Last active
August 1, 2022 19:34
Given an integer n, count the total number of 1 digits appearing in all non-negative integers less than or equal to n.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
""" | |
Dirty and quick way with strings | |
""" | |
def numberOfOnesDirty(n): | |
sum = 0 | |
for i in range(n+1): | |
sum += str(i).count('1') | |
return sum | |
""" | |
Knowing that | |
0-9 = 1 | |
0-99 = 20 | |
0-999 = 300 | |
0-9999 = 4000 | |
it follows the formula of | |
n = number of digits in the sequence | |
n*(10**(n-1)) | |
You calculate the most you can and then you calculate the rest | |
""" | |
def numberOfOnesMath(n): | |
if n <= 0: | |
return 0 | |
elif n <= 9 and n >=1: | |
return 1 | |
# Size of the number ex: 999 = 3, 43 = 2 | |
digits = int(math.log10(n)) | |
# ex n = 754, remainder = 54 | |
remainder = n % (10**digits) | |
# ex n = 7654, first_digit_of_n = 7 | |
first_digit_of_n = n // (10**digits) | |
# What's explained on the function - the arithmetic sequence - n*(10**(n-1)) | |
full_sequence_frequency = digits*(10**(digits-1)) | |
""" | |
For example. From 100 to 199, the number will appear 100 times. | |
Going above from 200, the first number of all the other 3 digit numbers (200, 225, 300, 400, etc) is never going to be one again. | |
If the number is between 219 - 199, the number of ones of '1'00 will be repeated | |
""" | |
frequency_of_ones = 1 + remainder if first_digit_of_n == 1 else 10 ** digits | |
# As sumary: How many times my first one appears + [1-9] * (number of times one appears in the next 9999 sequence) + recusiverly the same | |
return frequency_of_ones + (full_sequence_frequency * first_digit_of_n) + numberOfOnesMath(remainder) | |
numberOfOnesDirty(7) # 14 | |
numberOfOnesMath(7) # 14 | |
numberOfOnesDirty(434) # 194 | |
numberOfOnesMath(434) # 194 | |
numberOfOnesDirty(-224332424) #0 | |
numberOfOnesMath(-224332424) #0 | |
""" | |
Linear for Perron, give me my points | |
""" | |
def numberOfOnesPerron(n): | |
sum = 0 | |
digits = int(math.log10(n)) | |
for i in reversed(range(0, digits+1)): | |
if n <= 0: | |
sum += 0 | |
break | |
elif n <= 9 and n >=1: | |
sum += 1 | |
break | |
chunk = 10 ** i | |
# ex n = 7654, first_digit_of_n = 7 | |
first_digit_of_n = n // chunk | |
# ex n = 754, remainder = 54 | |
remainder = n % chunk | |
full_sequence_frequency = i*(10**(i-1)) | |
frequency_of_ones = 1 + remainder if first_digit_of_n == 1 else chunk | |
sum += frequency_of_ones + (full_sequence_frequency * first_digit_of_n) | |
n = remainder | |
return int(sum) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment