Skip to content

Instantly share code, notes, and snippets.

Forked from nchaimov/
Created December 7, 2018 20:31
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
Star You must be signed in to star a gist
What would you like to do?
#!/bin/env python
"""TAU trial data for TAU Profile.x.y.z format profiles
Parses a set of TAU profile files and yields multi-indexed Pandas dataframes for the
interval and atomic events.
from __future__ import print_function
import csv
import glob
import mmap
import os
import re
import xml.etree.ElementTree as ElementTree
from sys import stderr
import pandas
import sys
class TauProfileParser(object):
"""Parser for TAU's profile.* format."""
_interval_header_re = re.compile(b'(\\d+) templated_functions_MULTI_(.+)')
_atomic_header_re = re.compile(b'(\\d+) userevents')
def __init__(self, trial, metric, metadata, indices, interval_data, atomic_events):
self.trial = trial
self.metric = metric
self.metadata = metadata
self.indices = indices
self._interval_data = interval_data
self._atomic_data = atomic_events
def interval_data(self):
return self._interval_data
def atomic_data(self):
return self._atomic_data
def get_value_types(self):
return [key for key in dict(self._interval_data.dtypes)
if dict(self._interval_data.dtypes)[key] in ['float64', 'int64']]
def summarize_samples(self, across_threads=False, callpaths=True):
groups = 'Timer Name' if across_threads else ['Node', 'Context', 'Thread', 'Timer Name']
if callpaths:
base_data = self._interval_data.loc[self._interval_data['Group'].str.contains("TAU_SAMPLE")]
base_data = self._interval_data.loc[self._interval_data['Timer Type'] == 'SAMPLE']
summary = base_data.groupby(groups).sum()
summary.index =
lambda x: '[SUMMARY] ' + x if across_threads else (x[0], x[1], x[2], '[SUMMARY] ' + x[3]))
return summary
def summarize_allocations(self):
sums = self.atomic_data().groupby('Timer').agg({'Count': 'sum', 'Mean': 'mean'})
allocs = sums[sums.index.to_series().str.contains('alloc')][['Count', 'Mean']]
allocs['Total'] = allocs['Count'] * allocs['Mean']
return allocs
def _parse_header(cls, fin):
match = cls._interval_header_re.match(fin.readline())
interval_count, metric = match.groups()
return int(interval_count), metric
def _parse_metadata(cls, fin):
fields, xml_wanabe = fin.readline().split(b'<metadata>')
xml_wanabe = b'<metadata>' + xml_wanabe
if (fields != b"# Name Calls Subrs Excl Incl ProfileCalls" and
fields != b'# Name Calls Subrs Excl Incl ProfileCalls # '):
raise RuntimeError('Invalid profile file: %s' %
metadata_tree = ElementTree.fromstring(xml_wanabe)
except ElementTree.ParseError as err:
raise RuntimeError('Invalid profile file: %s' % err)
metadata = {}
for attribute in metadata_tree.iter('attribute'):
name = attribute.find('name').text
value = attribute.find('value').text
metadata[name] = value
return metadata
def _parse_interval_data(cls, fin, count):
def _parse_atomic_header(cls, fin):
aggregates = fin.readline().split(b' aggregates')[0]
if aggregates != b'0':
print("aggregates != 0, is '%s'" % aggregates, file=stderr)
match = cls._atomic_header_re.match(fin.readline())
count = int(
if fin.readline() != b"# eventname numevents max min mean sumsqr\n":
raise RuntimeError('Invalid profile file: %s' %
except AttributeError:
count = 0
return count
def extract_from_timer_name(name):
import re
tag_search ='^\[(\w+)\]\s+(.*)', name)
timer_type, rest = tag_search.groups() if tag_search else (None, name)
name_search ='(.+)\[({.*)\]', rest)
func_name, location = name_search.groups() if name_search else (rest, None)
return func_name, location, timer_type
def parse(cls, dir_path, filenames=None, trial=None):
if not os.path.isdir(dir_path):
print("Error: %s is not a directory." % dir_path, file=stderr)
intervals = []
atomics = []
indices = []
trial_data_metric = None
trial_data_metadata = None
if filenames is None:
filenames = [os.path.basename(x) for x in glob.glob(os.path.join(dir_path, 'profile.*'))]
if not filenames:
print("Error: No profile files found.")
for filename in sorted(filenames,
key=lambda s: [int(t) if t.isdigit() else t.lower() for t in re.split('(\d+)', s)]):
location = os.path.basename(filename).replace('profile.', '')
node, context, thread = (int(x) for x in location.split('.'))
file_path = os.path.join(dir_path, filename)
with open(file_path) as fin:
mm = mmap.mmap(fin.fileno(), 0, mmap.MAP_PRIVATE, mmap.PROT_READ)
interval_count, metric = cls._parse_header(mm)
if not trial_data_metric:
trial_data_metric = metric
metadata = cls._parse_metadata(mm)
if not trial_data_metadata:
trial_data_metadata = metadata
interval = pandas.read_table(mm, nrows=interval_count, delim_whitespace=True,
names=['Calls', 'Subcalls', 'Exclusive',
'Inclusive', 'ProfileCalls', 'Group'],
split_index = interval.reset_index()['index'].apply(cls.extract_from_timer_name)
for n, col in enumerate(['Timer Name', 'Timer Location', 'Timer Type']):
interval[col] = split_index.apply(lambda l: l[n]).values
for i in range(0, interval_count + 2):
atomic = pandas.read_table(mm, names=['Count', 'Maximum', 'Minimum', 'Mean', 'SumSq'],
delim_whitespace=True, engine='c')
indices.append((node, context, thread))
interval_df = pandas.concat(intervals, keys=indices)
interval_df.index.rename(['Node', 'Context', 'Thread', 'Timer'], inplace=True)
atomic_df = pandas.concat(atomics, keys=indices)
atomic_df.index.rename(['Node', 'Context', 'Thread', 'Timer'], inplace=True)
return cls(trial, trial_data_metric, trial_data_metadata, indices, interval_df, atomic_df)
if __name__ == "__main__":
if len(sys.argv) == 1:
path = '.'
elif len(sys.argv) == 2:
path = sys.argv[1]
print("Usage: %s [path]" % sys.argv[0])
data = TauProfileParser.parse(path)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment