Created

Embed URL

HTTPS clone URL

SSH clone URL

You can clone with HTTPS or SSH.

Download Gist

2's Compliment Solution (InterviewStreet CodeSprint Fall 2011)

View Hint.md

The number of 1's in the range 0..X (X is positive) is easy to calculate (Can you get a simple recurrence which does this in O(log X) ?) Another observation is that the number of 1's in -X is equal to the number of 0's in ~(-X) = X - 1. Using this, it is easy to calculate the answer for negative ranges as well.

View Hint.md
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std ;
#define INF (int)1e9
 
long long solve(int a)
{
if(a == 0) return 0 ;
if(a % 2 == 0) return solve(a - 1) + __builtin_popcount(a) ;
return ((long long)a + 1) / 2 + 2 * solve(a / 2) ;
}
 
long long solve(int a,int b)
{
if(a >= 0)
{
long long ret = solve(b) ;
if(a > 0) ret -= solve(a - 1) ;
return ret ;
}
long long ret = (32LL * -(long long)a) - solve(~a) ;
if(b > 0) ret += solve(b) ;
else if(b < -1)
{
b++ ;
ret -= (32LL * -(long long)b) - solve(~b) ;
}
return ret ;
}
 
int main()
{
int runs,a,b ;
cin >> runs ;
while(runs--)
{
cin >> a >> b ;
long long ret = solve(a,b) ;
cout << ret << endl ;
}
return 0 ;
}

How many 1's do we have in the 2's compliment of 1 (using 32 bits) ?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Something went wrong with that request. Please try again.