Skip to content

Instantly share code, notes, and snippets.

@yuyasugano
Created September 28, 2020 08:09
Show Gist options
  • Save yuyasugano/a27ec535ff639ed859c5a4dbe1ed9251 to your computer and use it in GitHub Desktop.
Save yuyasugano/a27ec535ff639ed859c5a4dbe1ed9251 to your computer and use it in GitHub Desktop.
Trend indicator sample
import matplotlib.pyplot as plt
def plot_RSI(df, window):
diff = df.Close.diff(periods=1).values
xdate = [x.date() for x in df.index]
RSI = []
for i in range(window+1, len(xdate)):
neg = 0
pos = 0
for value in diff[i-window:i+1]:
if value > 0:
pos += value # accumulate positive diff
if value < 0:
neg += value # accumulate negative diff
pos_ave = pos/window # average price of positive diff
neg_ave = np.abs(neg/window) # average absolute price of negative diff
rsi = pos_ave/(pos_ave+neg_ave)*100
RSI.append(rsi)
# draw RSI figure
plt.plot(xdate[window+1:], RSI, label = "RSI {}".format(window), lw=2.5, alpha=0.6)
plt.xlim(xdate[window+1], xdate[-1])
plt.ylim(0,100)
plt.legend()
def RSI(df, windows):
xdate = [x.date() for x in df.index]
plt.figure(figsize=(15, 10))
# plot the original closing line
plt.subplot(211)
plt.plot(xdate, df.Close, label="close")
plt.xlim(xdate[0], xdate[-1])
plt.legend()
plt.grid()
# plot RSI
plt.subplot(212)
plt.grid()
plt.title("RSI")
for window in windows:
plot_RSI(df, window)
# fill area above 70 and below 30
plt.fill_between(xdate, np.ones(len(xdate))*30, color="blue", alpha=0.1)
plt.fill_between(xdate, np.ones(len(xdate))*70, np.ones(len(xdate))*100, color="red", alpha=0.1)
# draw dotted lines at 70 and 30
plt.plot(xdate, np.ones(len(xdate))*30, color="blue", linestyle="dotted")
plt.plot(xdate, np.ones(len(xdate))*70, color="red", linestyle="dotted")
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment