Last active
December 27, 2016 14:15
-
-
Save zeffii/8f3ddcde3f18898e7cb1b4990e418f52 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import bpy | |
class Image(): | |
def __init__(self, img_name, greyscale_mode='lightness', dither_method="Floyd-Steinberg"): | |
self.bpy_img = bpy.data.images.get(img_name) | |
if not self.bpy_img: | |
return | |
self.width, self.height = self.bpy_img.size | |
self.tmp = np.array(self.bpy_img.pixels[:]) | |
self.image = self.tmp.reshape(self.height, self.width, 4) | |
self.greyscale_mode, self.dither_method = greyscale_mode, dither_method | |
self.make_greyscale() | |
self.resize() | |
self.generate_dither() | |
def make_greyscale(self): | |
# reorder from bottom left to top left | |
image_ud = np.flipud(self.image) | |
self.just_rgb = image_ud[:, :, :-1] | |
self.greyscale_mode = 'luminosity' | |
if self.greyscale_mode == 'lightness': | |
# max(r, g, b) + min(r, g, b) / 2 | |
self.greyscale = (np.max(self.just_rgb, axis=2) + np.min(self.just_rgb, axis=2)) / 2 | |
elif self.greyscale_mode == 'average': | |
# (r, g, b) / 3 | |
self.greyscale = np.mean(self.just_rgb, axis=2) | |
elif self.greyscale_mode == 'luminosity': | |
# 0.21*r + 0.72*g + 0.07*b | |
def myfunc(rgb): | |
return 0.21*rgb[0] + 0.72*rgb[1] + 0.07*rgb[2] | |
self.greyscale = np.apply_along_axis(myfunc, 2, self.just_rgb) | |
def resize(self): | |
''' expand by required padding for error carrying ''' | |
# name #x, y | |
padding_x, padding_y = { | |
"Floyd-Steinberg": (1, 1), | |
"Atkinson": (2, 2), | |
"Jarvis-Judice-Ninke": (2, 2), | |
"Stucki": (2, 2) | |
}.get(self.dither_method) | |
# add columns | |
for _ in range(padding_x): | |
b = np.zeros((self.greyscale.shape[0], self.greyscale.shape[1]+1)) | |
b[:, :-1] = self.greyscale | |
self.greyscale = b | |
# add rows | |
for _ in range(padding_y): | |
new_row = np.zeros(self.greyscale.shape[1]) | |
self.greyscale = np.vstack([self.greyscale, new_row]) | |
def generate_dither(self): | |
# pylint: disable=C0326 | |
def getPixel(x, y): | |
return self.greyscale[x, y] | |
def setPixel(x, y, m): | |
self.greyscale[x, y] = m | |
w = self.width | |
h = self.height | |
if self.dither_method == "Floyd-Steinberg": | |
w1 = 7/16 | |
w2 = 3/16 | |
w3 = 5/16 | |
w4 = 1/16 | |
for y in range(h): | |
for x in range(w): | |
oldpixel = getPixel(x, y) | |
newpixel = 0 if oldpixel < 0.5 else 1.0 | |
setPixel(x, y, newpixel) | |
quant_error = oldpixel - newpixel | |
setPixel(x+1, y, getPixel(x+1, y) + w1 * quant_error) | |
setPixel(x-1, y+1, getPixel(x-1, y+1) + w2 * quant_error) | |
setPixel(x, y+1, getPixel(x, y+1) + w3 * quant_error) | |
setPixel(x+1, y+1, getPixel(x+1, y+1) + w4 * quant_error) | |
elif self.dither_method == "Atkinson": | |
w1 = 1/8 | |
for y in range(h): | |
for x in range(w): | |
oldpixel = getPixel(x, y) | |
newpixel = 0 if oldpixel < 0.5 else 1.0 | |
setPixel(x, y, newpixel) | |
quant_error = oldpixel - newpixel | |
setPixel(x+1, y, getPixel(x+1, y) + w1 * quant_error) | |
setPixel(x+2, y, getPixel(x+2, y) + w1 * quant_error) | |
setPixel(x-1, y+1, getPixel(x-1, y+1) + w1 * quant_error) | |
setPixel(x, y+1, getPixel(x, y+1) + w1 * quant_error) | |
setPixel(x+1, y+1, getPixel(x+1, y+1) + w1 * quant_error) | |
setPixel(x, y+2, getPixel(x, y+2) + w1 * quant_error) | |
elif self.dither_method == "Jarvis-Judice-Ninke": | |
w7 = 7/48 | |
w5 = 5/48 | |
w3 = 3/48 | |
w1 = 1/48 | |
for y in range(h): | |
for x in range(w): | |
oldpixel = getPixel(x, y) | |
newpixel = 0 if oldpixel < 0.5 else 1.0 | |
setPixel(x, y, newpixel) | |
quant_error = oldpixel - newpixel | |
setPixel(x+1, y, getPixel(x+1, y) + w7 * quant_error) | |
setPixel(x+2, y, getPixel(x+2, y) + w5 * quant_error) | |
setPixel(x-2, y+1, getPixel(x-2, y+1) + w3 * quant_error) | |
setPixel(x-1, y+1, getPixel(x-1, y+1) + w5 * quant_error) | |
setPixel(x, y+1, getPixel(x, y+1) + w7 * quant_error) | |
setPixel(x+1, y+1, getPixel(x+1, y+1) + w5 * quant_error) | |
setPixel(x+2, y+1, getPixel(x+2, y+1) + w3 * quant_error) | |
setPixel(x-2, y+2, getPixel(x-2, y+2) + w1 * quant_error) | |
setPixel(x-1, y+2, getPixel(x-1, y+2) + w3 * quant_error) | |
setPixel(x, y+2, getPixel(x, y+2) + w5 * quant_error) | |
setPixel(x+1, y+2, getPixel(x+1, y+2) + w3 * quant_error) | |
setPixel(x+2, y+2, getPixel(x+2, y+2) + w1 * quant_error) | |
elif self.dither_method == "Stucki": | |
w8 = 8/42 | |
w7 = 7/42 | |
w5 = 5/42 | |
w4 = 4/42 | |
w2 = 2/42 | |
w1 = 1/42 | |
for y in range(h): | |
for x in range(w): | |
oldpixel = getPixel(x, y) | |
newpixel = 0 if oldpixel < 0.5 else 1.0 | |
setPixel(x, y, newpixel) | |
quant_error = oldpixel - newpixel | |
setPixel(x+1, y, getPixel(x+1, y) + w7 * quant_error) | |
setPixel(x+2, y, getPixel(x+2, y) + w5 * quant_error) | |
setPixel(x-2, y+1, getPixel(x-2, y+1) + w2 * quant_error) | |
setPixel(x-1, y+1, getPixel(x-1, y+1) + w4 * quant_error) | |
setPixel(x, y+1, getPixel(x, y+1) + w8 * quant_error) | |
setPixel(x+1, y+1, getPixel(x+1, y+1) + w4 * quant_error) | |
setPixel(x+2, y+1, getPixel(x+2, y+1) + w2 * quant_error) | |
setPixel(x-2, y+2, getPixel(x-2, y+2) + w1 * quant_error) | |
setPixel(x-1, y+2, getPixel(x-1, y+2) + w2 * quant_error) | |
setPixel(x, y+2, getPixel(x, y+2) + w4 * quant_error) | |
setPixel(x+1, y+2, getPixel(x+1, y+2) + w2 * quant_error) | |
setPixel(x+2, y+2, getPixel(x+2, y+2) + w1 * quant_error) | |
modes = ["Floyd-Steinberg", "Atkinson", "Jarvis-Judice-Ninke", "Stucki"] | |
Image('lena_crop.bmp') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
where it works?