9933ef370 to your computer and use it in GitHub Desktop.
semantic segmentation code (from labelme) && semantic json labeling to instance labeling
#!/usr/bin/env python
from __future__ import print_function
import argparse
import glob
import json
import os
import os.path as osp
import sys
from pprint import pprint
from tqdm import tqdm
import numpy as np
import PIL.Image
import labelme
def get_class_map():
return {
'_background_': 0,
'Apple_porcelain': 0,
'Beer': 0,
'Book': 0,
'Carbonated_drinks': 0,
'Cup': 0,
'Dispenser': 0,
'Desk_lamp': 0,
'Drugs': 0,
'Glasses_case': 0,
'Kettle': 0,
'Milk': 0,
'Mug': 0,
'Metal_box': 0,
'Nipper': 0,
'Plate': 0,
'Potato_chips': 0,
'Seasoning_sauce': 0,
'Spoon': 0,
'Stick_snacks': 0,
'Toy': 0,
'Wash_product': 0,
}
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--input', help='input annotated directory')
parser.add_argument('--output', help='output dataset directory')
args = parser.parse_args()
if osp.exists(args.output):
print('Output directory already exists:', args.output)
else:
os.makedirs(args.output)
os.makedirs(osp.join(args.output, 'JPEGImages'))
os.makedirs(osp.join(args.output, 'SegmentationClass'))
os.makedirs(osp.join(args.output, 'SegmentationClassPNG'))
os.makedirs(osp.join(args.output, 'SegmentationClassVisualization'))
print('Creating dataset:', args.output)
colormap = labelme.utils.label_colormap(255)
for label_file in tqdm(glob.glob(osp.join(args.input, '*.json'))):
print('Generating dataset from:', label_file)
with open(label_file) as f:
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output, 'JPEGImages', base + '.jpg')
out_lbl_file = osp.join(
args.output, 'SegmentationClass', base + '.npy')
out_png_file = osp.join(
args.output, 'SegmentationClassPNG', base + '.png')
out_viz_file = osp.join(
args.output,
'SegmentationClassVisualization',
base + '.jpg',
)
data = json.load(f)
shsh = data['shapes']
class_map = get_class_map()
for idx, sh in enumerate(shsh):
label = sh['label']
data['shapes'][idx]['label'] = label + str(class_map[label])
class_map[label] += 1
llk = [ds['label'] for ds in data['shapes']]
llk.append('_background_')
class_id = dict()
for idx, ll in enumerate(llk):
class_id[ll] = idx
img_file = osp.join(osp.dirname(label_file), data['imagePath'])
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
lbl = labelme.utils.shapes_to_label(
img_shape=img.shape,
shapes=data['shapes'],
label_name_to_value=class_id,
)
labelme.utils.lblsave(out_png_file, lbl)
np.save(out_lbl_file, lbl)
viz = labelme.utils.draw_label(
lbl, img, tuple(llk), colormap=colormap)
PIL.Image.fromarray(viz).save(out_viz_file)
if __name__ == '__main__':
main()
#!/usr/bin/env python
from __future__ import print_function
import argparse
import glob
import json
import os
import os.path as osp
import sys
from tqdm import tqdm
import numpy as np
import PIL.Image
import labelme
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--input', help='input annotated directory')
parser.add_argument('--output', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
args = parser.parse_args()
if osp.exists(args.output):
print('Output directory already exists:', args.output)
else:
os.makedirs(args.output)
os.makedirs(osp.join(args.output, 'JPEGImages'))
os.makedirs(osp.join(args.output, 'SegmentationClass'))
os.makedirs(osp.join(args.output, 'SegmentationClassPNG'))
os.makedirs(osp.join(args.output, 'SegmentationClassVisualization'))
print('Creating dataset:', args.output)
class_names = []
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
class_name = line.strip()
class_name_to_id[class_name] = i
class_names.append(class_name)
print(class_name_to_id)
class_names = tuple(class_names)
print('class_names:', class_names)
out_class_names_file = osp.join(args.output, 'class_names.txt')
with open(out_class_names_file, 'w') as f:
f.writelines('\n'.join(class_names))
print('Saved class_names:', out_class_names_file)
colormap = labelme.utils.label_colormap(255)
for label_file in tqdm(glob.glob(osp.join(args.input, '*.json'))):
print('Generating dataset from:', label_file)
with open(label_file) as f:
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output, 'JPEGImages', base + '.jpg')
out_lbl_file = osp.join(
args.output, 'SegmentationClass', base + '.npy')
out_png_file = osp.join(
args.output, 'SegmentationClassPNG', base + '.png')
out_viz_file = osp.join(
args.output,
'SegmentationClassVisualization',
base + '.jpg',
)
data = json.load(f)
img_file = osp.join(osp.dirname(label_file), data['imagePath'])
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
lbl = labelme.utils.shapes_to_label(
img_shape=img.shape,
shapes=data['shapes'],
label_name_to_value=class_name_to_id,
)
labelme.utils.lblsave(out_png_file, lbl)
np.save(out_lbl_file, lbl)
viz = labelme.utils.draw_label(
lbl, img, class_names, colormap=colormap)
PIL.Image.fromarray(viz).save(out_viz_file)
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment