Skip to content

@yorkerlin /gist:b64a015491833562d11a secret
Last active

Embed URL

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
see https://github.com/yorkerlin/approxKLVB for detail information
function [alpha, sW, L, nlZ, dnlZ] = approxLogKLWithLBFGS(hyper, covfunc, lik, x, y)
% Approximation to the posterior Gaussian Process by minimization of the
% KL-divergence. The function takes a specified covariance function (see
% covFunction.m) and likelihood function (see likelihoods.m), and is designed to
% be used with binaryGP.m. See also approximations.m.
%
% Written by Hannes Nickisch, 2007-03-29
% Modified by Wu Lin, 2014
n = size(x,1);
K = feval(covfunc{:}, hyper.cov, x); % evaluate the covariance matrix
alla_init{1} = [zeros(n,1); ones(n,1)*log(0.5)]; % stack alpha/lambda together
alla_init=alla_init([1]);
for alla_id = 1:length(alla_init) % iterate over initial conditions
alla = alla_init{alla_id};
use_pinv=false; check_cond=true;
nlZ_old = Inf; nlZ_new = 1e100; it=0; % make sure the while loop starts
[alla nlZ_new] = lbfgs(alla, K, y, lik, hyper); %using L-BFGS to find the opt alla
% save results
alla_result{alla_id} = alla;
nlZ_result( alla_id) = nlZ_new;
end
alla_id = find(nlZ_result==min(nlZ_result)); alla_id = alla_id(1);
alla = alla_result{alla_id}; % extract best result
%display the result
nlZ_new = min(nlZ_result)
alla(end/2+1:end,1) = -exp(alla(end/2+1:end,1)); %convert log_neg_lambda to lambda
alpha = alla(1:end/2,1)
W = -2*alla(end/2+1:end,1)
% recalculate L
sW = sqrt(W);
L = chol(eye(n)+sW*sW'.*K) % L'*L=B=eye(n)+sW*K*sW
% bound on neg log marginal likelihood
nlZ = nlZ_result( alla_id);
%estimate the hpyer parameter
% do we want derivatives?
if nargout >=4
dnlZ = zeros(size(hyper.cov)); % allocate space for derivatives
% parameters after optimization
alpha = alla( 1:end/2,1);
lambda = alla(end/2+1:end ,1);
A = inv( eye(n)-2*K*diag(lambda) );
Sigma = A*K
mu = K*alpha
v=abs(diag(A*K))
[a,dm,dC] = a_related2(K*alpha,v,y,lik,hyper);
for j=1:length(hyper.cov)
dK = feval(covfunc{:},hyper.cov,x,j);
% from the paper
% -alpha'*dK*dm +(alpha'*dK*alpha)/2 -diag(A*dK*A')'*dC
% -trace(A'*diag(lambda)*dK) +trace(A*dK*diag(lambda)*A)
% Note that lambda == dC
AdK = A*dK;
dnlZ(j) = -(alpha'*dK*(dm-alpha/2) +sum(A.*AdK,2)'*dC ...
+(diag(AdK)'-sum(A'.*AdK,1))*lambda);
end
dnlZ = hyper.cov; % allocate space for derivatives
for j=1:length(hyper.cov) % covariance hypers
dK = feval(covfunc{:},hyper.cov,x,j)
%dK = feval(cov{:},hyp.cov,x,[],j);
AdK = A*dK;
tmp1=sum(A.*AdK,2)
tmp2=sum(A'.*AdK,1)
z = diag(AdK) + sum(A.*AdK,2) - sum(A'.*AdK,1)';
%dnlZ(j) = alpha'*dK*(alpha/2-df) - z'*dv;
dnlZ(j) = alpha'*dK*(alpha/2-dm) - z'*dC;
end
dnlZ_lik=zeros(size(hyper.lik));
for j=1:length(hyper.lik) % likelihood hypers
lp_dhyp = likKL(v,lik,hyper.lik,y,K*alpha,[],[],j);
dnlZ_lik(j) = -sum(lp_dhyp);
end
disp('dnlZ_lik=')
sprintf('%.15f\n',dnlZ_lik)
dnlZ_mean=zeros(size(hyper.mean));
for j=1:length(hyp.mean) % mean hypers
dm_t = feval(mean{:}, hyper.mean, x, j);
dnlZ_mean(j) = -alpha'*dm_t;
end
end
%% evaluation of current negative log marginal likelihood depending on the
% parameters alpha (al) and lambda (la)
function [nlZ,dnlZ] = margLik_log(alla,K,y,lik,hpyer)
% extract single parameters
alpha = alla(1:end/2,1);
log_neg_lambda = alla(end/2+1:end,1);
lambda = -exp(log_neg_lambda);
% dimensions
n = length(y);
% original variables instead of alpha and la
VinvK = inv(eye(n)-2*K*diag(lambda)); % A:=V*inv(K)
V = VinvK*K; V=(V+V')/2; % enforce symmetry
v = abs(diag(V)); % abs prevents numerically negative values
m = K*alpha;
% calculate alpha related terms we need
if nargout==1
[a] = a_related2(m,v,y,lik,hpyer);
else
%done
[a,dm,dV] = a_related2(m,v,y,lik,hpyer);
end
%res1=trace(VinvK)
%W = abs(-2*lambda);
%sW = sqrt(W); L = chol(eye(n)+sW*sW'.*K);
%L_inv=L\eye(n);
%res2=trace(L_inv'*L_inv)
%Note res1==res2
%negative Likelihood
nlZ = -a -logdet(VinvK)/2 -n/2 +(alpha'*K*alpha)/2 +trace(VinvK)/2;
if nargout>1 % gradient of Likelihood
dlZ_alpha = K*(dm-alpha);
dlZ_lambda = 2*(V.*V)*dV +v -sum(V.*VinvK,2); % => fast diag(V*VinvK')
dlZ_log_neg_lambda = dlZ_lambda .* lambda;
% stack things together
dnlZ = -[dlZ_alpha; dlZ_log_neg_lambda];
end
function [alla2 nlZ] = lbfgs(alla, K, y, lik, hyper)
optMinFunc = struct('Display', 'FULL',...
'Method', 'lbfgs',...
'DerivativeCheck', 'off',...
'LS_type', 1,...
'MaxIter', 1000,...
'LS_interp', 1,...
'MaxFunEvals', 1000000,...
'Corr' , 100,...
'optTol', 1e-15,...
'progTol', 1e-15);
[alla2, nlZ] = minFunc(@margLik_log, alla, optMinFunc, K, y, lik,hyper);
%% log(det(A)) for det(A)>0
function y = logdet(A)
% 1) y=det(A); if det(A)<=0, error('det(A)<=0'), end, y=log(y);
% => naive implementation, not numerically stable
% 2) U=chol(A); y=2*sum(log(diag(U)));
% => fast, but works for symmetric p.d. matrices only
% 3) det(A)=det(L)*det(U)=det(L)*prod(diag(U))
% => logdet(A)=log(sum(log(diag(U)))) if det(A)>0
[L,U]=lu(A);
u=diag(U);
if prod(sign(u))~=det(L)
error('det(A)<=0')
end
y=sum(log(abs(u))); % slower, but no symmetry needed
% 4) d=eig(A); if prod(sign(d))<1, error('det(A)<=0'), end
% y=sum(log(d)); y=real(y);
% => slowest
%% compute all terms related to a
% derivatives w.r.t diag(V) and m, 2nd derivatives w.r.t diag(V) and m
function [a,dm,dV,d2m,d2V,dmdV]=a_related2(m,v,y,lik,hyper)
if nargout<4
[a,dm,d2m,dV] = likKL(v, lik,hyper.lik,y,m);
a = sum(a);
else
[a,dm,d2m,dV,d2V,dmdV] = likKL(v, lik,hyper.lik,y,m)
a = sum(a);
end
%using likelihood function in GPML 3.4
function [ll,df,d2f,dv,d2v,dfdv] = likKL(v, lik, varargin)
N = 20; % number of quadrature points
[t,w] = gauher(N); % location and weights for Gaussian-Hermite quadrature
f = varargin{3}; % obtain location of evaluation
sv = sqrt(v); % smoothing width
ll = 0; df = 0; d2f = 0; dv = 0; d2v = 0; dfdv = 0; % init return arguments
for i=1:N % use Gaussian quadrature
varargin{3} = f + sv*t(i); % coordinate transform of the quadrature points
[lp,dlp,d2lp] = feval(lik{:},varargin{1:3},[],'infLaplace',varargin{6:end});
if nargout>0, ll = ll + w(i)*lp; % value of the integral
if nargout>1, df = df + w(i)*dlp; % derivative w.r.t. mean
if nargout>2, d2f = d2f + w(i)*d2lp; % 2nd derivative w.r.t. mean
if nargout>3 % derivative w.r.t. variance
ai = t(i)./(2*sv+eps); dvi = dlp.*ai; dv = dv + w(i)*dvi; % no 0 div
if nargout>4 % 2nd derivative w.r.t. variance
d2v = d2v + w(i)*(d2lp.*(t(i)^2/2)-dvi)./(v+eps)/2; % no 0 div
if nargout>5 % mixed second derivatives
dfdv = dfdv + w(i)*(ai.*d2lp);
end
end
end
end
end
end
end
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Something went wrong with that request. Please try again.