This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
start_time = time.time() | |
import numpy as np | |
import pandas as pd | |
from sklearn.ensemble import RandomForestRegressor | |
#from sklearn import pipeline, model_selection | |
from sklearn import pipeline, grid_search | |
#from sklearn.feature_extraction import DictVectorizer | |
from sklearn.base import BaseEstimator, TransformerMixin | |
from sklearn.pipeline import FeatureUnion | |
from sklearn.decomposition import TruncatedSVD | |
#from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics import mean_squared_error, make_scorer | |
#from nltk.metrics import edit_distance | |
# from nltk.stem.porter import * | |
# stemmer = PorterStemmer() | |
#from nltk.stem.snowball import SnowballStemmer #0.003 improvement but takes twice as long as PorterStemmer | |
#stemmer = SnowballStemmer('english') | |
import re | |
#import enchant | |
import random | |
random.seed(2016) | |
print ("data preparation") | |
num_train=74067 | |
df_all = pd.read_csv('../input/df_all.csv', encoding="ISO-8859-1", index_col=0) | |
coswithst=pd.read_csv("../input/coswithst_m3.csv", encoding="ISO-8859-1",header=None) | |
coswithst.columns = ['distance'] | |
cws_trn=coswithst.iloc[:num_train] | |
cws_tst=coswithst.iloc[num_train:] | |
df_train = df_all.iloc[:num_train] | |
df_test = df_all.iloc[num_train:] | |
id_test = df_test['id'] | |
y_train = df_train['relevance'].values | |
x_train =df_train[:] | |
x_test = df_test[:] | |
x_train= pd.concat([x_train, cws_trn], axis=1) | |
x_test = pd.concat([x_test.reset_index(drop=True),cws_tst.reset_index(drop=True)], axis=1) | |
print ("data preparation done!") | |
print (x_train.head()) | |
def seg_words(str1, str2): | |
str2 = str2.lower() | |
str2 = re.sub("[^a-z0-9./]"," ", str2) | |
str2 = [z for z in set(str2.split()) if len(z)>2] | |
words = str1.lower().split(" ") | |
s = [] | |
for word in words: | |
if len(word)>3: | |
s1 = [] | |
s1 += segmentit(word,str2,True) | |
if len(s)>1: | |
s += [z for z in s1 if z not in ['er','ing','s','less'] and len(z)>1] | |
else: | |
s.append(word) | |
else: | |
s.append(word) | |
return (" ".join(s)) | |
def segmentit(s, txt_arr, t): | |
st = s | |
r = [] | |
for j in range(len(s)): | |
for word in txt_arr: | |
if word == s[:-j]: | |
r.append(s[:-j]) | |
#print(s[:-j],s[len(s)-j:]) | |
s=s[len(s)-j:] | |
r += segmentit(s, txt_arr, False) | |
if t: | |
i = len(("").join(r)) | |
if not i==len(st): | |
r.append(st[i:]) | |
return r | |
def str_common_word(str1, str2): | |
words, cnt = str1.split(), 0 | |
for word in words: | |
if str2.find(word)>=0: | |
cnt+=1 | |
return cnt | |
def str_whole_word(str1, str2, i_): | |
cnt = 0 | |
while i_ < len(str2): | |
i_ = str2.find(str1, i_) | |
if i_ == -1: | |
return cnt | |
else: | |
cnt += 1 | |
i_ += len(str1) | |
return cnt | |
def fmean_squared_error(ground_truth, predictions): | |
fmean_squared_error_ = mean_squared_error(ground_truth, predictions)**0.5 | |
return fmean_squared_error_ | |
RMSE = make_scorer(fmean_squared_error, greater_is_better=False) | |
class cust_regression_vals(BaseEstimator, TransformerMixin): | |
def fit(self, x, y=None): | |
return self | |
def transform(self, hd_searches): | |
d_col_drops=['id','relevance','search_term','product_title','product_description','product_info','attr','brand'] | |
hd_searches = hd_searches.drop(d_col_drops,axis=1).values | |
return hd_searches | |
class cust_txt_col(BaseEstimator, TransformerMixin): | |
def __init__(self, key): | |
self.key = key | |
def fit(self, x, y=None): | |
return self | |
def transform(self, data_dict): | |
return data_dict[self.key].apply(str) | |
print ("model preparation") | |
rfr = RandomForestRegressor(n_estimators = 500, n_jobs = -1, random_state = 2016, verbose = 1) | |
tfidf = TfidfVectorizer(ngram_range=(1, 1), stop_words='english') | |
tsvd = TruncatedSVD(n_components=10, random_state = 2016) | |
clf = pipeline.Pipeline([('union', FeatureUnion(transformer_list = [('cst', cust_regression_vals()), | |
('txt1', pipeline.Pipeline([('s1', cust_txt_col(key='search_term')), ('tfidf1', tfidf), ('tsvd1', tsvd)])), | |
('txt2', pipeline.Pipeline([('s2', cust_txt_col(key='product_title')), ('tfidf2', tfidf), ('tsvd2', tsvd)])), | |
('txt3', pipeline.Pipeline([('s3', cust_txt_col(key='product_description')), ('tfidf3', tfidf), ('tsvd3', tsvd)])), | |
('txt4', pipeline.Pipeline([('s4', cust_txt_col(key='brand')), ('tfidf4', tfidf), ('tsvd4', tsvd)])) | |
], | |
transformer_weights = {'cst': 1.0, | |
'txt1': 0.5, | |
'txt2': 0.25, | |
'txt3': 0.25, | |
'txt4': 0.5 | |
}, | |
n_jobs = -1 | |
)),('rfr', rfr)]) | |
param_grid = {'rfr__max_features': [5,10,12], 'rfr__max_depth': [20,25,30]} | |
model = grid_search.GridSearchCV(estimator = clf, param_grid = param_grid, n_jobs = -1, cv = 5, verbose = 20, scoring=RMSE) | |
model.fit(x_train, y_train) | |
print("Best parameters found by grid search:") | |
print(model.best_params_) | |
print("Best CV score:") | |
print(model.best_score_) | |
print(model.best_score_ + 0.47003199274) | |
y_pred = model.predict(x_test) | |
pd.DataFrame({"id": id_test, "relevance": y_pred}).to_csv('submission3.csv',index=False) | |
print("--- Training & Testing: %s minutes ---" % round(((time.time() - start_time)/60),2)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment