Created
October 21, 2021 04:00
-
-
Save zaynpatel/db6ff8179bf807d684e11eb822679b87 to your computer and use it in GitHub Desktop.
Using Customer Segmentation Data + Unsupervised Learning to Recognize Buyer Patterns
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
df=pd.read_csv("Mall_Customers.csv") | |
df.head() | |
df.shape | |
df.describe() | |
df.dtypes | |
df.isnull().sum() | |
df.drop(["CustomerID"],axis=1,inplace=True) | |
df.head() | |
plt.figure(1, figsize=(15,6)) | |
n=0 | |
for x in ['Age', 'Annual Income (k$)', 'Spending Score (1-100)']: | |
n += 1 | |
plt.subplot(1, 3, n) | |
plt.subplots_adjust(hspace =0.5 , wspace = 0.5) | |
sns.distplot(df[x], bins = 20) | |
plt.title("Distplot of {}".format(x)) | |
plt.show() | |
plt.figure(figsize=(15,5)) | |
sns.countplot(y='Gender',data=df) | |
plt.show() | |
plt.figure(1,figsize=(15,7)) | |
n=0 | |
for cols in ['Age', 'Annual Income (k$)', 'Spending Score (1-100)']: | |
n+=1 | |
plt.subplot(1, 3, n) | |
sns.set(style="whitegrid") | |
plt.subplots_adjust(hspace = 0.5, wspace = 0.5) | |
sns.violinplot(x=cols, y = 'Gender', data = df) | |
plt.ylabel ('Gender' if n == 1 else '') | |
plt.title ('Violin Plot') | |
plt.show() | |
age_18_25 = df.Age[(df.Age >= 18) & (df.Age <= 25)] | |
age_26_35 = df.Age[(df.Age >= 26) & (df.Age <= 35)] | |
age_36_45 = df.Age[(df.Age >= 36) & (df.Age <= 45)] | |
age_46_55 = df.Age[(df.Age >= 46) & (df.Age <= 55)] | |
age_55above = df.Age[df.Age >= 56] | |
agex = ["18 - 25", "26 - 35", "36 - 45", "46 - 55", "55+"] | |
agey = [len(age_18_25.values), len(age_26_35.values), len(age_36_45.values), len(age_46_55.values),len(age_55above.values)] | |
plt.figure(figsize=(15,6)) | |
sns.barplot(x=agex, y=agey, palette="mako") | |
plt.title("Number of Customer and Ages") | |
plt.xlabel("Age") | |
plt.ylabel("Number of Customer") | |
plt.show() | |
sns.relplot(x="Annual Income (k$)", y="Spending Score (1-100)", data=df) | |
print("This data is in a rel plot! We can see relationships between customers who spent percentages of their annual income and what score they've received for their frequency of spending.") | |
plt.show() | |
ss_1_20 = df["Spending Score (1-100)"][(df["Spending Score (1-100)"] >=1) & (df["Spending Score (1-100)"] <=20)] | |
ss_21_40 = df["Spending Score (1-100)"][(df["Spending Score (1-100)"] >=21) & (df["Spending Score (1-100)"] <=40)] | |
ss_41_60 = df["Spending Score (1-100)"][(df["Spending Score (1-100)"] >=41) & (df["Spending Score (1-100)"] <=60)] | |
ss_61_80 = df["Spending Score (1-100)"][(df["Spending Score (1-100)"] >=61) & (df["Spending Score (1-100)"] <=80)] | |
ss_81_100 = df["Spending Score (1-100)"][(df["Spending Score (1-100)"] >=81) & (df["Spending Score (1-100)"] <=100)] | |
ssx = ["1-20", "21-40", "41-60", "61-80", "81-100"] | |
ssy = [len(ss_1_20.values), len(ss_21_40.values), len(ss_41_60.values), len(ss_61_80.values), len(ss_81_100.values)] | |
plt.figure(figsize=(15,6)) | |
sns.barplot(x=ssx, y=ssy, palette="rocket") | |
plt.title("Spending Scores") | |
plt.xlabel("Score") | |
plt.ylabel("Number of Customers Having the Score") | |
plt.show() | |
ai0_30 = df["Annual Income (k$)"][(df["Annual Income (k$)"] >=0) & (df["Annual Income (k$)"] <=30)] | |
ai31_60 = df["Annual Income (k$)"][(df["Annual Income (k$)"] >=31) & (df["Annual Income (k$)"] <=60)] | |
ai61_90 = df["Annual Income (k$)"][(df["Annual Income (k$)"] >=61) & (df["Annual Income (k$)"] <=90)] | |
ai91_120 = df["Annual Income (k$)"][(df["Annual Income (k$)"] >=91) & (df["Annual Income (k$)"] <=120)] | |
ai121_150 = df["Annual Income (k$)"][(df["Annual Income (k$)"] >=121) & (df["Annual Income (k$)"] <=150)] | |
aix = ["$ 0 - 30,000", "$30,001 - 60,000", "$60,001 - 90,000", "$90,001 - 120,000", "$120,001 - 150,000"] | |
aiy = [len(ai0_30.values), len(ai31_60.values), len(ai61_90.values), len(ai91_120.values), len(ai121_150.values)] | |
plt.figure(figsize=(15,6)) | |
sns.barplot(x=aix, y=aiy, palette = "Spectral") | |
plt.title("Annual Incomes") | |
plt.xlabel("Income Streams") | |
plt.ylabel("Number of Customers") | |
plt.show() | |
X1=df.loc[:, ["Age", "Spending Score (1-100)"]].values | |
from sklearn.cluster import KMeans | |
wcss = [] | |
for k in range(1,11): | |
kmeans = KMeans(n_clusters=k, init = "k-means++") | |
kmeans.fit(X1) | |
wcss.append(kmeans.inertia_) | |
plt.figure(figsize=(12,6)) | |
plt.grid() | |
plt.plot(range(1,11), wcss, linewidth=2, color="red", marker="8") | |
plt.xlabel("K Values") | |
plt.ylabel("WCSS") | |
plt.show() | |
# initialize class object now that k-value is found | |
kmeans = KMeans(n_clusters=4) | |
# predict the labels of clusters | |
label = kmeans.fit_predict(X1) | |
print(label) | |
print(kmeans.cluster_centers_) | |
plt.scatter(X1[:,0], X1[:,1],c=kmeans.labels_, cmap='rainbow') | |
plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], color='black') | |
plt.title('Clusters of Customers') | |
plt.xlabel('Age') | |
plt.ylabel('Spending Score (1-100)') | |
plt.show() | |
X2=df.loc[:, ["Annual Income (k$)", "Spending Score (1-100)"]].values | |
from sklearn.cluster import KMeans | |
wcss = [] | |
for k in range(1,11): | |
kmeans = KMeans(n_clusters=k, init="k-means++") | |
kmeans.fit(X2) | |
wcss.append(kmeans.inertia_) | |
plt.figure(figsize=(12,6)) | |
plt.grid() | |
plt.plot(range(1,11),wcss, linewidth=2, color="red", marker="8") | |
plt.xlabel("K Value") | |
plt.ylabel("WCSS") | |
plt.show() | |
kmeans = KMeans(n_clusters=5) | |
label = kmeans.fit_predict(X2) | |
print(label) | |
print(kmeans.cluster_centers_) | |
plt.scatter(X2[:,0], X1[:,1],c=kmeans.labels_, cmap='rainbow') | |
plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], color='black') | |
plt.title('Clusters of Customers') | |
plt.xlabel('Annual Income (k$)') | |
plt.ylabel('Spending Score (1-100)') | |
plt.show() | |
X3=df.iloc[:,1:] | |
wcss = [] | |
for k in range(1,11): | |
kmeans = KMeans(n_clusters=k, init="k-means++") | |
kmeans.fit(X3) | |
wcss.append(kmeans.inertia_) | |
plt.figure(figsize=(12,6)) | |
plt.grid() | |
plt.plot(range(1,11),wcss, linewidth=2, color="red", marker="8") | |
plt.xlabel("K Value") | |
plt.ylabel("WCSS") | |
plt.show() | |
kmeans = KMeans(n_clusters = 6) | |
label = kmeans.fit_predict(X3) | |
print(label) | |
print(kmeans.cluster_centers_) | |
clusters = kmeans.fit_predict(X3) | |
df["label"] = clusters | |
from mpl_toolkits.mplot3d import Axes3D | |
fig = plt.figure(figsize=(20,10)) | |
ax = fig.add_subplot(111, projection='3d') | |
ax.scatter(df.Age[df.label == 0], df["Annual Income (k$)"][df.label == 0], df["Spending Score (1-100)"][df.label == 0], c='blue') | |
ax.scatter(df.Age[df.label == 1], df["Annual Income (k$)"][df.label == 1], df["Spending Score (1-100)"][df.label == 1], c='red') | |
ax.scatter(df.Age[df.label == 2], df["Annual Income (k$)"][df.label == 2], df["Spending Score (1-100)"][df.label == 2], c='black') | |
ax.scatter(df.Age[df.label == 3], df["Annual Income (k$)"][df.label == 3], df["Spending Score (1-100)"][df.label == 3], c='orange') | |
ax.scatter(df.Age[df.label == 4], df["Annual Income (k$)"][df.label == 4], df["Spending Score (1-100)"][df.label == 4], c='purple') | |
ax.view_init(30,185) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment