Skip to content

Instantly share code, notes, and snippets.

@zenmoto
Created September 26, 2012 16:34
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save zenmoto/3789050 to your computer and use it in GitHub Desktop.
Save zenmoto/3789050 to your computer and use it in GitHub Desktop.
Problems with texturing in three.js ParticleSystem
<!DOCTYPE html>
<html lang="en">
<head>
<title>Demo of texturing problem</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
</head>
<body>
<div id="container"></div>
<script src="lib/ThreeDebug.js"></script>
<script type="x-shader/x-vertex" id="vertexshader">
uniform float size;
attribute float opacity;
varying vec3 vPosition;
varying float vOpacity;
void main() {
vPosition = position;
vOpacity = opacity;
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
gl_PointSize = size;
//gl_PointSize = size * ( 300.0 / length( mvPosition.xyz ) );
gl_Position = projectionMatrix * mvPosition;
}
</script>
<script type="x-shader/x-fragment" id="fragmentshader">
uniform sampler2D textex;
varying vec3 vPosition;
varying float vOpacity;
void main() {
//gl_FragColor = vec4(1.0, 1.0, 1.0, vOpacity );
gl_FragColor = texture2D(textex, gl_PointCoord.xy);
}
</script>
<script src="js/ParticlePool.js"></script>
<script src="js/particles.js">
</script>
</body>
</html>
function ParticlePool(numberOfParticles, scene) {
var obj = {};
var pool = [];
var active_particles = [];
var attributes = {
opacity: {
type: 'f',
value: []
}
};
var tex = THREE.ImageUtils.loadTexture( "images/particle.png", undefined, function(){console.log("Loaded image!");}, function(){console.log("Failed to load image.");});
var uniforms = {
textex: { type: "t", value: tex},
size: {type: "f", value: 100}
};
var create_particle = function(obj) {
attributes.opacity.value.push(1.0);
return obj;
};
var reset_particle = function(lifetime) {
this.lifetime = lifetime;
this.time_to_die = Date.now() + this.lifetime;
this.dead = false;
};
var die = function() {
this.position.x = 0;
this.position.y = 0;
this.position.z = 0;
this.dead = true;
console.log('ded');
pool.push(this);
};
var update_particle = function() {
var time_left = (this.time_to_die - Date.now());
if (time_left <= 0) {
die.call(this); // AWKWARD!
} else {
console.log("opacity: " + time_left / this.lifetime);
attributes.opacity.value[this.idx] = time_left / this.lifetime;
}
};
var geom = new THREE.Geometry();
for (var i=0; i<numberOfParticles; i++) {
var loc = new THREE.Vector3(0, 0, 0);
geom.vertices.push(loc);
pool.push(create_particle({idx: i, position: loc}));
}
var shaderMaterial = new THREE.ShaderMaterial( {
uniforms: uniforms,
attributes: attributes,
vertexShader: document.getElementById( 'vertexshader' ).textContent,
fragmentShader: document.getElementById( 'fragmentshader' ).textContent,
blending: THREE.AdditiveBlending,
depthTest: false,
transparent: true
});
var particleSystem = new THREE.ParticleSystem(geom, shaderMaterial);
particleSystem.dynamic = true;
scene.add(particleSystem);
obj.add_particle = function(args, lifetime) {
var particle = pool.pop();
reset_particle.call(particle, (lifetime || 2000));
particle.position.x = args.position.x;
particle.position.y = args.position.y;
particle.position.z = args.position.z;
console.log(JSON.stringify(particle));
active_particles.push(particle);
};
obj.update = function() {
active_particles.forEach(function(p) {
update_particle.call(p);
});
// Bring out yer deeeaaad!
active_particles = active_particles.filter(function(e) {return !e.dead;});
geom.verticesNeedUpdate = true;
for (var i in attributes) {
attributes[i].needsUpdate = true;
}
};
obj.active_particle_count = function() {
return active_particles.length;
};
obj.pool_reserve = function() {
return pool.length;
};
return obj;
}
var renderer, scene, camera, stats;
var sphere, uniforms, attributes;
var noise = [];
var WIDTH = window.innerWidth;
var HEIGHT = window.innerHeight;
init();
animate();
var pool;
var geometry;
function init() {
camera = new THREE.PerspectiveCamera( 40, WIDTH / HEIGHT, 1, 10000 );
camera.position.z = 300;
scene = new THREE.Scene();
scene.add(camera);
renderer = new THREE.WebGLRenderer( { clearColor: 0x000000, clearAlpha: 1 } );
renderer.setSize( WIDTH, HEIGHT );
var container = document.getElementById( 'container' );
container.appendChild( renderer.domElement );
window.addEventListener( 'resize', onWindowResize, false );
pool = ParticlePool(100, scene);
setTimeout(function() {pool.add_particle({position: {x: 100.0, y: 0.0, z: 0.0}});}, 250);
}
function onWindowResize() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize( window.innerWidth, window.innerHeight );
}
function animate() {
requestAnimationFrame( animate );
update();
render();
}
function update() {
pool.update();
}
function render() {
renderer.render( scene, camera );
}
// ThreeDebug.js - http://github.com/mrdoob/three.js
/**
* @author mr.doob / http://mrdoob.com/
*/
var THREE = THREE || { REVISION: '49' };
if ( ! self.Int32Array ) {
self.Int32Array = Array;
self.Float32Array = Array;
}
// http://paulirish.com/2011/requestanimationframe-for-smart-animating/
// http://my.opera.com/emoller/blog/2011/12/20/requestanimationframe-for-smart-er-animating
// requestAnimationFrame polyfill by Erik Möller
// fixes from Paul Irish and Tino Zijdel
( function () {
var lastTime = 0;
var vendors = [ 'ms', 'moz', 'webkit', 'o' ];
for ( var x = 0; x < vendors.length && !window.requestAnimationFrame; ++ x ) {
window.requestAnimationFrame = window[ vendors[ x ] + 'RequestAnimationFrame' ];
window.cancelAnimationFrame = window[ vendors[ x ] + 'CancelAnimationFrame' ] || window[ vendors[ x ] + 'CancelRequestAnimationFrame' ];
}
if ( !window.requestAnimationFrame ) {
window.requestAnimationFrame = function ( callback, element ) {
var currTime = Date.now(), timeToCall = Math.max( 0, 16 - ( currTime - lastTime ) );
var id = window.setTimeout( function() { callback( currTime + timeToCall ); }, timeToCall );
lastTime = currTime + timeToCall;
return id;
};
}
if ( !window.cancelAnimationFrame ) {
window.cancelAnimationFrame = function ( id ) { clearTimeout( id ); };
}
}() );
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.Clock = function ( autoStart ) {
this.autoStart = ( autoStart !== undefined ) ? autoStart : true;
this.startTime = 0;
this.oldTime = 0;
this.elapsedTime = 0;
this.running = false;
};
THREE.Clock.prototype.start = function () {
this.startTime = Date.now();
this.oldTime = this.startTime;
this.running = true;
};
THREE.Clock.prototype.stop = function () {
this.getElapsedTime();
this.running = false;
};
THREE.Clock.prototype.getElapsedTime = function () {
this.elapsedTime += this.getDelta();
return this.elapsedTime;
};
THREE.Clock.prototype.getDelta = function () {
var diff = 0;
if ( this.autoStart && ! this.running ) {
this.start();
}
if ( this.running ) {
var newTime = Date.now();
diff = 0.001 * ( newTime - this.oldTime );
this.oldTime = newTime;
this.elapsedTime += diff;
}
return diff;
};/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.Color = function ( hex ) {
if ( hex !== undefined ) this.setHex( hex );
return this;
};
THREE.Color.prototype = {
constructor: THREE.Color,
r: 1, g: 1, b: 1,
copy: function ( color ) {
this.r = color.r;
this.g = color.g;
this.b = color.b;
return this;
},
copyGammaToLinear: function ( color ) {
this.r = color.r * color.r;
this.g = color.g * color.g;
this.b = color.b * color.b;
return this;
},
copyLinearToGamma: function ( color ) {
this.r = Math.sqrt( color.r );
this.g = Math.sqrt( color.g );
this.b = Math.sqrt( color.b );
return this;
},
convertGammaToLinear: function () {
var r = this.r, g = this.g, b = this.b;
this.r = r * r;
this.g = g * g;
this.b = b * b;
return this;
},
convertLinearToGamma: function () {
this.r = Math.sqrt( this.r );
this.g = Math.sqrt( this.g );
this.b = Math.sqrt( this.b );
return this;
},
setRGB: function ( r, g, b ) {
this.r = r;
this.g = g;
this.b = b;
return this;
},
setHSV: function ( h, s, v ) {
// based on MochiKit implementation by Bob Ippolito
// h,s,v ranges are < 0.0 - 1.0 >
var i, f, p, q, t;
if ( v === 0 ) {
this.r = this.g = this.b = 0;
} else {
i = Math.floor( h * 6 );
f = ( h * 6 ) - i;
p = v * ( 1 - s );
q = v * ( 1 - ( s * f ) );
t = v * ( 1 - ( s * ( 1 - f ) ) );
switch ( i ) {
case 1: this.r = q; this.g = v; this.b = p; break;
case 2: this.r = p; this.g = v; this.b = t; break;
case 3: this.r = p; this.g = q; this.b = v; break;
case 4: this.r = t; this.g = p; this.b = v; break;
case 5: this.r = v; this.g = p; this.b = q; break;
case 6: // fall through
case 0: this.r = v; this.g = t; this.b = p; break;
}
}
return this;
},
setHex: function ( hex ) {
hex = Math.floor( hex );
this.r = ( hex >> 16 & 255 ) / 255;
this.g = ( hex >> 8 & 255 ) / 255;
this.b = ( hex & 255 ) / 255;
return this;
},
lerpSelf: function ( color, alpha ) {
this.r += ( color.r - this.r ) * alpha;
this.g += ( color.g - this.g ) * alpha;
this.b += ( color.b - this.b ) * alpha;
return this;
},
getHex: function () {
return Math.floor( this.r * 255 ) << 16 ^ Math.floor( this.g * 255 ) << 8 ^ Math.floor( this.b * 255 );
},
getContextStyle: function () {
return 'rgb(' + Math.floor( this.r * 255 ) + ',' + Math.floor( this.g * 255 ) + ',' + Math.floor( this.b * 255 ) + ')';
},
clone: function () {
return new THREE.Color().setRGB( this.r, this.g, this.b );
}
};
/**
* @author mr.doob / http://mrdoob.com/
* @author philogb / http://blog.thejit.org/
* @author egraether / http://egraether.com/
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
THREE.Vector2 = function ( x, y ) {
this.x = x || 0;
this.y = y || 0;
};
THREE.Vector2.prototype = {
constructor: THREE.Vector2,
set: function ( x, y ) {
this.x = x;
this.y = y;
return this;
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
return this;
},
add: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
return this;
},
addSelf: function ( v ) {
this.x += v.x;
this.y += v.y;
return this;
},
sub: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
return this;
},
subSelf: function ( v ) {
this.x -= v.x;
this.y -= v.y;
return this;
},
multiplyScalar: function ( s ) {
this.x *= s;
this.y *= s;
return this;
},
divideScalar: function ( s ) {
if ( s ) {
this.x /= s;
this.y /= s;
} else {
this.set( 0, 0 );
}
return this;
},
negate: function() {
return this.multiplyScalar( - 1 );
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y;
},
length: function () {
return Math.sqrt( this.lengthSq() );
},
normalize: function () {
return this.divideScalar( this.length() );
},
distanceTo: function ( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
},
distanceToSquared: function ( v ) {
var dx = this.x - v.x, dy = this.y - v.y;
return dx * dx + dy * dy;
},
setLength: function ( l ) {
return this.normalize().multiplyScalar( l );
},
lerpSelf: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
return this;
},
equals: function( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) );
},
isZero: function () {
return ( this.lengthSq() < 0.0001 /* almostZero */ );
},
clone: function () {
return new THREE.Vector2( this.x, this.y );
}
};
/**
* @author mr.doob / http://mrdoob.com/
* @author kile / http://kile.stravaganza.org/
* @author philogb / http://blog.thejit.org/
* @author mikael emtinger / http://gomo.se/
* @author egraether / http://egraether.com/
*/
THREE.Vector3 = function ( x, y, z ) {
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
};
THREE.Vector3.prototype = {
constructor: THREE.Vector3,
set: function ( x, y, z ) {
this.x = x;
this.y = y;
this.z = z;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setZ: function ( z ) {
this.z = z;
return this;
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
return this;
},
add: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
return this;
},
addSelf: function ( v ) {
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
this.z += s;
return this;
},
sub: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
return this;
},
subSelf: function ( v ) {
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
},
multiply: function ( a, b ) {
this.x = a.x * b.x;
this.y = a.y * b.y;
this.z = a.z * b.z;
return this;
},
multiplySelf: function ( v ) {
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
return this;
},
multiplyScalar: function ( s ) {
this.x *= s;
this.y *= s;
this.z *= s;
return this;
},
divideSelf: function ( v ) {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
return this;
},
divideScalar: function ( s ) {
if ( s ) {
this.x /= s;
this.y /= s;
this.z /= s;
} else {
this.x = 0;
this.y = 0;
this.z = 0;
}
return this;
},
negate: function() {
return this.multiplyScalar( - 1 );
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y + this.z * this.z;
},
length: function () {
return Math.sqrt( this.lengthSq() );
},
lengthManhattan: function () {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
},
normalize: function () {
return this.divideScalar( this.length() );
},
setLength: function ( l ) {
return this.normalize().multiplyScalar( l );
},
lerpSelf: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
return this;
},
cross: function ( a, b ) {
this.x = a.y * b.z - a.z * b.y;
this.y = a.z * b.x - a.x * b.z;
this.z = a.x * b.y - a.y * b.x;
return this;
},
crossSelf: function ( v ) {
var x = this.x, y = this.y, z = this.z;
this.x = y * v.z - z * v.y;
this.y = z * v.x - x * v.z;
this.z = x * v.y - y * v.x;
return this;
},
distanceTo: function ( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
},
distanceToSquared: function ( v ) {
return new THREE.Vector3().sub( this, v ).lengthSq();
},
getPositionFromMatrix: function ( m ) {
this.x = m.elements[12];
this.y = m.elements[13];
this.z = m.elements[14];
return this;
},
getRotationFromMatrix: function ( m, scale ) {
var sx = scale ? scale.x : 1;
var sy = scale ? scale.y : 1;
var sz = scale ? scale.z : 1;
var m11 = m.elements[0] / sx, m12 = m.elements[4] / sy, m13 = m.elements[8] / sz;
var m21 = m.elements[1] / sx, m22 = m.elements[5] / sy, m23 = m.elements[9] / sz;
var m33 = m.elements[10] / sz;
this.y = Math.asin( m13 );
var cosY = Math.cos( this.y );
if ( Math.abs( cosY ) > 0.00001 ) {
this.x = Math.atan2( - m23 / cosY, m33 / cosY );
this.z = Math.atan2( - m12 / cosY, m11 / cosY );
} else {
this.x = 0;
this.z = Math.atan2( m21, m22 );
}
return this;
},
/*
// from http://www.mathworks.com/matlabcentral/fileexchange/20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/content/SpinCalc.m
// order XYZ
getEulerXYZFromQuaternion: function ( q ) {
this.x = Math.atan2( 2 * ( q.x * q.w - q.y * q.z ), ( q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z ) );
this.y = Math.asin( 2 * ( q.x * q.z + q.y * q.w ) );
this.z = Math.atan2( 2 * ( q.z * q.w - q.x * q.y ), ( q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z ) );
},
// from http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/index.htm
// order YZX (assuming heading == y, attitude == z, bank == x)
getEulerYZXFromQuaternion: function ( q ) {
var sqw = q.w * q.w;
var sqx = q.x * q.x;
var sqy = q.y * q.y;
var sqz = q.z * q.z;
var unit = sqx + sqy + sqz + sqw; // if normalised is one, otherwise is correction factor
var test = q.x * q.y + q.z * q.w;
if ( test > 0.499 * unit ) { // singularity at north pole
this.y = 2 * Math.atan2( q.x, q.w );
this.z = Math.PI / 2;
this.x = 0;
return;
}
if ( test < -0.499 * unit ) { // singularity at south pole
this.y = -2 * Math.atan2( q.x, q.w );
this.z = -Math.PI / 2;
this.x = 0;
return;
}
this.y = Math.atan2( 2 * q.y * q.w - 2 * q.x * q.z, sqx - sqy - sqz + sqw );
this.z = Math.asin( 2 * test / unit );
this.x = Math.atan2( 2 * q.x * q.w - 2 * q.y * q.z, -sqx + sqy - sqz + sqw );
},
*/
getScaleFromMatrix: function ( m ) {
var sx = this.set( m.elements[0], m.elements[1], m.elements[2] ).length();
var sy = this.set( m.elements[4], m.elements[5], m.elements[6] ).length();
var sz = this.set( m.elements[8], m.elements[9], m.elements[10] ).length();
this.x = sx;
this.y = sy;
this.z = sz;
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
},
isZero: function () {
return ( this.lengthSq() < 0.0001 /* almostZero */ );
},
clone: function () {
return new THREE.Vector3( this.x, this.y, this.z );
}
};
/**
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author mikael emtinger / http://gomo.se/
* @author egraether / http://egraether.com/
*/
THREE.Vector4 = function ( x, y, z, w ) {
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
this.w = ( w !== undefined ) ? w : 1;
};
THREE.Vector4.prototype = {
constructor: THREE.Vector4,
set: function ( x, y, z, w ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
this.w = ( v.w !== undefined ) ? v.w : 1;
return this;
},
add: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
this.w = a.w + b.w;
return this;
},
addSelf: function ( v ) {
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
},
sub: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
this.w = a.w - b.w;
return this;
},
subSelf: function ( v ) {
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
},
multiplyScalar: function ( s ) {
this.x *= s;
this.y *= s;
this.z *= s;
this.w *= s;
return this;
},
divideScalar: function ( s ) {
if ( s ) {
this.x /= s;
this.y /= s;
this.z /= s;
this.w /= s;
} else {
this.x = 0;
this.y = 0;
this.z = 0;
this.w = 1;
}
return this;
},
negate: function() {
return this.multiplyScalar( -1 );
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
},
lengthSq: function () {
return this.dot( this );
},
length: function () {
return Math.sqrt( this.lengthSq() );
},
normalize: function () {
return this.divideScalar( this.length() );
},
setLength: function ( l ) {
return this.normalize().multiplyScalar( l );
},
lerpSelf: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
this.w += ( v.w - this.w ) * alpha;
return this;
},
clone: function () {
return new THREE.Vector4( this.x, this.y, this.z, this.w );
}
};
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Frustum = function ( ) {
this.planes = [
new THREE.Vector4(),
new THREE.Vector4(),
new THREE.Vector4(),
new THREE.Vector4(),
new THREE.Vector4(),
new THREE.Vector4()
];
};
THREE.Frustum.prototype.setFromMatrix = function ( m ) {
var i, plane, planes = this.planes;
var me = m.elements;
var me0 = me[0], me1 = me[1], me2 = me[2], me3 = me[3];
var me4 = me[4], me5 = me[5], me6 = me[6], me7 = me[7];
var me8 = me[8], me9 = me[9], me10 = me[10], me11 = me[11];
var me12 = me[12], me13 = me[13], me14 = me[14], me15 = me[15];
planes[ 0 ].set( me3 - me0, me7 - me4, me11 - me8, me15 - me12 );
planes[ 1 ].set( me3 + me0, me7 + me4, me11 + me8, me15 + me12 );
planes[ 2 ].set( me3 + me1, me7 + me5, me11 + me9, me15 + me13 );
planes[ 3 ].set( me3 - me1, me7 - me5, me11 - me9, me15 - me13 );
planes[ 4 ].set( me3 - me2, me7 - me6, me11 - me10, me15 - me14 );
planes[ 5 ].set( me3 + me2, me7 + me6, me11 + me10, me15 + me14 );
for ( i = 0; i < 6; i ++ ) {
plane = planes[ i ];
plane.divideScalar( Math.sqrt( plane.x * plane.x + plane.y * plane.y + plane.z * plane.z ) );
}
};
THREE.Frustum.prototype.contains = function ( object ) {
var distance,
planes = this.planes,
matrix = object.matrixWorld,
me = matrix.elements,
radius = - object.geometry.boundingSphere.radius * matrix.getMaxScaleOnAxis();
for ( var i = 0; i < 6; i ++ ) {
distance = planes[ i ].x * me[12] + planes[ i ].y * me[13] + planes[ i ].z * me[14] + planes[ i ].w;
if ( distance <= radius ) return false;
}
return true;
};
THREE.Frustum.__v1 = new THREE.Vector3();
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.Ray = function ( origin, direction ) {
this.origin = origin || new THREE.Vector3();
this.direction = direction || new THREE.Vector3();
var precision = 0.0001;
this.setPrecision = function ( value ) {
precision = value;
};
var a = new THREE.Vector3();
var b = new THREE.Vector3();
var c = new THREE.Vector3();
var d = new THREE.Vector3();
var originCopy = new THREE.Vector3();
var directionCopy = new THREE.Vector3();
var vector = new THREE.Vector3();
var normal = new THREE.Vector3();
var intersectPoint = new THREE.Vector3()
this.intersectObject = function ( object ) {
var intersect, intersects = [];
if ( object instanceof THREE.Particle ) {
var distance = distanceFromIntersection( this.origin, this.direction, object.matrixWorld.getPosition() );
if ( distance > object.scale.x ) {
return [];
}
intersect = {
distance: distance,
point: object.position,
face: null,
object: object
};
intersects.push( intersect );
} else if ( object instanceof THREE.Mesh ) {
// Checking boundingSphere
var distance = distanceFromIntersection( this.origin, this.direction, object.matrixWorld.getPosition() );
var scale = THREE.Frustum.__v1.set( object.matrixWorld.getColumnX().length(), object.matrixWorld.getColumnY().length(), object.matrixWorld.getColumnZ().length() );
if ( distance > object.geometry.boundingSphere.radius * Math.max( scale.x, Math.max( scale.y, scale.z ) ) ) {
return intersects;
}
// Checking faces
var f, fl, face, dot, scalar,
geometry = object.geometry,
vertices = geometry.vertices,
objMatrix;
object.matrixRotationWorld.extractRotation( object.matrixWorld );
for ( f = 0, fl = geometry.faces.length; f < fl; f ++ ) {
face = geometry.faces[ f ];
originCopy.copy( this.origin );
directionCopy.copy( this.direction );
objMatrix = object.matrixWorld;
// determine if ray intersects the plane of the face
// note: this works regardless of the direction of the face normal
vector = objMatrix.multiplyVector3( vector.copy( face.centroid ) ).subSelf( originCopy );
normal = object.matrixRotationWorld.multiplyVector3( normal.copy( face.normal ) );
dot = directionCopy.dot( normal );
// bail if ray and plane are parallel
if ( Math.abs( dot ) < precision ) continue;
// calc distance to plane
scalar = normal.dot( vector ) / dot;
// if negative distance, then plane is behind ray
if ( scalar < 0 ) continue;
if ( object.doubleSided || ( object.flipSided ? dot > 0 : dot < 0 ) ) {
intersectPoint.add( originCopy, directionCopy.multiplyScalar( scalar ) );
if ( face instanceof THREE.Face3 ) {
a = objMatrix.multiplyVector3( a.copy( vertices[ face.a ] ) );
b = objMatrix.multiplyVector3( b.copy( vertices[ face.b ] ) );
c = objMatrix.multiplyVector3( c.copy( vertices[ face.c ] ) );
if ( pointInFace3( intersectPoint, a, b, c ) ) {
intersect = {
distance: originCopy.distanceTo( intersectPoint ),
point: intersectPoint.clone(),
face: face,
object: object
};
intersects.push( intersect );
}
} else if ( face instanceof THREE.Face4 ) {
a = objMatrix.multiplyVector3( a.copy( vertices[ face.a ] ) );
b = objMatrix.multiplyVector3( b.copy( vertices[ face.b ] ) );
c = objMatrix.multiplyVector3( c.copy( vertices[ face.c ] ) );
d = objMatrix.multiplyVector3( d.copy( vertices[ face.d ] ) );
if ( pointInFace3( intersectPoint, a, b, d ) || pointInFace3( intersectPoint, b, c, d ) ) {
intersect = {
distance: originCopy.distanceTo( intersectPoint ),
point: intersectPoint.clone(),
face: face,
object: object
};
intersects.push( intersect );
}
}
}
}
}
return intersects;
}
this.intersectObjects = function ( objects ) {
var intersects = [];
for ( var i = 0, l = objects.length; i < l; i ++ ) {
Array.prototype.push.apply( intersects, this.intersectObject( objects[ i ] ) );
}
intersects.sort( function ( a, b ) { return a.distance - b.distance; } );
return intersects;
};
var v0 = new THREE.Vector3(), v1 = new THREE.Vector3(), v2 = new THREE.Vector3();
var dot, intersect, distance;
function distanceFromIntersection( origin, direction, position ) {
v0.sub( position, origin );
dot = v0.dot( direction );
intersect = v1.add( origin, v2.copy( direction ).multiplyScalar( dot ) );
distance = position.distanceTo( intersect );
return distance;
}
// http://www.blackpawn.com/texts/pointinpoly/default.html
var dot00, dot01, dot02, dot11, dot12, invDenom, u, v;
function pointInFace3( p, a, b, c ) {
v0.sub( c, a );
v1.sub( b, a );
v2.sub( p, a );
dot00 = v0.dot( v0 );
dot01 = v0.dot( v1 );
dot02 = v0.dot( v2 );
dot11 = v1.dot( v1 );
dot12 = v1.dot( v2 );
invDenom = 1 / ( dot00 * dot11 - dot01 * dot01 );
u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
return ( u >= 0 ) && ( v >= 0 ) && ( u + v < 1 );
}
};
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.Rectangle = function () {
var _left, _top, _right, _bottom,
_width, _height, _isEmpty = true;
function resize() {
_width = _right - _left;
_height = _bottom - _top;
}
this.getX = function () {
return _left;
};
this.getY = function () {
return _top;
};
this.getWidth = function () {
return _width;
};
this.getHeight = function () {
return _height;
};
this.getLeft = function() {
return _left;
};
this.getTop = function() {
return _top;
};
this.getRight = function() {
return _right;
};
this.getBottom = function() {
return _bottom;
};
this.set = function ( left, top, right, bottom ) {
_isEmpty = false;
_left = left; _top = top;
_right = right; _bottom = bottom;
resize();
};
this.addPoint = function ( x, y ) {
if ( _isEmpty ) {
_isEmpty = false;
_left = x; _top = y;
_right = x; _bottom = y;
resize();
} else {
_left = _left < x ? _left : x; // Math.min( _left, x );
_top = _top < y ? _top : y; // Math.min( _top, y );
_right = _right > x ? _right : x; // Math.max( _right, x );
_bottom = _bottom > y ? _bottom : y; // Math.max( _bottom, y );
resize();
}
};
this.add3Points = function ( x1, y1, x2, y2, x3, y3 ) {
if (_isEmpty) {
_isEmpty = false;
_left = x1 < x2 ? ( x1 < x3 ? x1 : x3 ) : ( x2 < x3 ? x2 : x3 );
_top = y1 < y2 ? ( y1 < y3 ? y1 : y3 ) : ( y2 < y3 ? y2 : y3 );
_right = x1 > x2 ? ( x1 > x3 ? x1 : x3 ) : ( x2 > x3 ? x2 : x3 );
_bottom = y1 > y2 ? ( y1 > y3 ? y1 : y3 ) : ( y2 > y3 ? y2 : y3 );
resize();
} else {
_left = x1 < x2 ? ( x1 < x3 ? ( x1 < _left ? x1 : _left ) : ( x3 < _left ? x3 : _left ) ) : ( x2 < x3 ? ( x2 < _left ? x2 : _left ) : ( x3 < _left ? x3 : _left ) );
_top = y1 < y2 ? ( y1 < y3 ? ( y1 < _top ? y1 : _top ) : ( y3 < _top ? y3 : _top ) ) : ( y2 < y3 ? ( y2 < _top ? y2 : _top ) : ( y3 < _top ? y3 : _top ) );
_right = x1 > x2 ? ( x1 > x3 ? ( x1 > _right ? x1 : _right ) : ( x3 > _right ? x3 : _right ) ) : ( x2 > x3 ? ( x2 > _right ? x2 : _right ) : ( x3 > _right ? x3 : _right ) );
_bottom = y1 > y2 ? ( y1 > y3 ? ( y1 > _bottom ? y1 : _bottom ) : ( y3 > _bottom ? y3 : _bottom ) ) : ( y2 > y3 ? ( y2 > _bottom ? y2 : _bottom ) : ( y3 > _bottom ? y3 : _bottom ) );
resize();
};
};
this.addRectangle = function ( r ) {
if ( _isEmpty ) {
_isEmpty = false;
_left = r.getLeft(); _top = r.getTop();
_right = r.getRight(); _bottom = r.getBottom();
resize();
} else {
_left = _left < r.getLeft() ? _left : r.getLeft(); // Math.min(_left, r.getLeft() );
_top = _top < r.getTop() ? _top : r.getTop(); // Math.min(_top, r.getTop() );
_right = _right > r.getRight() ? _right : r.getRight(); // Math.max(_right, r.getRight() );
_bottom = _bottom > r.getBottom() ? _bottom : r.getBottom(); // Math.max(_bottom, r.getBottom() );
resize();
}
};
this.inflate = function ( v ) {
_left -= v; _top -= v;
_right += v; _bottom += v;
resize();
};
this.minSelf = function ( r ) {
_left = _left > r.getLeft() ? _left : r.getLeft(); // Math.max( _left, r.getLeft() );
_top = _top > r.getTop() ? _top : r.getTop(); // Math.max( _top, r.getTop() );
_right = _right < r.getRight() ? _right : r.getRight(); // Math.min( _right, r.getRight() );
_bottom = _bottom < r.getBottom() ? _bottom : r.getBottom(); // Math.min( _bottom, r.getBottom() );
resize();
};
this.intersects = function ( r ) {
// http://gamemath.com/2011/09/detecting-whether-two-boxes-overlap/
if ( _right < r.getLeft() ) return false;
if ( _left > r.getRight() ) return false;
if ( _bottom < r.getTop() ) return false;
if ( _top > r.getBottom() ) return false;
return true;
};
this.empty = function () {
_isEmpty = true;
_left = 0; _top = 0;
_right = 0; _bottom = 0;
resize();
};
this.isEmpty = function () {
return _isEmpty;
};
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.Math = {
// Clamp value to range <a, b>
clamp: function ( x, a, b ) {
return ( x < a ) ? a : ( ( x > b ) ? b : x );
},
// Clamp value to range <a, inf)
clampBottom: function ( x, a ) {
return x < a ? a : x;
},
// Linear mapping from range <a1, a2> to range <b1, b2>
mapLinear: function ( x, a1, a2, b1, b2 ) {
return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
},
// Random float from <0, 1> with 16 bits of randomness
// (standard Math.random() creates repetitive patterns when applied over larger space)
random16: function () {
return ( 65280 * Math.random() + 255 * Math.random() ) / 65535;
},
// Random integer from <low, high> interval
randInt: function ( low, high ) {
return low + Math.floor( Math.random() * ( high - low + 1 ) );
},
// Random float from <low, high> interval
randFloat: function ( low, high ) {
return low + Math.random() * ( high - low );
},
// Random float from <-range/2, range/2> interval
randFloatSpread: function ( range ) {
return range * ( 0.5 - Math.random() );
},
sign: function ( x ) {
return ( x < 0 ) ? -1 : ( ( x > 0 ) ? 1 : 0 );
}
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.Matrix3 = function () {
this.elements = new Float32Array(9);
};
THREE.Matrix3.prototype = {
constructor: THREE.Matrix3,
getInverse: function ( matrix ) {
// input: THREE.Matrix4
// ( based on http://code.google.com/p/webgl-mjs/ )
var me = matrix.elements;
var a11 = me[10] * me[5] - me[6] * me[9];
var a21 = - me[10] * me[1] + me[2] * me[9];
var a31 = me[6] * me[1] - me[2] * me[5];
var a12 = - me[10] * me[4] + me[6] * me[8];
var a22 = me[10] * me[0] - me[2] * me[8];
var a32 = - me[6] * me[0] + me[2] * me[4];
var a13 = me[9] * me[4] - me[5] * me[8];
var a23 = - me[9] * me[0] + me[1] * me[8];
var a33 = me[5] * me[0] - me[1] * me[4];
var det = me[0] * a11 + me[1] * a12 + me[2] * a13;
// no inverse
if ( det === 0 ) {
console.warn( "Matrix3.getInverse(): determinant == 0" );
}
var idet = 1.0 / det;
var m = this.elements;
m[ 0 ] = idet * a11; m[ 1 ] = idet * a21; m[ 2 ] = idet * a31;
m[ 3 ] = idet * a12; m[ 4 ] = idet * a22; m[ 5 ] = idet * a32;
m[ 6 ] = idet * a13; m[ 7 ] = idet * a23; m[ 8 ] = idet * a33;
return this;
},
transpose: function () {
var tmp, m = this.elements;
tmp = m[1]; m[1] = m[3]; m[3] = tmp;
tmp = m[2]; m[2] = m[6]; m[6] = tmp;
tmp = m[5]; m[5] = m[7]; m[7] = tmp;
return this;
},
transposeIntoArray: function ( r ) {
var m = this.m;
r[ 0 ] = m[ 0 ];
r[ 1 ] = m[ 3 ];
r[ 2 ] = m[ 6 ];
r[ 3 ] = m[ 1 ];
r[ 4 ] = m[ 4 ];
r[ 5 ] = m[ 7 ];
r[ 6 ] = m[ 2 ];
r[ 7 ] = m[ 5 ];
r[ 8 ] = m[ 8 ];
return this;
}
};
/**
* @author mr.doob / http://mrdoob.com/
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author jordi_ros / http://plattsoft.com
* @author D1plo1d / http://github.com/D1plo1d
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author timknip / http://www.floorplanner.com/
*/
THREE.Matrix4 = function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
this.elements = new Float32Array( 16 );
this.set(
( n11 !== undefined ) ? n11 : 1, n12 || 0, n13 || 0, n14 || 0,
n21 || 0, ( n22 !== undefined ) ? n22 : 1, n23 || 0, n24 || 0,
n31 || 0, n32 || 0, ( n33 !== undefined ) ? n33 : 1, n34 || 0,
n41 || 0, n42 || 0, n43 || 0, ( n44 !== undefined ) ? n44 : 1
);
};
THREE.Matrix4.prototype = {
constructor: THREE.Matrix4,
set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
var te = this.elements;
te[0] = n11; te[4] = n12; te[8] = n13; te[12] = n14;
te[1] = n21; te[5] = n22; te[9] = n23; te[13] = n24;
te[2] = n31; te[6] = n32; te[10] = n33; te[14] = n34;
te[3] = n41; te[7] = n42; te[11] = n43; te[15] = n44;
return this;
},
identity: function () {
this.set(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
copy: function ( m ) {
var me = m.elements;
this.set(
me[0], me[4], me[8], me[12],
me[1], me[5], me[9], me[13],
me[2], me[6], me[10], me[14],
me[3], me[7], me[11], me[15]
);
return this;
},
lookAt: function ( eye, target, up ) {
var te = this.elements;
var x = THREE.Matrix4.__v1;
var y = THREE.Matrix4.__v2;
var z = THREE.Matrix4.__v3;
z.sub( eye, target ).normalize();
if ( z.length() === 0 ) {
z.z = 1;
}
x.cross( up, z ).normalize();
if ( x.length() === 0 ) {
z.x += 0.0001;
x.cross( up, z ).normalize();
}
y.cross( z, x );
te[0] = x.x; te[4] = y.x; te[8] = z.x;
te[1] = x.y; te[5] = y.y; te[9] = z.y;
te[2] = x.z; te[6] = y.z; te[10] = z.z;
return this;
},
multiply: function ( a, b ) {
var ae = a.elements;
var be = b.elements;
var te = this.elements;
var a11 = ae[0], a12 = ae[4], a13 = ae[8], a14 = ae[12];
var a21 = ae[1], a22 = ae[5], a23 = ae[9], a24 = ae[13];
var a31 = ae[2], a32 = ae[6], a33 = ae[10], a34 = ae[14];
var a41 = ae[3], a42 = ae[7], a43 = ae[11], a44 = ae[15];
var b11 = be[0], b12 = be[4], b13 = be[8], b14 = be[12];
var b21 = be[1], b22 = be[5], b23 = be[9], b24 = be[13];
var b31 = be[2], b32 = be[6], b33 = be[10], b34 = be[14];
var b41 = be[3], b42 = be[7], b43 = be[11], b44 = be[15];
te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return this;
},
multiplySelf: function ( m ) {
return this.multiply( this, m );
},
multiplyToArray: function ( a, b, r ) {
var te = this.elements;
this.multiply( a, b );
r[ 0 ] = te[0]; r[ 1 ] = te[1]; r[ 2 ] = te[2]; r[ 3 ] = te[3];
r[ 4 ] = te[4]; r[ 5 ] = te[5]; r[ 6 ] = te[6]; r[ 7 ] = te[7];
r[ 8 ] = te[8]; r[ 9 ] = te[9]; r[ 10 ] = te[10]; r[ 11 ] = te[11];
r[ 12 ] = te[12]; r[ 13 ] = te[13]; r[ 14 ] = te[14]; r[ 15 ] = te[15];
return this;
},
multiplyScalar: function ( s ) {
var te = this.elements;
te[0] *= s; te[4] *= s; te[8] *= s; te[12] *= s;
te[1] *= s; te[5] *= s; te[9] *= s; te[13] *= s;
te[2] *= s; te[6] *= s; te[10] *= s; te[14] *= s;
te[3] *= s; te[7] *= s; te[11] *= s; te[15] *= s;
return this;
},
multiplyVector3: function ( v ) {
var te = this.elements;
var vx = v.x, vy = v.y, vz = v.z;
var d = 1 / ( te[3] * vx + te[7] * vy + te[11] * vz + te[15] );
v.x = ( te[0] * vx + te[4] * vy + te[8] * vz + te[12] ) * d;
v.y = ( te[1] * vx + te[5] * vy + te[9] * vz + te[13] ) * d;
v.z = ( te[2] * vx + te[6] * vy + te[10] * vz + te[14] ) * d;
return v;
},
multiplyVector4: function ( v ) {
var te = this.elements;
var vx = v.x, vy = v.y, vz = v.z, vw = v.w;
v.x = te[0] * vx + te[4] * vy + te[8] * vz + te[12] * vw;
v.y = te[1] * vx + te[5] * vy + te[9] * vz + te[13] * vw;
v.z = te[2] * vx + te[6] * vy + te[10] * vz + te[14] * vw;
v.w = te[3] * vx + te[7] * vy + te[11] * vz + te[15] * vw;
return v;
},
rotateAxis: function ( v ) {
var te = this.elements;
var vx = v.x, vy = v.y, vz = v.z;
v.x = vx * te[0] + vy * te[4] + vz * te[8];
v.y = vx * te[1] + vy * te[5] + vz * te[9];
v.z = vx * te[2] + vy * te[6] + vz * te[10];
v.normalize();
return v;
},
crossVector: function ( a ) {
var te = this.elements;
var v = new THREE.Vector4();
v.x = te[0] * a.x + te[4] * a.y + te[8] * a.z + te[12] * a.w;
v.y = te[1] * a.x + te[5] * a.y + te[9] * a.z + te[13] * a.w;
v.z = te[2] * a.x + te[6] * a.y + te[10] * a.z + te[14] * a.w;
v.w = ( a.w ) ? te[3] * a.x + te[7] * a.y + te[11] * a.z + te[15] * a.w : 1;
return v;
},
determinant: function () {
var te = this.elements;
var n11 = te[0], n12 = te[4], n13 = te[8], n14 = te[12];
var n21 = te[1], n22 = te[5], n23 = te[9], n24 = te[13];
var n31 = te[2], n32 = te[6], n33 = te[10], n34 = te[14];
var n41 = te[3], n42 = te[7], n43 = te[11], n44 = te[15];
//TODO: make this more efficient
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
return (
n14 * n23 * n32 * n41-
n13 * n24 * n32 * n41-
n14 * n22 * n33 * n41+
n12 * n24 * n33 * n41+
n13 * n22 * n34 * n41-
n12 * n23 * n34 * n41-
n14 * n23 * n31 * n42+
n13 * n24 * n31 * n42+
n14 * n21 * n33 * n42-
n11 * n24 * n33 * n42-
n13 * n21 * n34 * n42+
n11 * n23 * n34 * n42+
n14 * n22 * n31 * n43-
n12 * n24 * n31 * n43-
n14 * n21 * n32 * n43+
n11 * n24 * n32 * n43+
n12 * n21 * n34 * n43-
n11 * n22 * n34 * n43-
n13 * n22 * n31 * n44+
n12 * n23 * n31 * n44+
n13 * n21 * n32 * n44-
n11 * n23 * n32 * n44-
n12 * n21 * n33 * n44+
n11 * n22 * n33 * n44
);
},
transpose: function () {
var te = this.elements;
var tmp;
tmp = te[1]; te[1] = te[4]; te[4] = tmp;
tmp = te[2]; te[2] = te[8]; te[8] = tmp;
tmp = te[6]; te[6] = te[9]; te[9] = tmp;
tmp = te[3]; te[3] = te[12]; te[12] = tmp;
tmp = te[7]; te[7] = te[13]; te[13] = tmp;
tmp = te[11]; te[11] = te[14]; te[14] = tmp;
return this;
},
flattenToArray: function ( flat ) {
var te = this.elements;
flat[ 0 ] = te[0]; flat[ 1 ] = te[1]; flat[ 2 ] = te[2]; flat[ 3 ] = te[3];
flat[ 4 ] = te[4]; flat[ 5 ] = te[5]; flat[ 6 ] = te[6]; flat[ 7 ] = te[7];
flat[ 8 ] = te[8]; flat[ 9 ] = te[9]; flat[ 10 ] = te[10]; flat[ 11 ] = te[11];
flat[ 12 ] = te[12]; flat[ 13 ] = te[13]; flat[ 14 ] = te[14]; flat[ 15 ] = te[15];
return flat;
},
flattenToArrayOffset: function( flat, offset ) {
var te = this.elements;
flat[ offset ] = te[0];
flat[ offset + 1 ] = te[1];
flat[ offset + 2 ] = te[2];
flat[ offset + 3 ] = te[3];
flat[ offset + 4 ] = te[4];
flat[ offset + 5 ] = te[5];
flat[ offset + 6 ] = te[6];
flat[ offset + 7 ] = te[7];
flat[ offset + 8 ] = te[8];
flat[ offset + 9 ] = te[9];
flat[ offset + 10 ] = te[10];
flat[ offset + 11 ] = te[11];
flat[ offset + 12 ] = te[12];
flat[ offset + 13 ] = te[13];
flat[ offset + 14 ] = te[14];
flat[ offset + 15 ] = te[15];
return flat;
},
getPosition: function () {
var te = this.elements;
return THREE.Matrix4.__v1.set( te[12], te[13], te[14] );
},
setPosition: function ( v ) {
var te = this.elements;
te[12] = v.x;
te[13] = v.y;
te[14] = v.z;
return this;
},
getColumnX: function () {
var te = this.elements;
return THREE.Matrix4.__v1.set( te[0], te[1], te[2] );
},
getColumnY: function () {
var te = this.elements;
return THREE.Matrix4.__v1.set( te[4], te[5], te[6] );
},
getColumnZ: function() {
var te = this.elements;
return THREE.Matrix4.__v1.set( te[8], te[9], te[10] );
},
getInverse: function ( m ) {
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
var te = this.elements;
var me = m.elements;
var n11 = me[0], n12 = me[4], n13 = me[8], n14 = me[12];
var n21 = me[1], n22 = me[5], n23 = me[9], n24 = me[13];
var n31 = me[2], n32 = me[6], n33 = me[10], n34 = me[14];
var n41 = me[3], n42 = me[7], n43 = me[11], n44 = me[15];
te[0] = n23*n34*n42 - n24*n33*n42 + n24*n32*n43 - n22*n34*n43 - n23*n32*n44 + n22*n33*n44;
te[4] = n14*n33*n42 - n13*n34*n42 - n14*n32*n43 + n12*n34*n43 + n13*n32*n44 - n12*n33*n44;
te[8] = n13*n24*n42 - n14*n23*n42 + n14*n22*n43 - n12*n24*n43 - n13*n22*n44 + n12*n23*n44;
te[12] = n14*n23*n32 - n13*n24*n32 - n14*n22*n33 + n12*n24*n33 + n13*n22*n34 - n12*n23*n34;
te[1] = n24*n33*n41 - n23*n34*n41 - n24*n31*n43 + n21*n34*n43 + n23*n31*n44 - n21*n33*n44;
te[5] = n13*n34*n41 - n14*n33*n41 + n14*n31*n43 - n11*n34*n43 - n13*n31*n44 + n11*n33*n44;
te[9] = n14*n23*n41 - n13*n24*n41 - n14*n21*n43 + n11*n24*n43 + n13*n21*n44 - n11*n23*n44;
te[13] = n13*n24*n31 - n14*n23*n31 + n14*n21*n33 - n11*n24*n33 - n13*n21*n34 + n11*n23*n34;
te[2] = n22*n34*n41 - n24*n32*n41 + n24*n31*n42 - n21*n34*n42 - n22*n31*n44 + n21*n32*n44;
te[6] = n14*n32*n41 - n12*n34*n41 - n14*n31*n42 + n11*n34*n42 + n12*n31*n44 - n11*n32*n44;
te[10] = n12*n24*n41 - n14*n22*n41 + n14*n21*n42 - n11*n24*n42 - n12*n21*n44 + n11*n22*n44;
te[14] = n14*n22*n31 - n12*n24*n31 - n14*n21*n32 + n11*n24*n32 + n12*n21*n34 - n11*n22*n34;
te[3] = n23*n32*n41 - n22*n33*n41 - n23*n31*n42 + n21*n33*n42 + n22*n31*n43 - n21*n32*n43;
te[7] = n12*n33*n41 - n13*n32*n41 + n13*n31*n42 - n11*n33*n42 - n12*n31*n43 + n11*n32*n43;
te[11] = n13*n22*n41 - n12*n23*n41 - n13*n21*n42 + n11*n23*n42 + n12*n21*n43 - n11*n22*n43;
te[15] = n12*n23*n31 - n13*n22*n31 + n13*n21*n32 - n11*n23*n32 - n12*n21*n33 + n11*n22*n33;
this.multiplyScalar( 1 / m.determinant() );
return this;
},
setRotationFromEuler: function( v, order ) {
var te = this.elements;
var x = v.x, y = v.y, z = v.z;
var a = Math.cos( x ), b = Math.sin( x );
var c = Math.cos( y ), d = Math.sin( y );
var e = Math.cos( z ), f = Math.sin( z );
switch ( order ) {
case 'YXZ':
var ce = c * e, cf = c * f, de = d * e, df = d * f;
te[0] = ce + df * b;
te[4] = de * b - cf;
te[8] = a * d;
te[1] = a * f;
te[5] = a * e;
te[9] = - b;
te[2] = cf * b - de;
te[6] = df + ce * b;
te[10] = a * c;
break;
case 'ZXY':
var ce = c * e, cf = c * f, de = d * e, df = d * f;
te[0] = ce - df * b;
te[4] = - a * f;
te[8] = de + cf * b;
te[1] = cf + de * b;
te[5] = a * e;
te[9] = df - ce * b;
te[2] = - a * d;
te[6] = b;
te[10] = a * c;
break;
case 'ZYX':
var ae = a * e, af = a * f, be = b * e, bf = b * f;
te[0] = c * e;
te[4] = be * d - af;
te[8] = ae * d + bf;
te[1] = c * f;
te[5] = bf * d + ae;
te[9] = af * d - be;
te[2] = - d;
te[6] = b * c;
te[10] = a * c;
break;
case 'YZX':
var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[0] = c * e;
te[4] = bd - ac * f;
te[8] = bc * f + ad;
te[1] = f;
te[5] = a * e;
te[9] = - b * e;
te[2] = - d * e;
te[6] = ad * f + bc;
te[10] = ac - bd * f;
break;
case 'XZY':
var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[0] = c * e;
te[4] = - f;
te[8] = d * e;
te[1] = ac * f + bd;
te[5] = a * e;
te[9] = ad * f - bc;
te[2] = bc * f - ad;
te[6] = b * e;
te[10] = bd * f + ac;
break;
default: // 'XYZ'
var ae = a * e, af = a * f, be = b * e, bf = b * f;
te[0] = c * e;
te[4] = - c * f;
te[8] = d;
te[1] = af + be * d;
te[5] = ae - bf * d;
te[9] = - b * c;
te[2] = bf - ae * d;
te[6] = be + af * d;
te[10] = a * c;
break;
}
return this;
},
setRotationFromQuaternion: function( q ) {
var te = this.elements;
var x = q.x, y = q.y, z = q.z, w = q.w;
var x2 = x + x, y2 = y + y, z2 = z + z;
var xx = x * x2, xy = x * y2, xz = x * z2;
var yy = y * y2, yz = y * z2, zz = z * z2;
var wx = w * x2, wy = w * y2, wz = w * z2;
te[0] = 1 - ( yy + zz );
te[4] = xy - wz;
te[8] = xz + wy;
te[1] = xy + wz;
te[5] = 1 - ( xx + zz );
te[9] = yz - wx;
te[2] = xz - wy;
te[6] = yz + wx;
te[10] = 1 - ( xx + yy );
return this;
},
compose: function ( translation, rotation, scale ) {
var te = this.elements;
var mRotation = THREE.Matrix4.__m1;
var mScale = THREE.Matrix4.__m2;
mRotation.identity();
mRotation.setRotationFromQuaternion( rotation );
mScale.makeScale( scale.x, scale.y, scale.z );
this.multiply( mRotation, mScale );
te[12] = translation.x;
te[13] = translation.y;
te[14] = translation.z;
return this;
},
decompose: function ( translation, rotation, scale ) {
var te = this.elements;
// grab the axis vectors
var x = THREE.Matrix4.__v1;
var y = THREE.Matrix4.__v2;
var z = THREE.Matrix4.__v3;
x.set( te[0], te[1], te[2] );
y.set( te[4], te[5], te[6] );
z.set( te[8], te[9], te[10] );
translation = ( translation instanceof THREE.Vector3 ) ? translation : new THREE.Vector3();
rotation = ( rotation instanceof THREE.Quaternion ) ? rotation : new THREE.Quaternion();
scale = ( scale instanceof THREE.Vector3 ) ? scale : new THREE.Vector3();
scale.x = x.length();
scale.y = y.length();
scale.z = z.length();
translation.x = te[12];
translation.y = te[13];
translation.z = te[14];
// scale the rotation part
var matrix = THREE.Matrix4.__m1;
matrix.copy( this );
matrix.elements[0] /= scale.x;
matrix.elements[1] /= scale.x;
matrix.elements[2] /= scale.x;
matrix.elements[4] /= scale.y;
matrix.elements[5] /= scale.y;
matrix.elements[6] /= scale.y;
matrix.elements[8] /= scale.z;
matrix.elements[9] /= scale.z;
matrix.elements[10] /= scale.z;
rotation.setFromRotationMatrix( matrix );
return [ translation, rotation, scale ];
},
extractPosition: function ( m ) {
var te = this.elements;
var me = m.elements;
te[12] = me[12];
te[13] = me[13];
te[14] = me[14];
return this;
},
extractRotation: function ( m ) {
var te = this.elements;
var me = m.elements;
var vector = THREE.Matrix4.__v1;
var scaleX = 1 / vector.set( me[0], me[1], me[2] ).length();
var scaleY = 1 / vector.set( me[4], me[5], me[6] ).length();
var scaleZ = 1 / vector.set( me[8], me[9], me[10] ).length();
te[0] = me[0] * scaleX;
te[1] = me[1] * scaleX;
te[2] = me[2] * scaleX;
te[4] = me[4] * scaleY;
te[5] = me[5] * scaleY;
te[6] = me[6] * scaleY;
te[8] = me[8] * scaleZ;
te[9] = me[9] * scaleZ;
te[10] = me[10] * scaleZ;
return this;
},
//
translate: function ( v ) {
var te = this.elements;
var x = v.x, y = v.y, z = v.z;
te[12] = te[0] * x + te[4] * y + te[8] * z + te[12];
te[13] = te[1] * x + te[5] * y + te[9] * z + te[13];
te[14] = te[2] * x + te[6] * y + te[10] * z + te[14];
te[15] = te[3] * x + te[7] * y + te[11] * z + te[15];
return this;
},
rotateX: function ( angle ) {
var te = this.elements;
var m12 = te[4];
var m22 = te[5];
var m32 = te[6];
var m42 = te[7];
var m13 = te[8];
var m23 = te[9];
var m33 = te[10];
var m43 = te[11];
var c = Math.cos( angle );
var s = Math.sin( angle );
te[4] = c * m12 + s * m13;
te[5] = c * m22 + s * m23;
te[6] = c * m32 + s * m33;
te[7] = c * m42 + s * m43;
te[8] = c * m13 - s * m12;
te[9] = c * m23 - s * m22;
te[10] = c * m33 - s * m32;
te[11] = c * m43 - s * m42;
return this;
},
rotateY: function ( angle ) {
var te = this.elements;
var m11 = te[0];
var m21 = te[1];
var m31 = te[2];
var m41 = te[3];
var m13 = te[8];
var m23 = te[9];
var m33 = te[10];
var m43 = te[11];
var c = Math.cos( angle );
var s = Math.sin( angle );
te[0] = c * m11 - s * m13;
te[1] = c * m21 - s * m23;
te[2] = c * m31 - s * m33;
te[3] = c * m41 - s * m43;
te[8] = c * m13 + s * m11;
te[9] = c * m23 + s * m21;
te[10] = c * m33 + s * m31;
te[11] = c * m43 + s * m41;
return this;
},
rotateZ: function ( angle ) {
var te = this.elements;
var m11 = te[0];
var m21 = te[1];
var m31 = te[2];
var m41 = te[3];
var m12 = te[4];
var m22 = te[5];
var m32 = te[6];
var m42 = te[7];
var c = Math.cos( angle );
var s = Math.sin( angle );
te[0] = c * m11 + s * m12;
te[1] = c * m21 + s * m22;
te[2] = c * m31 + s * m32;
te[3] = c * m41 + s * m42;
te[4] = c * m12 - s * m11;
te[5] = c * m22 - s * m21;
te[6] = c * m32 - s * m31;
te[7] = c * m42 - s * m41;
return this;
},
rotateByAxis: function ( axis, angle ) {
var te = this.elements;
// optimize by checking axis
if ( axis.x === 1 && axis.y === 0 && axis.z === 0 ) {
return this.rotateX( angle );
} else if ( axis.x === 0 && axis.y === 1 && axis.z === 0 ) {
return this.rotateY( angle );
} else if ( axis.x === 0 && axis.y === 0 && axis.z === 1 ) {
return this.rotateZ( angle );
}
var x = axis.x, y = axis.y, z = axis.z;
var n = Math.sqrt(x * x + y * y + z * z);
x /= n;
y /= n;
z /= n;
var xx = x * x, yy = y * y, zz = z * z;
var c = Math.cos( angle );
var s = Math.sin( angle );
var oneMinusCosine = 1 - c;
var xy = x * y * oneMinusCosine;
var xz = x * z * oneMinusCosine;
var yz = y * z * oneMinusCosine;
var xs = x * s;
var ys = y * s;
var zs = z * s;
var r11 = xx + (1 - xx) * c;
var r21 = xy + zs;
var r31 = xz - ys;
var r12 = xy - zs;
var r22 = yy + (1 - yy) * c;
var r32 = yz + xs;
var r13 = xz + ys;
var r23 = yz - xs;
var r33 = zz + (1 - zz) * c;
var m11 = te[0], m21 = te[1], m31 = te[2], m41 = te[3];
var m12 = te[4], m22 = te[5], m32 = te[6], m42 = te[7];
var m13 = te[8], m23 = te[9], m33 = te[10], m43 = te[11];
var m14 = te[12], m24 = te[13], m34 = te[14], m44 = te[15];
te[0] = r11 * m11 + r21 * m12 + r31 * m13;
te[1] = r11 * m21 + r21 * m22 + r31 * m23;
te[2] = r11 * m31 + r21 * m32 + r31 * m33;
te[3] = r11 * m41 + r21 * m42 + r31 * m43;
te[4] = r12 * m11 + r22 * m12 + r32 * m13;
te[5] = r12 * m21 + r22 * m22 + r32 * m23;
te[6] = r12 * m31 + r22 * m32 + r32 * m33;
te[7] = r12 * m41 + r22 * m42 + r32 * m43;
te[8] = r13 * m11 + r23 * m12 + r33 * m13;
te[9] = r13 * m21 + r23 * m22 + r33 * m23;
te[10] = r13 * m31 + r23 * m32 + r33 * m33;
te[11] = r13 * m41 + r23 * m42 + r33 * m43;
return this;
},
scale: function ( v ) {
var te = this.elements;
var x = v.x, y = v.y, z = v.z;
te[0] *= x; te[4] *= y; te[8] *= z;
te[1] *= x; te[5] *= y; te[9] *= z;
te[2] *= x; te[6] *= y; te[10] *= z;
te[3] *= x; te[7] *= y; te[11] *= z;
return this;
},
getMaxScaleOnAxis: function () {
var te = this.elements;
var scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2];
var scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6];
var scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10];
return Math.sqrt( Math.max( scaleXSq, Math.max( scaleYSq, scaleZSq ) ) );
},
//
makeTranslation: function ( x, y, z ) {
this.set(
1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1
);
return this;
},
makeRotationX: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
1, 0, 0, 0,
0, c, -s, 0,
0, s, c, 0,
0, 0, 0, 1
);
return this;
},
makeRotationY: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, 0, s, 0,
0, 1, 0, 0,
-s, 0, c, 0,
0, 0, 0, 1
);
return this;
},
makeRotationZ: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, -s, 0, 0,
s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
makeRotationAxis: function ( axis, angle ) {
// Based on http://www.gamedev.net/reference/articles/article1199.asp
var c = Math.cos( angle );
var s = Math.sin( angle );
var t = 1 - c;
var x = axis.x, y = axis.y, z = axis.z;
var tx = t * x, ty = t * y;
this.set(
tx * x + c, tx * y - s * z, tx * z + s * y, 0,
tx * y + s * z, ty * y + c, ty * z - s * x, 0,
tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
0, 0, 0, 1
);
return this;
},
makeScale: function ( x, y, z ) {
this.set(
x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1
);
return this;
},
makeFrustum: function ( left, right, bottom, top, near, far ) {
var te = this.elements;
var x = 2 * near / ( right - left );
var y = 2 * near / ( top - bottom );
var a = ( right + left ) / ( right - left );
var b = ( top + bottom ) / ( top - bottom );
var c = - ( far + near ) / ( far - near );
var d = - 2 * far * near / ( far - near );
te[0] = x; te[4] = 0; te[8] = a; te[12] = 0;
te[1] = 0; te[5] = y; te[9] = b; te[13] = 0;
te[2] = 0; te[6] = 0; te[10] = c; te[14] = d;
te[3] = 0; te[7] = 0; te[11] = - 1; te[15] = 0;
return this;
},
makePerspective: function ( fov, aspect, near, far ) {
var ymax = near * Math.tan( fov * Math.PI / 360 );
var ymin = - ymax;
var xmin = ymin * aspect;
var xmax = ymax * aspect;
return this.makeFrustum( xmin, xmax, ymin, ymax, near, far );
},
makeOrthographic: function ( left, right, top, bottom, near, far ) {
var te = this.elements;
var w = right - left;
var h = top - bottom;
var p = far - near;
var x = ( right + left ) / w;
var y = ( top + bottom ) / h;
var z = ( far + near ) / p;
te[0] = 2 / w; te[4] = 0; te[8] = 0; te[12] = -x;
te[1] = 0; te[5] = 2 / h; te[9] = 0; te[13] = -y;
te[2] = 0; te[6] = 0; te[10] = -2 / p; te[14] = -z;
te[3] = 0; te[7] = 0; te[11] = 0; te[15] = 1;
return this;
},
clone: function () {
var te = this.elements;
return new THREE.Matrix4(
te[0], te[4], te[8], te[12],
te[1], te[5], te[9], te[13],
te[2], te[6], te[10], te[14],
te[3], te[7], te[11], te[15]
);
}
};
THREE.Matrix4.__v1 = new THREE.Vector3();
THREE.Matrix4.__v2 = new THREE.Vector3();
THREE.Matrix4.__v3 = new THREE.Vector3();
THREE.Matrix4.__m1 = new THREE.Matrix4();
THREE.Matrix4.__m2 = new THREE.Matrix4();
/**
* @author mr.doob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Object3D = function () {
this.id = THREE.Object3DCount ++;
this.name = '';
this.parent = undefined;
this.children = [];
this.up = new THREE.Vector3( 0, 1, 0 );
this.position = new THREE.Vector3();
this.rotation = new THREE.Vector3();
this.eulerOrder = 'XYZ';
this.scale = new THREE.Vector3( 1, 1, 1 );
this.doubleSided = false;
this.flipSided = false;
this.renderDepth = null;
this.rotationAutoUpdate = true;
this.matrix = new THREE.Matrix4();
this.matrixWorld = new THREE.Matrix4();
this.matrixRotationWorld = new THREE.Matrix4();
this.matrixAutoUpdate = true;
this.matrixWorldNeedsUpdate = true;
this.quaternion = new THREE.Quaternion();
this.useQuaternion = false;
this.boundRadius = 0.0;
this.boundRadiusScale = 1.0;
this.visible = true;
this.castShadow = false;
this.receiveShadow = false;
this.frustumCulled = true;
this._vector = new THREE.Vector3();
};
THREE.Object3D.prototype = {
constructor: THREE.Object3D,
applyMatrix: function ( matrix ) {
this.matrix.multiply( matrix, this.matrix );
this.scale.getScaleFromMatrix( this.matrix );
this.rotation.getRotationFromMatrix( this.matrix, this.scale );
this.position.getPositionFromMatrix( this.matrix );
},
translate: function ( distance, axis ) {
this.matrix.rotateAxis( axis );
this.position.addSelf( axis.multiplyScalar( distance ) );
},
translateX: function ( distance ) {
this.translate( distance, this._vector.set( 1, 0, 0 ) );
},
translateY: function ( distance ) {
this.translate( distance, this._vector.set( 0, 1, 0 ) );
},
translateZ: function ( distance ) {
this.translate( distance, this._vector.set( 0, 0, 1 ) );
},
lookAt: function ( vector ) {
// TODO: Add hierarchy support.
this.matrix.lookAt( vector, this.position, this.up );
if ( this.rotationAutoUpdate ) {
this.rotation.getRotationFromMatrix( this.matrix );
}
},
add: function ( object ) {
if ( object === this ) {
console.warn( 'THREE.Object3D.add: An object can\'t be added as a child of itself.' );
return;
}
if ( object instanceof THREE.Object3D ) { // && this.children.indexOf( object ) === - 1
if ( object.parent !== undefined ) {
object.parent.remove( object );
}
object.parent = this;
this.children.push( object );
// add to scene
var scene = this;
while ( scene.parent !== undefined ) {
scene = scene.parent;
}
if ( scene !== undefined && scene instanceof THREE.Scene ) {
scene.__addObject( object );
}
}
},
remove: function ( object ) {
var index = this.children.indexOf( object );
if ( index !== - 1 ) {
object.parent = undefined;
this.children.splice( index, 1 );
// remove from scene
var scene = this;
while ( scene.parent !== undefined ) {
scene = scene.parent;
}
if ( scene !== undefined && scene instanceof THREE.Scene ) {
scene.__removeObject( object );
}
}
},
getChildByName: function ( name, recursive ) {
var c, cl, child;
for ( c = 0, cl = this.children.length; c < cl; c ++ ) {
child = this.children[ c ];
if ( child.name === name ) {
return child;
}
if ( recursive ) {
child = child.getChildByName( name, recursive );
if ( child !== undefined ) {
return child;
}
}
}
return undefined;
},
updateMatrix: function () {
this.matrix.setPosition( this.position );
if ( this.useQuaternion ) {
this.matrix.setRotationFromQuaternion( this.quaternion );
} else {
this.matrix.setRotationFromEuler( this.rotation, this.eulerOrder );
}
if ( this.scale.x !== 1 || this.scale.y !== 1 || this.scale.z !== 1 ) {
this.matrix.scale( this.scale );
this.boundRadiusScale = Math.max( this.scale.x, Math.max( this.scale.y, this.scale.z ) );
}
this.matrixWorldNeedsUpdate = true;
},
updateMatrixWorld: function ( force ) {
this.matrixAutoUpdate && this.updateMatrix();
// update matrixWorld
if ( this.matrixWorldNeedsUpdate || force ) {
if ( this.parent ) {
this.matrixWorld.multiply( this.parent.matrixWorld, this.matrix );
} else {
this.matrixWorld.copy( this.matrix );
}
this.matrixWorldNeedsUpdate = false;
force = true;
}
// update children
for ( var i = 0, l = this.children.length; i < l; i ++ ) {
this.children[ i ].updateMatrixWorld( force );
}
}
};
THREE.Object3DCount = 0;
/**
* @author mr.doob / http://mrdoob.com/
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author julianwa / https://github.com/julianwa
*/
THREE.Projector = function() {
var _object, _objectCount, _objectPool = [],
_vertex, _vertexCount, _vertexPool = [],
_face, _face3Count, _face3Pool = [], _face4Count, _face4Pool = [],
_line, _lineCount, _linePool = [],
_particle, _particleCount, _particlePool = [],
_renderData = { objects: [], sprites: [], lights: [], elements: [] },
_vector3 = new THREE.Vector3(),
_vector4 = new THREE.Vector4(),
_projScreenMatrix = new THREE.Matrix4(),
_projScreenobjectMatrixWorld = new THREE.Matrix4(),
_frustum = new THREE.Frustum(),
_clippedVertex1PositionScreen = new THREE.Vector4(),
_clippedVertex2PositionScreen = new THREE.Vector4(),
_face3VertexNormals;
this.projectVector = function ( vector, camera ) {
camera.matrixWorldInverse.getInverse( camera.matrixWorld );
_projScreenMatrix.multiply( camera.projectionMatrix, camera.matrixWorldInverse );
_projScreenMatrix.multiplyVector3( vector );
return vector;
};
this.unprojectVector = function ( vector, camera ) {
camera.projectionMatrixInverse.getInverse( camera.projectionMatrix );
_projScreenMatrix.multiply( camera.matrixWorld, camera.projectionMatrixInverse );
_projScreenMatrix.multiplyVector3( vector );
return vector;
};
this.pickingRay = function ( vector, camera ) {
var end, ray, t;
// set two vectors with opposing z values
vector.z = -1.0;
end = new THREE.Vector3( vector.x, vector.y, 1.0 );
this.unprojectVector( vector, camera );
this.unprojectVector( end, camera );
// find direction from vector to end
end.subSelf( vector ).normalize();
return new THREE.Ray( vector, end );
};
this.projectGraph = function ( root, sort ) {
_objectCount = 0;
_renderData.objects.length = 0;
_renderData.sprites.length = 0;
_renderData.lights.length = 0;
var projectObject = function ( object ) {
if ( object.visible === false ) return;
if ( ( object instanceof THREE.Mesh || object instanceof THREE.Line ) &&
( object.frustumCulled === false || _frustum.contains( object ) ) ) {
_vector3.copy( object.matrixWorld.getPosition() );
_projScreenMatrix.multiplyVector3( _vector3 );
_object = getNextObjectInPool();
_object.object = object;
_object.z = _vector3.z;
_renderData.objects.push( _object );
} else if ( object instanceof THREE.Sprite || object instanceof THREE.Particle ) {
_vector3.copy( object.matrixWorld.getPosition() );
_projScreenMatrix.multiplyVector3( _vector3 );
_object = getNextObjectInPool();
_object.object = object;
_object.z = _vector3.z;
_renderData.sprites.push( _object );
} else if ( object instanceof THREE.Light ) {
_renderData.lights.push( object );
}
for ( var c = 0, cl = object.children.length; c < cl; c ++ ) {
projectObject( object.children[ c ] );
}
};
projectObject( root );
sort && _renderData.objects.sort( painterSort );
return _renderData;
};
this.projectScene = function ( scene, camera, sort ) {
var near = camera.near, far = camera.far, visible = false,
o, ol, v, vl, f, fl, n, nl, c, cl, u, ul, object,
objectMatrixWorld, objectMatrixWorldRotation,
geometry, geometryMaterials, vertices, vertex, vertexPositionScreen,
faces, face, faceVertexNormals, normal, faceVertexUvs, uvs,
v1, v2, v3, v4;
_face3Count = 0;
_face4Count = 0;
_lineCount = 0;
_particleCount = 0;
_renderData.elements.length = 0;
if ( camera.parent === undefined ) {
console.warn( 'DEPRECATED: Camera hasn\'t been added to a Scene. Adding it...' );
scene.add( camera );
}
scene.updateMatrixWorld();
camera.matrixWorldInverse.getInverse( camera.matrixWorld );
_projScreenMatrix.multiply( camera.projectionMatrix, camera.matrixWorldInverse );
_frustum.setFromMatrix( _projScreenMatrix );
_renderData = this.projectGraph( scene, false );
for ( o = 0, ol = _renderData.objects.length; o < ol; o++ ) {
object = _renderData.objects[ o ].object;
objectMatrixWorld = object.matrixWorld;
_vertexCount = 0;
if ( object instanceof THREE.Mesh ) {
geometry = object.geometry;
geometryMaterials = object.geometry.materials;
vertices = geometry.vertices;
faces = geometry.faces;
faceVertexUvs = geometry.faceVertexUvs;
objectMatrixWorldRotation = object.matrixRotationWorld.extractRotation( objectMatrixWorld );
for ( v = 0, vl = vertices.length; v < vl; v ++ ) {
_vertex = getNextVertexInPool();
_vertex.positionWorld.copy( vertices[ v ] );
objectMatrixWorld.multiplyVector3( _vertex.positionWorld );
_vertex.positionScreen.copy( _vertex.positionWorld );
_projScreenMatrix.multiplyVector4( _vertex.positionScreen );
_vertex.positionScreen.x /= _vertex.positionScreen.w;
_vertex.positionScreen.y /= _vertex.positionScreen.w;
_vertex.visible = _vertex.positionScreen.z > near && _vertex.positionScreen.z < far;
}
for ( f = 0, fl = faces.length; f < fl; f ++ ) {
face = faces[ f ];
if ( face instanceof THREE.Face3 ) {
v1 = _vertexPool[ face.a ];
v2 = _vertexPool[ face.b ];
v3 = _vertexPool[ face.c ];
if ( v1.visible && v2.visible && v3.visible ) {
visible = ( ( v3.positionScreen.x - v1.positionScreen.x ) * ( v2.positionScreen.y - v1.positionScreen.y ) -
( v3.positionScreen.y - v1.positionScreen.y ) * ( v2.positionScreen.x - v1.positionScreen.x ) ) < 0;
if ( object.doubleSided || visible != object.flipSided ) {
_face = getNextFace3InPool();
_face.v1.copy( v1 );
_face.v2.copy( v2 );
_face.v3.copy( v3 );
} else {
continue;
}
} else {
continue;
}
} else if ( face instanceof THREE.Face4 ) {
v1 = _vertexPool[ face.a ];
v2 = _vertexPool[ face.b ];
v3 = _vertexPool[ face.c ];
v4 = _vertexPool[ face.d ];
if ( v1.visible && v2.visible && v3.visible && v4.visible ) {
visible = ( v4.positionScreen.x - v1.positionScreen.x ) * ( v2.positionScreen.y - v1.positionScreen.y ) -
( v4.positionScreen.y - v1.positionScreen.y ) * ( v2.positionScreen.x - v1.positionScreen.x ) < 0 ||
( v2.positionScreen.x - v3.positionScreen.x ) * ( v4.positionScreen.y - v3.positionScreen.y ) -
( v2.positionScreen.y - v3.positionScreen.y ) * ( v4.positionScreen.x - v3.positionScreen.x ) < 0;
if ( object.doubleSided || visible != object.flipSided ) {
_face = getNextFace4InPool();
_face.v1.copy( v1 );
_face.v2.copy( v2 );
_face.v3.copy( v3 );
_face.v4.copy( v4 );
} else {
continue;
}
} else {
continue;
}
}
_face.normalWorld.copy( face.normal );
if ( !visible && ( object.flipSided || object.doubleSided ) ) _face.normalWorld.negate();
objectMatrixWorldRotation.multiplyVector3( _face.normalWorld );
_face.centroidWorld.copy( face.centroid );
objectMatrixWorld.multiplyVector3( _face.centroidWorld );
_face.centroidScreen.copy( _face.centroidWorld );
_projScreenMatrix.multiplyVector3( _face.centroidScreen );
faceVertexNormals = face.vertexNormals;
for ( n = 0, nl = faceVertexNormals.length; n < nl; n ++ ) {
normal = _face.vertexNormalsWorld[ n ];
normal.copy( faceVertexNormals[ n ] );
if ( !visible && ( object.flipSided || object.doubleSided ) ) normal.negate();
objectMatrixWorldRotation.multiplyVector3( normal );
}
for ( c = 0, cl = faceVertexUvs.length; c < cl; c ++ ) {
uvs = faceVertexUvs[ c ][ f ];
if ( !uvs ) continue;
for ( u = 0, ul = uvs.length; u < ul; u ++ ) {
_face.uvs[ c ][ u ] = uvs[ u ];
}
}
_face.material = object.material;
_face.faceMaterial = face.materialIndex !== null ? geometryMaterials[ face.materialIndex ] : null;
_face.z = _face.centroidScreen.z;
_renderData.elements.push( _face );
}
} else if ( object instanceof THREE.Line ) {
_projScreenobjectMatrixWorld.multiply( _projScreenMatrix, objectMatrixWorld );
vertices = object.geometry.vertices;
v1 = getNextVertexInPool();
v1.positionScreen.copy( vertices[ 0 ] );
_projScreenobjectMatrixWorld.multiplyVector4( v1.positionScreen );
// Handle LineStrip and LinePieces
var step = object.type === THREE.LinePieces ? 2 : 1;
for ( v = 1, vl = vertices.length; v < vl; v ++ ) {
v1 = getNextVertexInPool();
v1.positionScreen.copy( vertices[ v ] );
_projScreenobjectMatrixWorld.multiplyVector4( v1.positionScreen );
if ( ( v + 1 ) % step > 0 ) continue;
v2 = _vertexPool[ _vertexCount - 2 ];
_clippedVertex1PositionScreen.copy( v1.positionScreen );
_clippedVertex2PositionScreen.copy( v2.positionScreen );
if ( clipLine( _clippedVertex1PositionScreen, _clippedVertex2PositionScreen ) ) {
// Perform the perspective divide
_clippedVertex1PositionScreen.multiplyScalar( 1 / _clippedVertex1PositionScreen.w );
_clippedVertex2PositionScreen.multiplyScalar( 1 / _clippedVertex2PositionScreen.w );
_line = getNextLineInPool();
_line.v1.positionScreen.copy( _clippedVertex1PositionScreen );
_line.v2.positionScreen.copy( _clippedVertex2PositionScreen );
_line.z = Math.max( _clippedVertex1PositionScreen.z, _clippedVertex2PositionScreen.z );
_line.material = object.material;
_renderData.elements.push( _line );
}
}
}
}
for ( o = 0, ol = _renderData.sprites.length; o < ol; o++ ) {
object = _renderData.sprites[ o ].object;
objectMatrixWorld = object.matrixWorld;
if ( object instanceof THREE.Particle ) {
_vector4.set( objectMatrixWorld.elements[12], objectMatrixWorld.elements[13], objectMatrixWorld.elements[14], 1 );
_projScreenMatrix.multiplyVector4( _vector4 );
_vector4.z /= _vector4.w;
if ( _vector4.z > 0 && _vector4.z < 1 ) {
_particle = getNextParticleInPool();
_particle.x = _vector4.x / _vector4.w;
_particle.y = _vector4.y / _vector4.w;
_particle.z = _vector4.z;
_particle.rotation = object.rotation.z;
_particle.scale.x = object.scale.x * Math.abs( _particle.x - ( _vector4.x + camera.projectionMatrix.elements[0] ) / ( _vector4.w + camera.projectionMatrix.elements[12] ) );
_particle.scale.y = object.scale.y * Math.abs( _particle.y - ( _vector4.y + camera.projectionMatrix.elements[5] ) / ( _vector4.w + camera.projectionMatrix.elements[13] ) );
_particle.material = object.material;
_renderData.elements.push( _particle );
}
}
}
sort && _renderData.elements.sort( painterSort );
return _renderData;
};
// Pools
function getNextObjectInPool() {
var object = _objectPool[ _objectCount ] = _objectPool[ _objectCount ] || new THREE.RenderableObject();
_objectCount ++;
return object;
}
function getNextVertexInPool() {
var vertex = _vertexPool[ _vertexCount ] = _vertexPool[ _vertexCount ] || new THREE.RenderableVertex();
_vertexCount ++;
return vertex;
}
function getNextFace3InPool() {
var face = _face3Pool[ _face3Count ] = _face3Pool[ _face3Count ] || new THREE.RenderableFace3();
_face3Count ++;
return face;
}
function getNextFace4InPool() {
var face = _face4Pool[ _face4Count ] = _face4Pool[ _face4Count ] || new THREE.RenderableFace4();
_face4Count ++;
return face;
}
function getNextLineInPool() {
var line = _linePool[ _lineCount ] = _linePool[ _lineCount ] || new THREE.RenderableLine();
_lineCount ++;
return line;
}
function getNextParticleInPool() {
var particle = _particlePool[ _particleCount ] = _particlePool[ _particleCount ] || new THREE.RenderableParticle();
_particleCount ++;
return particle;
}
//
function painterSort( a, b ) {
return b.z - a.z;
}
function clipLine( s1, s2 ) {
var alpha1 = 0, alpha2 = 1,
// Calculate the boundary coordinate of each vertex for the near and far clip planes,
// Z = -1 and Z = +1, respectively.
bc1near = s1.z + s1.w,
bc2near = s2.z + s2.w,
bc1far = - s1.z + s1.w,
bc2far = - s2.z + s2.w;
if ( bc1near >= 0 && bc2near >= 0 && bc1far >= 0 && bc2far >= 0 ) {
// Both vertices lie entirely within all clip planes.
return true;
} else if ( ( bc1near < 0 && bc2near < 0) || (bc1far < 0 && bc2far < 0 ) ) {
// Both vertices lie entirely outside one of the clip planes.
return false;
} else {
// The line segment spans at least one clip plane.
if ( bc1near < 0 ) {
// v1 lies outside the near plane, v2 inside
alpha1 = Math.max( alpha1, bc1near / ( bc1near - bc2near ) );
} else if ( bc2near < 0 ) {
// v2 lies outside the near plane, v1 inside
alpha2 = Math.min( alpha2, bc1near / ( bc1near - bc2near ) );
}
if ( bc1far < 0 ) {
// v1 lies outside the far plane, v2 inside
alpha1 = Math.max( alpha1, bc1far / ( bc1far - bc2far ) );
} else if ( bc2far < 0 ) {
// v2 lies outside the far plane, v2 inside
alpha2 = Math.min( alpha2, bc1far / ( bc1far - bc2far ) );
}
if ( alpha2 < alpha1 ) {
// The line segment spans two boundaries, but is outside both of them.
// (This can't happen when we're only clipping against just near/far but good
// to leave the check here for future usage if other clip planes are added.)
return false;
} else {
// Update the s1 and s2 vertices to match the clipped line segment.
s1.lerpSelf( s2, alpha1 );
s2.lerpSelf( s1, 1 - alpha2 );
return true;
}
}
}
};
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Quaternion = function( x, y, z, w ) {
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
this.w = ( w !== undefined ) ? w : 1;
};
THREE.Quaternion.prototype = {
constructor: THREE.Quaternion,
set: function ( x, y, z, w ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
},
copy: function ( q ) {
this.x = q.x;
this.y = q.y;
this.z = q.z;
this.w = q.w;
return this;
},
setFromEuler: function ( vector ) {
var c = Math.PI / 360, // 0.5 * Math.PI / 360, // 0.5 is an optimization
x = vector.x * c,
y = vector.y * c,
z = vector.z * c,
c1 = Math.cos( y ),
s1 = Math.sin( y ),
c2 = Math.cos( -z ),
s2 = Math.sin( -z ),
c3 = Math.cos( x ),
s3 = Math.sin( x ),
c1c2 = c1 * c2,
s1s2 = s1 * s2;
this.w = c1c2 * c3 - s1s2 * s3;
this.x = c1c2 * s3 + s1s2 * c3;
this.y = s1 * c2 * c3 + c1 * s2 * s3;
this.z = c1 * s2 * c3 - s1 * c2 * s3;
return this;
},
setFromAxisAngle: function ( axis, angle ) {
// from http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
// axis have to be normalized
var halfAngle = angle / 2,
s = Math.sin( halfAngle );
this.x = axis.x * s;
this.y = axis.y * s;
this.z = axis.z * s;
this.w = Math.cos( halfAngle );
return this;
},
setFromRotationMatrix: function ( m ) {
// Adapted from: http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
function copySign( a, b ) {
return b < 0 ? -Math.abs( a ) : Math.abs( a );
}
var absQ = Math.pow( m.determinant(), 1.0 / 3.0 );
this.w = Math.sqrt( Math.max( 0, absQ + m.elements[0] + m.elements[5] + m.elements[10] ) ) / 2;
this.x = Math.sqrt( Math.max( 0, absQ + m.elements[0] - m.elements[5] - m.elements[10] ) ) / 2;
this.y = Math.sqrt( Math.max( 0, absQ - m.elements[0] + m.elements[5] - m.elements[10] ) ) / 2;
this.z = Math.sqrt( Math.max( 0, absQ - m.elements[0] - m.elements[5] + m.elements[10] ) ) / 2;
this.x = copySign( this.x, ( m.elements[6] - m.elements[9] ) );
this.y = copySign( this.y, ( m.elements[8] - m.elements[2] ) );
this.z = copySign( this.z, ( m.elements[1] - m.elements[4] ) );
this.normalize();
return this;
},
calculateW : function () {
this.w = - Math.sqrt( Math.abs( 1.0 - this.x * this.x - this.y * this.y - this.z * this.z ) );
return this;
},
inverse: function () {
this.x *= -1;
this.y *= -1;
this.z *= -1;
return this;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
},
normalize: function () {
var l = Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
if ( l === 0 ) {
this.x = 0;
this.y = 0;
this.z = 0;
this.w = 0;
} else {
l = 1 / l;
this.x = this.x * l;
this.y = this.y * l;
this.z = this.z * l;
this.w = this.w * l;
}
return this;
},
multiply: function ( a, b ) {
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
this.x = a.x * b.w + a.y * b.z - a.z * b.y + a.w * b.x;
this.y = -a.x * b.z + a.y * b.w + a.z * b.x + a.w * b.y;
this.z = a.x * b.y - a.y * b.x + a.z * b.w + a.w * b.z;
this.w = -a.x * b.x - a.y * b.y - a.z * b.z + a.w * b.w;
return this;
},
multiplySelf: function ( b ) {
var qax = this.x, qay = this.y, qaz = this.z, qaw = this.w,
qbx = b.x, qby = b.y, qbz = b.z, qbw = b.w;
this.x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
this.y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
this.z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
this.w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
return this;
},
multiplyVector3: function ( vector, dest ) {
if ( !dest ) { dest = vector; }
var x = vector.x, y = vector.y, z = vector.z,
qx = this.x, qy = this.y, qz = this.z, qw = this.w;
// calculate quat * vector
var ix = qw * x + qy * z - qz * y,
iy = qw * y + qz * x - qx * z,
iz = qw * z + qx * y - qy * x,
iw = -qx * x - qy * y - qz * z;
// calculate result * inverse quat
dest.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
dest.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
dest.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
return dest;
},
clone: function () {
return new THREE.Quaternion( this.x, this.y, this.z, this.w );
}
}
THREE.Quaternion.slerp = function ( qa, qb, qm, t ) {
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
var cosHalfTheta = qa.w * qb.w + qa.x * qb.x + qa.y * qb.y + qa.z * qb.z;
if (cosHalfTheta < 0) {
qm.w = -qb.w; qm.x = -qb.x; qm.y = -qb.y; qm.z = -qb.z;
cosHalfTheta = -cosHalfTheta;
} else {
qm.copy(qb);
}
if ( Math.abs( cosHalfTheta ) >= 1.0 ) {
qm.w = qa.w; qm.x = qa.x; qm.y = qa.y; qm.z = qa.z;
return qm;
}
var halfTheta = Math.acos( cosHalfTheta ),
sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta );
if ( Math.abs( sinHalfTheta ) < 0.001 ) {
qm.w = 0.5 * ( qa.w + qb.w );
qm.x = 0.5 * ( qa.x + qb.x );
qm.y = 0.5 * ( qa.y + qb.y );
qm.z = 0.5 * ( qa.z + qb.z );
return qm;
}
var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
qm.w = ( qa.w * ratioA + qm.w * ratioB );
qm.x = ( qa.x * ratioA + qm.x * ratioB );
qm.y = ( qa.y * ratioA + qm.y * ratioB );
qm.z = ( qa.z * ratioA + qm.z * ratioB );
return qm;
}
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.Vertex = function () {
console.warn( 'THREE.Vertex has been DEPRECATED. Use THREE.Vector3 instead.')
};
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Face3 = function ( a, b, c, normal, color, materialIndex ) {
this.a = a;
this.b = b;
this.c = c;
this.normal = normal instanceof THREE.Vector3 ? normal : new THREE.Vector3();
this.vertexNormals = normal instanceof Array ? normal : [ ];
this.color = color instanceof THREE.Color ? color : new THREE.Color();
this.vertexColors = color instanceof Array ? color : [];
this.vertexTangents = [];
this.materialIndex = materialIndex;
this.centroid = new THREE.Vector3();
};
THREE.Face3.prototype = {
constructor: THREE.Face3,
clone: function () {
var face = new THREE.Face3( this.a, this.b, this.c );
face.normal.copy( this.normal );
face.color.copy( this.color );
face.centroid.copy( this.centroid );
face.materialIndex = this.materialIndex;
var i, il;
for ( i = 0, il = this.vertexNormals.length; i < il; i ++ ) face.vertexNormals[ i ] = this.vertexNormals[ i ].clone();
for ( i = 0, il = this.vertexColors.length; i < il; i ++ ) face.vertexColors[ i ] = this.vertexColors[ i ].clone();
for ( i = 0, il = this.vertexTangents.length; i < il; i ++ ) face.vertexTangents[ i ] = this.vertexTangents[ i ].clone();
return face;
}
};
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Face4 = function ( a, b, c, d, normal, color, materialIndex ) {
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.normal = normal instanceof THREE.Vector3 ? normal : new THREE.Vector3();
this.vertexNormals = normal instanceof Array ? normal : [ ];
this.color = color instanceof THREE.Color ? color : new THREE.Color();
this.vertexColors = color instanceof Array ? color : [];
this.vertexTangents = [];
this.materialIndex = materialIndex;
this.centroid = new THREE.Vector3();
};
THREE.Face4.prototype = {
constructor: THREE.Face4,
clone: function () {
var face = new THREE.Face4( this.a, this.b, this.c, this.d );
face.normal.copy( this.normal );
face.color.copy( this.color );
face.centroid.copy( this.centroid );
face.materialIndex = this.materialIndex;
var i, il;
for ( i = 0, il = this.vertexNormals.length; i < il; i ++ ) face.vertexNormals[ i ] = this.vertexNormals[ i ].clone();
for ( i = 0, il = this.vertexColors.length; i < il; i ++ ) face.vertexColors[ i ] = this.vertexColors[ i ].clone();
for ( i = 0, il = this.vertexTangents.length; i < il; i ++ ) face.vertexTangents[ i ] = this.vertexTangents[ i ].clone();
return face;
}
};
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.UV = function ( u, v ) {
this.u = u || 0;
this.v = v || 0;
};
THREE.UV.prototype = {
constructor: THREE.UV,
set: function ( u, v ) {
this.u = u;
this.v = v;
return this;
},
copy: function ( uv ) {
this.u = uv.u;
this.v = uv.v;
return this;
},
lerpSelf: function ( uv, alpha ) {
this.u += ( uv.u - this.u ) * alpha;
this.v += ( uv.v - this.v ) * alpha;
return this;
},
clone: function () {
return new THREE.UV( this.u, this.v );
}
};
/**
* @author mr.doob / http://mrdoob.com/
* @author kile / http://kile.stravaganza.org/
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
THREE.Geometry = function () {
this.id = THREE.GeometryCount ++;
this.vertices = [];
this.colors = []; // one-to-one vertex colors, used in ParticleSystem, Line and Ribbon
this.materials = [];
this.faces = [];
this.faceUvs = [[]];
this.faceVertexUvs = [[]];
this.morphTargets = [];
this.morphColors = [];
this.morphNormals = [];
this.skinWeights = [];
this.skinIndices = [];
this.boundingBox = null;
this.boundingSphere = null;
this.hasTangents = false;
this.dynamic = false; // unless set to true the *Arrays will be deleted once sent to a buffer.
};
THREE.Geometry.prototype = {
constructor : THREE.Geometry,
applyMatrix: function ( matrix ) {
var matrixRotation = new THREE.Matrix4();
matrixRotation.extractRotation( matrix );
for ( var i = 0, il = this.vertices.length; i < il; i ++ ) {
var vertex = this.vertices[ i ];
matrix.multiplyVector3( vertex );
}
for ( var i = 0, il = this.faces.length; i < il; i ++ ) {
var face = this.faces[ i ];
matrixRotation.multiplyVector3( face.normal );
for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {
matrixRotation.multiplyVector3( face.vertexNormals[ j ] );
}
matrix.multiplyVector3( face.centroid );
}
},
computeCentroids: function () {
var f, fl, face;
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
face.centroid.set( 0, 0, 0 );
if ( face instanceof THREE.Face3 ) {
face.centroid.addSelf( this.vertices[ face.a ] );
face.centroid.addSelf( this.vertices[ face.b ] );
face.centroid.addSelf( this.vertices[ face.c ] );
face.centroid.divideScalar( 3 );
} else if ( face instanceof THREE.Face4 ) {
face.centroid.addSelf( this.vertices[ face.a ] );
face.centroid.addSelf( this.vertices[ face.b ] );
face.centroid.addSelf( this.vertices[ face.c ] );
face.centroid.addSelf( this.vertices[ face.d ] );
face.centroid.divideScalar( 4 );
}
}
},
computeFaceNormals: function () {
var n, nl, v, vl, vertex, f, fl, face, vA, vB, vC,
cb = new THREE.Vector3(), ab = new THREE.Vector3();
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
vA = this.vertices[ face.a ];
vB = this.vertices[ face.b ];
vC = this.vertices[ face.c ];
cb.sub( vC, vB );
ab.sub( vA, vB );
cb.crossSelf( ab );
if ( !cb.isZero() ) {
cb.normalize();
}
face.normal.copy( cb );
}
},
computeVertexNormals: function () {
var v, vl, f, fl, face, vertices;
// create internal buffers for reuse when calling this method repeatedly
// (otherwise memory allocation / deallocation every frame is big resource hog)
if ( this.__tmpVertices === undefined ) {
this.__tmpVertices = new Array( this.vertices.length );
vertices = this.__tmpVertices;
for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ] = new THREE.Vector3();
}
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
if ( face instanceof THREE.Face3 ) {
face.vertexNormals = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ];
} else if ( face instanceof THREE.Face4 ) {
face.vertexNormals = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ];
}
}
} else {
vertices = this.__tmpVertices;
for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ].set( 0, 0, 0 );
}
}
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
if ( face instanceof THREE.Face3 ) {
vertices[ face.a ].addSelf( face.normal );
vertices[ face.b ].addSelf( face.normal );
vertices[ face.c ].addSelf( face.normal );
} else if ( face instanceof THREE.Face4 ) {
vertices[ face.a ].addSelf( face.normal );
vertices[ face.b ].addSelf( face.normal );
vertices[ face.c ].addSelf( face.normal );
vertices[ face.d ].addSelf( face.normal );
}
}
for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ].normalize();
}
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
if ( face instanceof THREE.Face3 ) {
face.vertexNormals[ 0 ].copy( vertices[ face.a ] );
face.vertexNormals[ 1 ].copy( vertices[ face.b ] );
face.vertexNormals[ 2 ].copy( vertices[ face.c ] );
} else if ( face instanceof THREE.Face4 ) {
face.vertexNormals[ 0 ].copy( vertices[ face.a ] );
face.vertexNormals[ 1 ].copy( vertices[ face.b ] );
face.vertexNormals[ 2 ].copy( vertices[ face.c ] );
face.vertexNormals[ 3 ].copy( vertices[ face.d ] );
}
}
},
computeMorphNormals: function () {
var i, il, f, fl, face;
// save original normals
// - create temp variables on first access
// otherwise just copy (for faster repeated calls)
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
if ( ! face.__originalFaceNormal ) {
face.__originalFaceNormal = face.normal.clone();
} else {
face.__originalFaceNormal.copy( face.normal );
}
if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = [];
for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) {
if ( ! face.__originalVertexNormals[ i ] ) {
face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();
} else {
face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );
}
}
}
// use temp geometry to compute face and vertex normals for each morph
var tmpGeo = new THREE.Geometry();
tmpGeo.faces = this.faces;
for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) {
// create on first access
if ( ! this.morphNormals[ i ] ) {
this.morphNormals[ i ] = {};
this.morphNormals[ i ].faceNormals = [];
this.morphNormals[ i ].vertexNormals = [];
var dstNormalsFace = this.morphNormals[ i ].faceNormals;
var dstNormalsVertex = this.morphNormals[ i ].vertexNormals;
var faceNormal, vertexNormals;
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
faceNormal = new THREE.Vector3();
if ( face instanceof THREE.Face3 ) {
vertexNormals = { a: new THREE.Vector3(), b: new THREE.Vector3(), c: new THREE.Vector3() };
} else {
vertexNormals = { a: new THREE.Vector3(), b: new THREE.Vector3(), c: new THREE.Vector3(), d: new THREE.Vector3() };
}
dstNormalsFace.push( faceNormal );
dstNormalsVertex.push( vertexNormals );
}
}
var morphNormals = this.morphNormals[ i ];
// set vertices to morph target
tmpGeo.vertices = this.morphTargets[ i ].vertices;
// compute morph normals
tmpGeo.computeFaceNormals();
tmpGeo.computeVertexNormals();
// store morph normals
var faceNormal, vertexNormals;
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
faceNormal = morphNormals.faceNormals[ f ];
vertexNormals = morphNormals.vertexNormals[ f ];
faceNormal.copy( face.normal );
if ( face instanceof THREE.Face3 ) {
vertexNormals.a.copy( face.vertexNormals[ 0 ] );
vertexNormals.b.copy( face.vertexNormals[ 1 ] );
vertexNormals.c.copy( face.vertexNormals[ 2 ] );
} else {
vertexNormals.a.copy( face.vertexNormals[ 0 ] );
vertexNormals.b.copy( face.vertexNormals[ 1 ] );
vertexNormals.c.copy( face.vertexNormals[ 2 ] );
vertexNormals.d.copy( face.vertexNormals[ 3 ] );
}
}
}
// restore original normals
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
face.normal = face.__originalFaceNormal;
face.vertexNormals = face.__originalVertexNormals;
}
},
computeTangents: function () {
// based on http://www.terathon.com/code/tangent.html
// tangents go to vertices
var f, fl, v, vl, i, il, vertexIndex,
face, uv, vA, vB, vC, uvA, uvB, uvC,
x1, x2, y1, y2, z1, z2,
s1, s2, t1, t2, r, t, test,
tan1 = [], tan2 = [],
sdir = new THREE.Vector3(), tdir = new THREE.Vector3(),
tmp = new THREE.Vector3(), tmp2 = new THREE.Vector3(),
n = new THREE.Vector3(), w;
for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
tan1[ v ] = new THREE.Vector3();
tan2[ v ] = new THREE.Vector3();
}
function handleTriangle( context, a, b, c, ua, ub, uc ) {
vA = context.vertices[ a ];
vB = context.vertices[ b ];
vC = context.vertices[ c ];
uvA = uv[ ua ];
uvB = uv[ ub ];
uvC = uv[ uc ];
x1 = vB.x - vA.x;
x2 = vC.x - vA.x;
y1 = vB.y - vA.y;
y2 = vC.y - vA.y;
z1 = vB.z - vA.z;
z2 = vC.z - vA.z;
s1 = uvB.u - uvA.u;
s2 = uvC.u - uvA.u;
t1 = uvB.v - uvA.v;
t2 = uvC.v - uvA.v;
r = 1.0 / ( s1 * t2 - s2 * t1 );
sdir.set( ( t2 * x1 - t1 * x2 ) * r,
( t2 * y1 - t1 * y2 ) * r,
( t2 * z1 - t1 * z2 ) * r );
tdir.set( ( s1 * x2 - s2 * x1 ) * r,
( s1 * y2 - s2 * y1 ) * r,
( s1 * z2 - s2 * z1 ) * r );
tan1[ a ].addSelf( sdir );
tan1[ b ].addSelf( sdir );
tan1[ c ].addSelf( sdir );
tan2[ a ].addSelf( tdir );
tan2[ b ].addSelf( tdir );
tan2[ c ].addSelf( tdir );
}
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
uv = this.faceVertexUvs[ 0 ][ f ]; // use UV layer 0 for tangents
if ( face instanceof THREE.Face3 ) {
handleTriangle( this, face.a, face.b, face.c, 0, 1, 2 );
} else if ( face instanceof THREE.Face4 ) {
handleTriangle( this, face.a, face.b, face.d, 0, 1, 3 );
handleTriangle( this, face.b, face.c, face.d, 1, 2, 3 );
}
}
var faceIndex = [ 'a', 'b', 'c', 'd' ];
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
for ( i = 0; i < face.vertexNormals.length; i++ ) {
n.copy( face.vertexNormals[ i ] );
vertexIndex = face[ faceIndex[ i ] ];
t = tan1[ vertexIndex ];
// Gram-Schmidt orthogonalize
tmp.copy( t );
tmp.subSelf( n.multiplyScalar( n.dot( t ) ) ).normalize();
// Calculate handedness
tmp2.cross( face.vertexNormals[ i ], t );
test = tmp2.dot( tan2[ vertexIndex ] );
w = (test < 0.0) ? -1.0 : 1.0;
face.vertexTangents[ i ] = new THREE.Vector4( tmp.x, tmp.y, tmp.z, w );
}
}
this.hasTangents = true;
},
computeBoundingBox: function () {
if ( ! this.boundingBox ) {
this.boundingBox = { min: new THREE.Vector3(), max: new THREE.Vector3() };
}
if ( this.vertices.length > 0 ) {
var position, firstPosition = this.vertices[ 0 ];
this.boundingBox.min.copy( firstPosition );
this.boundingBox.max.copy( firstPosition );
var min = this.boundingBox.min,
max = this.boundingBox.max;
for ( var v = 1, vl = this.vertices.length; v < vl; v ++ ) {
position = this.vertices[ v ];
if ( position.x < min.x ) {
min.x = position.x;
} else if ( position.x > max.x ) {
max.x = position.x;
}
if ( position.y < min.y ) {
min.y = position.y;
} else if ( position.y > max.y ) {
max.y = position.y;
}
if ( position.z < min.z ) {
min.z = position.z;
} else if ( position.z > max.z ) {
max.z = position.z;
}
}
} else {
this.boundingBox.min.set( 0, 0, 0 );
this.boundingBox.max.set( 0, 0, 0 );
}
},
computeBoundingSphere: function () {
if ( ! this.boundingSphere ) this.boundingSphere = { radius: 0 };
var radius, maxRadius = 0;
for ( var v = 0, vl = this.vertices.length; v < vl; v ++ ) {
radius = this.vertices[ v ].length();
if ( radius > maxRadius ) maxRadius = radius;
}
this.boundingSphere.radius = maxRadius;
},
/*
* Checks for duplicate vertices with hashmap.
* Duplicated vertices are removed
* and faces' vertices are updated.
*/
mergeVertices: function() {
var verticesMap = {}; // Hashmap for looking up vertice by position coordinates (and making sure they are unique)
var unique = [], changes = [];
var v, key;
var precisionPoints = 4; // number of decimal points, eg. 4 for epsilon of 0.0001
var precision = Math.pow( 10, precisionPoints );
var i,il, face;
var abcd = 'abcd', o, k, j, jl, u;
for ( i = 0, il = this.vertices.length; i < il; i ++ ) {
v = this.vertices[ i ];
key = [ Math.round( v.x * precision ), Math.round( v.y * precision ), Math.round( v.z * precision ) ].join( '_' );
if ( verticesMap[ key ] === undefined ) {
verticesMap[ key ] = i;
unique.push( this.vertices[ i ] );
changes[ i ] = unique.length - 1;
} else {
//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
changes[ i ] = changes[ verticesMap[ key ] ];
}
};
// Start to patch face indices
for( i = 0, il = this.faces.length; i < il; i ++ ) {
face = this.faces[ i ];
if ( face instanceof THREE.Face3 ) {
face.a = changes[ face.a ];
face.b = changes[ face.b ];
face.c = changes[ face.c ];
} else if ( face instanceof THREE.Face4 ) {
face.a = changes[ face.a ];
face.b = changes[ face.b ];
face.c = changes[ face.c ];
face.d = changes[ face.d ];
// check dups in (a, b, c, d) and convert to -> face3
o = [face.a, face.b, face.c, face.d];
for (k=3;k>0;k--) {
if ( o.indexOf(face[abcd[k]]) != k ) {
// console.log('faces', face.a, face.b, face.c, face.d, 'dup at', k);
o.splice(k, 1);
this.faces[ i ] = new THREE.Face3(o[0], o[1], o[2]);
for (j=0,jl=this.faceVertexUvs.length;j<jl;j++) {
u = this.faceVertexUvs[j][i];
if (u) u.splice(k, 1);
}
break;
}
}
}
}
// Use unique set of vertices
var diff = this.vertices.length - unique.length;
this.vertices = unique;
return diff;
}
};
THREE.GeometryCount = 0;
/**
* Spline from Tween.js, slightly optimized (and trashed)
* http://sole.github.com/tween.js/examples/05_spline.html
*
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Spline = function ( points ) {
this.points = points;
var c = [], v3 = { x: 0, y: 0, z: 0 },
point, intPoint, weight, w2, w3,
pa, pb, pc, pd;
this.initFromArray = function( a ) {
this.points = [];
for ( var i = 0; i < a.length; i++ ) {
this.points[ i ] = { x: a[ i ][ 0 ], y: a[ i ][ 1 ], z: a[ i ][ 2 ] };
}
};
this.getPoint = function ( k ) {
point = ( this.points.length - 1 ) * k;
intPoint = Math.floor( point );
weight = point - intPoint;
c[ 0 ] = intPoint === 0 ? intPoint : intPoint - 1;
c[ 1 ] = intPoint;
c[ 2 ] = intPoint > this.points.length - 2 ? this.points.length - 1 : intPoint + 1;
c[ 3 ] = intPoint > this.points.length - 3 ? this.points.length - 1 : intPoint + 2;
pa = this.points[ c[ 0 ] ];
pb = this.points[ c[ 1 ] ];
pc = this.points[ c[ 2 ] ];
pd = this.points[ c[ 3 ] ];
w2 = weight * weight;
w3 = weight * w2;
v3.x = interpolate( pa.x, pb.x, pc.x, pd.x, weight, w2, w3 );
v3.y = interpolate( pa.y, pb.y, pc.y, pd.y, weight, w2, w3 );
v3.z = interpolate( pa.z, pb.z, pc.z, pd.z, weight, w2, w3 );
return v3;
};
this.getControlPointsArray = function () {
var i, p, l = this.points.length,
coords = [];
for ( i = 0; i < l; i ++ ) {
p = this.points[ i ];
coords[ i ] = [ p.x, p.y, p.z ];
}
return coords;
};
// approximate length by summing linear segments
this.getLength = function ( nSubDivisions ) {
var i, index, nSamples, position,
point = 0, intPoint = 0, oldIntPoint = 0,
oldPosition = new THREE.Vector3(),
tmpVec = new THREE.Vector3(),
chunkLengths = [],
totalLength = 0;
// first point has 0 length
chunkLengths[ 0 ] = 0;
if ( !nSubDivisions ) nSubDivisions = 100;
nSamples = this.points.length * nSubDivisions;
oldPosition.copy( this.points[ 0 ] );
for ( i = 1; i < nSamples; i ++ ) {
index = i / nSamples;
position = this.getPoint( index );
tmpVec.copy( position );
totalLength += tmpVec.distanceTo( oldPosition );
oldPosition.copy( position );
point = ( this.points.length - 1 ) * index;
intPoint = Math.floor( point );
if ( intPoint != oldIntPoint ) {
chunkLengths[ intPoint ] = totalLength;
oldIntPoint = intPoint;
}
}
// last point ends with total length
chunkLengths[ chunkLengths.length ] = totalLength;
return { chunks: chunkLengths, total: totalLength };
};
this.reparametrizeByArcLength = function ( samplingCoef ) {
var i, j,
index, indexCurrent, indexNext,
linearDistance, realDistance,
sampling, position,
newpoints = [],
tmpVec = new THREE.Vector3(),
sl = this.getLength();
newpoints.push( tmpVec.copy( this.points[ 0 ] ).clone() );
for ( i = 1; i < this.points.length; i++ ) {
//tmpVec.copy( this.points[ i - 1 ] );
//linearDistance = tmpVec.distanceTo( this.points[ i ] );
realDistance = sl.chunks[ i ] - sl.chunks[ i - 1 ];
sampling = Math.ceil( samplingCoef * realDistance / sl.total );
indexCurrent = ( i - 1 ) / ( this.points.length - 1 );
indexNext = i / ( this.points.length - 1 );
for ( j = 1; j < sampling - 1; j++ ) {
index = indexCurrent + j * ( 1 / sampling ) * ( indexNext - indexCurrent );
position = this.getPoint( index );
newpoints.push( tmpVec.copy( position ).clone() );
}
newpoints.push( tmpVec.copy( this.points[ i ] ).clone() );
}
this.points = newpoints;
};
// Catmull-Rom
function interpolate( p0, p1, p2, p3, t, t2, t3 ) {
var v0 = ( p2 - p0 ) * 0.5,
v1 = ( p3 - p1 ) * 0.5;
return ( 2 * ( p1 - p2 ) + v0 + v1 ) * t3 + ( - 3 * ( p1 - p2 ) - 2 * v0 - v1 ) * t2 + v0 * t + p1;
};
};
/**
* @author mr.doob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
*/
THREE.Camera = function () {
THREE.Object3D.call( this );
this.matrixWorldInverse = new THREE.Matrix4();
this.projectionMatrix = new THREE.Matrix4();
this.projectionMatrixInverse = new THREE.Matrix4();
};
THREE.Camera.prototype = new THREE.Object3D();
THREE.Camera.prototype.constructor = THREE.Camera;
THREE.Camera.prototype.lookAt = function ( vector ) {
// TODO: Add hierarchy support.
this.matrix.lookAt( this.position, vector, this.up );
if ( this.rotationAutoUpdate ) {
this.rotation.getRotationFromMatrix( this.matrix );
}
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.OrthographicCamera = function ( left, right, top, bottom, near, far ) {
THREE.Camera.call( this );
this.left = left;
this.right = right;
this.top = top;
this.bottom = bottom;
this.near = ( near !== undefined ) ? near : 0.1;
this.far = ( far !== undefined ) ? far : 2000;
this.updateProjectionMatrix();
};
THREE.OrthographicCamera.prototype = new THREE.Camera();
THREE.OrthographicCamera.prototype.constructor = THREE.OrthographicCamera;
THREE.OrthographicCamera.prototype.updateProjectionMatrix = function () {
this.projectionMatrix.makeOrthographic( this.left, this.right, this.top, this.bottom, this.near, this.far );
};
/**
* @author mr.doob / http://mrdoob.com/
* @author greggman / http://games.greggman.com/
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
THREE.PerspectiveCamera = function ( fov, aspect, near, far ) {
THREE.Camera.call( this );
this.fov = fov !== undefined ? fov : 50;
this.aspect = aspect !== undefined ? aspect : 1;
this.near = near !== undefined ? near : 0.1;
this.far = far !== undefined ? far : 2000;
this.updateProjectionMatrix();
};
THREE.PerspectiveCamera.prototype = new THREE.Camera();
THREE.PerspectiveCamera.prototype.constructor = THREE.PerspectiveCamera;
/**
* Uses Focal Length (in mm) to estimate and set FOV
* 35mm (fullframe) camera is used if frame size is not specified;
* Formula based on http://www.bobatkins.com/photography/technical/field_of_view.html
*/
THREE.PerspectiveCamera.prototype.setLens = function ( focalLength, frameHeight ) {
frameHeight = frameHeight !== undefined ? frameHeight : 24;
this.fov = 2 * Math.atan( frameHeight / ( focalLength * 2 ) ) * ( 180 / Math.PI );
this.updateProjectionMatrix();
}
/**
* Sets an offset in a larger frustum. This is useful for multi-window or
* multi-monitor/multi-machine setups.
*
* For example, if you have 3x2 monitors and each monitor is 1920x1080 and
* the monitors are in grid like this
*
* +---+---+---+
* | A | B | C |
* +---+---+---+
* | D | E | F |
* +---+---+---+
*
* then for each monitor you would call it like this
*
* var w = 1920;
* var h = 1080;
* var fullWidth = w * 3;
* var fullHeight = h * 2;
*
* --A--
* camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
* --B--
* camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
* --C--
* camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
* --D--
* camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
* --E--
* camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
* --F--
* camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
*
* Note there is no reason monitors have to be the same size or in a grid.
*/
THREE.PerspectiveCamera.prototype.setViewOffset = function ( fullWidth, fullHeight, x, y, width, height ) {
this.fullWidth = fullWidth;
this.fullHeight = fullHeight;
this.x = x;
this.y = y;
this.width = width;
this.height = height;
this.updateProjectionMatrix();
};
THREE.PerspectiveCamera.prototype.updateProjectionMatrix = function () {
if ( this.fullWidth ) {
var aspect = this.fullWidth / this.fullHeight;
var top = Math.tan( this.fov * Math.PI / 360 ) * this.near;
var bottom = -top;
var left = aspect * bottom;
var right = aspect * top;
var width = Math.abs( right - left );
var height = Math.abs( top - bottom );
this.projectionMatrix.makeFrustum(
left + this.x * width / this.fullWidth,
left + ( this.x + this.width ) * width / this.fullWidth,
top - ( this.y + this.height ) * height / this.fullHeight,
top - this.y * height / this.fullHeight,
this.near,
this.far
);
} else {
this.projectionMatrix.makePerspective( this.fov, this.aspect, this.near, this.far );
}
};
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Light = function ( hex ) {
THREE.Object3D.call( this );
this.color = new THREE.Color( hex );
};
THREE.Light.prototype = new THREE.Object3D();
THREE.Light.prototype.constructor = THREE.Light;
THREE.Light.prototype.supr = THREE.Object3D.prototype;
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.AmbientLight = function ( hex ) {
THREE.Light.call( this, hex );
};
THREE.AmbientLight.prototype = new THREE.Light();
THREE.AmbientLight.prototype.constructor = THREE.AmbientLight;
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.DirectionalLight = function ( hex, intensity, distance ) {
THREE.Light.call( this, hex );
this.position = new THREE.Vector3( 0, 1, 0 );
this.target = new THREE.Object3D();
this.intensity = ( intensity !== undefined ) ? intensity : 1;
this.distance = ( distance !== undefined ) ? distance : 0;
this.castShadow = false;
this.onlyShadow = false;
//
this.shadowCameraNear = 50;
this.shadowCameraFar = 5000;
this.shadowCameraLeft = -500;
this.shadowCameraRight = 500;
this.shadowCameraTop = 500;
this.shadowCameraBottom = -500;
this.shadowCameraVisible = false;
this.shadowBias = 0;
this.shadowDarkness = 0.5;
this.shadowMapWidth = 512;
this.shadowMapHeight = 512;
//
this.shadowCascade = false;
this.shadowCascadeOffset = new THREE.Vector3( 0, 0, -1000 );
this.shadowCascadeCount = 2;
this.shadowCascadeBias = [ 0, 0, 0 ];
this.shadowCascadeWidth = [ 512, 512, 512 ];
this.shadowCascadeHeight = [ 512, 512, 512 ];
this.shadowCascadeNearZ = [ -1.000, 0.990, 0.998 ];
this.shadowCascadeFarZ = [ 0.990, 0.998, 1.000 ];
this.shadowCascadeArray = [];
//
this.shadowMap = null;
this.shadowMapSize = null;
this.shadowCamera = null;
this.shadowMatrix = null;
};
THREE.DirectionalLight.prototype = new THREE.Light();
THREE.DirectionalLight.prototype.constructor = THREE.DirectionalLight;
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.PointLight = function ( hex, intensity, distance ) {
THREE.Light.call( this, hex );
this.position = new THREE.Vector3( 0, 0, 0 );
this.intensity = ( intensity !== undefined ) ? intensity : 1;
this.distance = ( distance !== undefined ) ? distance : 0;
};
THREE.PointLight.prototype = new THREE.Light();
THREE.PointLight.prototype.constructor = THREE.PointLight;
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.SpotLight = function ( hex, intensity, distance, angle, exponent ) {
THREE.Light.call( this, hex );
this.position = new THREE.Vector3( 0, 1, 0 );
this.target = new THREE.Object3D();
this.intensity = ( intensity !== undefined ) ? intensity : 1;
this.distance = ( distance !== undefined ) ? distance : 0;
this.angle = ( angle !== undefined ) ? angle : Math.PI / 2;
this.exponent = ( exponent !== undefined ) ? exponent : 10;
this.castShadow = false;
this.onlyShadow = false;
//
this.shadowCameraNear = 50;
this.shadowCameraFar = 5000;
this.shadowCameraFov = 50;
this.shadowCameraVisible = false;
this.shadowBias = 0;
this.shadowDarkness = 0.5;
this.shadowMapWidth = 512;
this.shadowMapHeight = 512;
//
this.shadowMap = null;
this.shadowMapSize = null;
this.shadowCamera = null;
this.shadowMatrix = null;
};
THREE.SpotLight.prototype = new THREE.Light();
THREE.SpotLight.prototype.constructor = THREE.SpotLight;
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.Loader = function ( showStatus ) {
this.showStatus = showStatus;
this.statusDomElement = showStatus ? THREE.Loader.prototype.addStatusElement() : null;
this.onLoadStart = function () {};
this.onLoadProgress = function () {};
this.onLoadComplete = function () {};
};
THREE.Loader.prototype = {
constructor: THREE.Loader,
crossOrigin: 'anonymous',
addStatusElement: function () {
var e = document.createElement( "div" );
e.style.position = "absolute";
e.style.right = "0px";
e.style.top = "0px";
e.style.fontSize = "0.8em";
e.style.textAlign = "left";
e.style.background = "rgba(0,0,0,0.25)";
e.style.color = "#fff";
e.style.width = "120px";
e.style.padding = "0.5em 0.5em 0.5em 0.5em";
e.style.zIndex = 1000;
e.innerHTML = "Loading ...";
return e;
},
updateProgress: function ( progress ) {
var message = "Loaded ";
if ( progress.total ) {
message += ( 100 * progress.loaded / progress.total ).toFixed(0) + "%";
} else {
message += ( progress.loaded / 1000 ).toFixed(2) + " KB";
}
this.statusDomElement.innerHTML = message;
},
extractUrlBase: function ( url ) {
var parts = url.split( '/' );
parts.pop();
return ( parts.length < 1 ? '.' : parts.join( '/' ) ) + '/';
},
initMaterials: function ( scope, materials, texturePath ) {
scope.materials = [];
for ( var i = 0; i < materials.length; ++ i ) {
scope.materials[ i ] = THREE.Loader.prototype.createMaterial( materials[ i ], texturePath );
}
},
hasNormals: function ( scope ) {
var m, i, il = scope.materials.length;
for( i = 0; i < il; i ++ ) {
m = scope.materials[ i ];
if ( m instanceof THREE.ShaderMaterial ) return true;
}
return false;
},
createMaterial: function ( m, texturePath ) {
var _this = this;
function is_pow2( n ) {
var l = Math.log( n ) / Math.LN2;
return Math.floor( l ) == l;
}
function nearest_pow2( n ) {
var l = Math.log( n ) / Math.LN2;
return Math.pow( 2, Math.round( l ) );
}
function load_image( where, url ) {
var image = new Image();
image.onload = function () {
if ( !is_pow2( this.width ) || !is_pow2( this.height ) ) {
var width = nearest_pow2( this.width );
var height = nearest_pow2( this.height );
where.image.width = width;
where.image.height = height;
where.image.getContext( '2d' ).drawImage( this, 0, 0, width, height );
} else {
where.image = this;
}
where.needsUpdate = true;
};
image.crossOrigin = _this.crossOrigin;
image.src = url;
}
function create_texture( where, name, sourceFile, repeat, offset, wrap ) {
var texture = document.createElement( 'canvas' );
where[ name ] = new THREE.Texture( texture );
where[ name ].sourceFile = sourceFile;
if( repeat ) {
where[ name ].repeat.set( repeat[ 0 ], repeat[ 1 ] );
if ( repeat[ 0 ] != 1 ) where[ name ].wrapS = THREE.RepeatWrapping;
if ( repeat[ 1 ] != 1 ) where[ name ].wrapT = THREE.RepeatWrapping;
}
if ( offset ) {
where[ name ].offset.set( offset[ 0 ], offset[ 1 ] );
}
if ( wrap ) {
var wrapMap = {
"repeat": THREE.RepeatWrapping,
"mirror": THREE.MirroredRepeatWrapping
}
if ( wrapMap[ wrap[ 0 ] ] !== undefined ) where[ name ].wrapS = wrapMap[ wrap[ 0 ] ];
if ( wrapMap[ wrap[ 1 ] ] !== undefined ) where[ name ].wrapT = wrapMap[ wrap[ 1 ] ];
}
load_image( where[ name ], texturePath + "/" + sourceFile );
}
function rgb2hex( rgb ) {
return ( rgb[ 0 ] * 255 << 16 ) + ( rgb[ 1 ] * 255 << 8 ) + rgb[ 2 ] * 255;
}
// defaults
var mtype = "MeshLambertMaterial";
var mpars = { color: 0xeeeeee, opacity: 1.0, map: null, lightMap: null, normalMap: null, wireframe: m.wireframe };
// parameters from model file
if ( m.shading ) {
var shading = m.shading.toLowerCase();
if ( shading === "phong" ) mtype = "MeshPhongMaterial";
else if ( shading === "basic" ) mtype = "MeshBasicMaterial";
}
if ( m.blending !== undefined && THREE[ m.blending ] !== undefined ) {
mpars.blending = THREE[ m.blending ];
}
if ( m.transparent !== undefined || m.opacity < 1.0 ) {
mpars.transparent = m.transparent;
}
if ( m.depthTest !== undefined ) {
mpars.depthTest = m.depthTest;
}
if ( m.depthWrite !== undefined ) {
mpars.depthWrite = m.depthWrite;
}
if ( m.vertexColors !== undefined ) {
if ( m.vertexColors == "face" ) {
mpars.vertexColors = THREE.FaceColors;
} else if ( m.vertexColors ) {
mpars.vertexColors = THREE.VertexColors;
}
}
// colors
if ( m.colorDiffuse ) {
mpars.color = rgb2hex( m.colorDiffuse );
} else if ( m.DbgColor ) {
mpars.color = m.DbgColor;
}
if ( m.colorSpecular ) {
mpars.specular = rgb2hex( m.colorSpecular );
}
if ( m.colorAmbient ) {
mpars.ambient = rgb2hex( m.colorAmbient );
}
// modifiers
if ( m.transparency ) {
mpars.opacity = m.transparency;
}
if ( m.specularCoef ) {
mpars.shininess = m.specularCoef;
}
// textures
if ( m.mapDiffuse && texturePath ) {
create_texture( mpars, "map", m.mapDiffuse, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap );
}
if ( m.mapLight && texturePath ) {
create_texture( mpars, "lightMap", m.mapLight, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap );
}
if ( m.mapNormal && texturePath ) {
create_texture( mpars, "normalMap", m.mapNormal, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap );
}
if ( m.mapSpecular && texturePath ) {
create_texture( mpars, "specularMap", m.mapSpecular, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap );
}
// special case for normal mapped material
if ( m.mapNormal ) {
var shader = THREE.ShaderUtils.lib[ "normal" ];
var uniforms = THREE.UniformsUtils.clone( shader.uniforms );
uniforms[ "tNormal" ].texture = mpars.normalMap;
if ( m.mapNormalFactor ) {
uniforms[ "uNormalScale" ].value = m.mapNormalFactor;
}
if ( mpars.map ) {
uniforms[ "tDiffuse" ].texture = mpars.map;
uniforms[ "enableDiffuse" ].value = true;
}
if ( mpars.specularMap ) {
uniforms[ "tSpecular" ].texture = mpars.specularMap;
uniforms[ "enableSpecular" ].value = true;
}
if ( mpars.lightMap ) {
uniforms[ "tAO" ].texture = mpars.lightMap;
uniforms[ "enableAO" ].value = true;
}
// for the moment don't handle displacement texture
uniforms[ "uDiffuseColor" ].value.setHex( mpars.color );
uniforms[ "uSpecularColor" ].value.setHex( mpars.specular );
uniforms[ "uAmbientColor" ].value.setHex( mpars.ambient );
uniforms[ "uShininess" ].value = mpars.shininess;
if ( mpars.opacity !== undefined ) {
uniforms[ "uOpacity" ].value = mpars.opacity;
}
var parameters = { fragmentShader: shader.fragmentShader, vertexShader: shader.vertexShader, uniforms: uniforms, lights: true, fog: true };
var material = new THREE.ShaderMaterial( parameters );
} else {
var material = new THREE[ mtype ]( mpars );
}
if ( m.DbgName !== undefined ) material.name = m.DbgName;
return material;
}
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.BinaryLoader = function ( showStatus ) {
THREE.Loader.call( this, showStatus );
};
THREE.BinaryLoader.prototype = new THREE.Loader();
THREE.BinaryLoader.prototype.constructor = THREE.BinaryLoader;
// Load models generated by slim OBJ converter with BINARY option (converter_obj_three_slim.py -t binary)
// - binary models consist of two files: JS and BIN
// - parameters
// - url (required)
// - callback (required)
// - texturePath (optional: if not specified, textures will be assumed to be in the same folder as JS model file)
// - binaryPath (optional: if not specified, binary file will be assumed to be in the same folder as JS model file)
THREE.BinaryLoader.prototype.load = function( url, callback, texturePath, binaryPath ) {
texturePath = texturePath ? texturePath : this.extractUrlBase( url );
binaryPath = binaryPath ? binaryPath : this.extractUrlBase( url );
var callbackProgress = this.showProgress ? THREE.Loader.prototype.updateProgress : null;
this.onLoadStart();
// #1 load JS part via web worker
this.loadAjaxJSON( this, url, callback, texturePath, binaryPath, callbackProgress );
};
THREE.BinaryLoader.prototype.loadAjaxJSON = function ( context, url, callback, texturePath, binaryPath, callbackProgress ) {
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function () {
if ( xhr.readyState == 4 ) {
if ( xhr.status == 200 || xhr.status == 0 ) {
var json = JSON.parse( xhr.responseText );
context.loadAjaxBuffers( json, callback, binaryPath, texturePath, callbackProgress );
} else {
console.error( "THREE.BinaryLoader: Couldn't load [" + url + "] [" + xhr.status + "]" );
}
}
};
xhr.open( "GET", url, true );
if ( xhr.overrideMimeType ) xhr.overrideMimeType( "text/plain; charset=x-user-defined" );
xhr.setRequestHeader( "Content-Type", "text/plain" );
xhr.send( null );
};
THREE.BinaryLoader.prototype.loadAjaxBuffers = function ( json, callback, binaryPath, texturePath, callbackProgress ) {
var xhr = new XMLHttpRequest(),
url = binaryPath + "/" + json.buffers;
var length = 0;
xhr.onreadystatechange = function () {
if ( xhr.readyState == 4 ) {
if ( xhr.status == 200 || xhr.status == 0 ) {
THREE.BinaryLoader.prototype.createBinModel( xhr.response, callback, texturePath, json.materials );
} else {
console.error( "THREE.BinaryLoader: Couldn't load [" + url + "] [" + xhr.status + "]" );
}
} else if ( xhr.readyState == 3 ) {
if ( callbackProgress ) {
if ( length == 0 ) {
length = xhr.getResponseHeader( "Content-Length" );
}
callbackProgress( { total: length, loaded: xhr.responseText.length } );
}
} else if ( xhr.readyState == 2 ) {
length = xhr.getResponseHeader( "Content-Length" );
}
};
xhr.open( "GET", url, true );
xhr.responseType = "arraybuffer";
xhr.send( null );
};
// Binary AJAX parser
THREE.BinaryLoader.prototype.createBinModel = function ( data, callback, texturePath, materials ) {
var Model = function ( texturePath ) {
var scope = this,
currentOffset = 0,
md,
normals = [],
uvs = [],
start_tri_flat, start_tri_smooth, start_tri_flat_uv, start_tri_smooth_uv,
start_quad_flat, start_quad_smooth, start_quad_flat_uv, start_quad_smooth_uv,
tri_size, quad_size,
len_tri_flat, len_tri_smooth, len_tri_flat_uv, len_tri_smooth_uv,
len_quad_flat, len_quad_smooth, len_quad_flat_uv, len_quad_smooth_uv;
THREE.Geometry.call( this );
THREE.Loader.prototype.initMaterials( scope, materials, texturePath );
md = parseMetaData( data, currentOffset );
currentOffset += md.header_bytes;
/*
md.vertex_index_bytes = Uint32Array.BYTES_PER_ELEMENT;
md.material_index_bytes = Uint16Array.BYTES_PER_ELEMENT;
md.normal_index_bytes = Uint32Array.BYTES_PER_ELEMENT;
md.uv_index_bytes = Uint32Array.BYTES_PER_ELEMENT;
*/
// buffers sizes
tri_size = md.vertex_index_bytes * 3 + md.material_index_bytes;
quad_size = md.vertex_index_bytes * 4 + md.material_index_bytes;
len_tri_flat = md.ntri_flat * ( tri_size );
len_tri_smooth = md.ntri_smooth * ( tri_size + md.normal_index_bytes * 3 );
len_tri_flat_uv = md.ntri_flat_uv * ( tri_size + md.uv_index_bytes * 3 );
len_tri_smooth_uv = md.ntri_smooth_uv * ( tri_size + md.normal_index_bytes * 3 + md.uv_index_bytes * 3 );
len_quad_flat = md.nquad_flat * ( quad_size );
len_quad_smooth = md.nquad_smooth * ( quad_size + md.normal_index_bytes * 4 );
len_quad_flat_uv = md.nquad_flat_uv * ( quad_size + md.uv_index_bytes * 4 );
len_quad_smooth_uv = md.nquad_smooth_uv * ( quad_size + md.normal_index_bytes * 4 + md.uv_index_bytes * 4 );
// read buffers
currentOffset += init_vertices( currentOffset );
currentOffset += init_normals( currentOffset );
currentOffset += handlePadding( md.nnormals * 3 );
currentOffset += init_uvs( currentOffset );
start_tri_flat = currentOffset;
start_tri_smooth = start_tri_flat + len_tri_flat + handlePadding( md.ntri_flat * 2 );
start_tri_flat_uv = start_tri_smooth + len_tri_smooth + handlePadding( md.ntri_smooth * 2 );
start_tri_smooth_uv = start_tri_flat_uv + len_tri_flat_uv + handlePadding( md.ntri_flat_uv * 2 );
start_quad_flat = start_tri_smooth_uv + len_tri_smooth_uv + handlePadding( md.ntri_smooth_uv * 2 );
start_quad_smooth = start_quad_flat + len_quad_flat + handlePadding( md.nquad_flat * 2 );
start_quad_flat_uv = start_quad_smooth + len_quad_smooth + handlePadding( md.nquad_smooth * 2 );
start_quad_smooth_uv= start_quad_flat_uv + len_quad_flat_uv + handlePadding( md.nquad_flat_uv * 2 );
// have to first process faces with uvs
// so that face and uv indices match
init_triangles_flat_uv( start_tri_flat_uv );
init_triangles_smooth_uv( start_tri_smooth_uv );
init_quads_flat_uv( start_quad_flat_uv );
init_quads_smooth_uv( start_quad_smooth_uv );
// now we can process untextured faces
init_triangles_flat( start_tri_flat );
init_triangles_smooth( start_tri_smooth );
init_quads_flat( start_quad_flat );
init_quads_smooth( start_quad_smooth );
this.computeCentroids();
this.computeFaceNormals();
if ( THREE.Loader.prototype.hasNormals( this ) ) this.computeTangents();
function handlePadding( n ) {
return ( n % 4 ) ? ( 4 - n % 4 ) : 0;
};
function parseMetaData( data, offset ) {
var metaData = {
'signature' :parseString( data, offset, 12 ),
'header_bytes' :parseUChar8( data, offset + 12 ),
'vertex_coordinate_bytes' :parseUChar8( data, offset + 13 ),
'normal_coordinate_bytes' :parseUChar8( data, offset + 14 ),
'uv_coordinate_bytes' :parseUChar8( data, offset + 15 ),
'vertex_index_bytes' :parseUChar8( data, offset + 16 ),
'normal_index_bytes' :parseUChar8( data, offset + 17 ),
'uv_index_bytes' :parseUChar8( data, offset + 18 ),
'material_index_bytes' :parseUChar8( data, offset + 19 ),
'nvertices' :parseUInt32( data, offset + 20 ),
'nnormals' :parseUInt32( data, offset + 20 + 4*1 ),
'nuvs' :parseUInt32( data, offset + 20 + 4*2 ),
'ntri_flat' :parseUInt32( data, offset + 20 + 4*3 ),
'ntri_smooth' :parseUInt32( data, offset + 20 + 4*4 ),
'ntri_flat_uv' :parseUInt32( data, offset + 20 + 4*5 ),
'ntri_smooth_uv' :parseUInt32( data, offset + 20 + 4*6 ),
'nquad_flat' :parseUInt32( data, offset + 20 + 4*7 ),
'nquad_smooth' :parseUInt32( data, offset + 20 + 4*8 ),
'nquad_flat_uv' :parseUInt32( data, offset + 20 + 4*9 ),
'nquad_smooth_uv' :parseUInt32( data, offset + 20 + 4*10 )
};
/*
console.log( "signature: " + metaData.signature );
console.log( "header_bytes: " + metaData.header_bytes );
console.log( "vertex_coordinate_bytes: " + metaData.vertex_coordinate_bytes );
console.log( "normal_coordinate_bytes: " + metaData.normal_coordinate_bytes );
console.log( "uv_coordinate_bytes: " + metaData.uv_coordinate_bytes );
console.log( "vertex_index_bytes: " + metaData.vertex_index_bytes );
console.log( "normal_index_bytes: " + metaData.normal_index_bytes );
console.log( "uv_index_bytes: " + metaData.uv_index_bytes );
console.log( "material_index_bytes: " + metaData.material_index_bytes );
console.log( "nvertices: " + metaData.nvertices );
console.log( "nnormals: " + metaData.nnormals );
console.log( "nuvs: " + metaData.nuvs );
console.log( "ntri_flat: " + metaData.ntri_flat );
console.log( "ntri_smooth: " + metaData.ntri_smooth );
console.log( "ntri_flat_uv: " + metaData.ntri_flat_uv );
console.log( "ntri_smooth_uv: " + metaData.ntri_smooth_uv );
console.log( "nquad_flat: " + metaData.nquad_flat );
console.log( "nquad_smooth: " + metaData.nquad_smooth );
console.log( "nquad_flat_uv: " + metaData.nquad_flat_uv );
console.log( "nquad_smooth_uv: " + metaData.nquad_smooth_uv );
var total = metaData.header_bytes
+ metaData.nvertices * metaData.vertex_coordinate_bytes * 3
+ metaData.nnormals * metaData.normal_coordinate_bytes * 3
+ metaData.nuvs * metaData.uv_coordinate_bytes * 2
+ metaData.ntri_flat * ( metaData.vertex_index_bytes*3 + metaData.material_index_bytes )
+ metaData.ntri_smooth * ( metaData.vertex_index_bytes*3 + metaData.material_index_bytes + metaData.normal_index_bytes*3 )
+ metaData.ntri_flat_uv * ( metaData.vertex_index_bytes*3 + metaData.material_index_bytes + metaData.uv_index_bytes*3 )
+ metaData.ntri_smooth_uv * ( metaData.vertex_index_bytes*3 + metaData.material_index_bytes + metaData.normal_index_bytes*3 + metaData.uv_index_bytes*3 )
+ metaData.nquad_flat * ( metaData.vertex_index_bytes*4 + metaData.material_index_bytes )
+ metaData.nquad_smooth * ( metaData.vertex_index_bytes*4 + metaData.material_index_bytes + metaData.normal_index_bytes*4 )
+ metaData.nquad_flat_uv * ( metaData.vertex_index_bytes*4 + metaData.material_index_bytes + metaData.uv_index_bytes*4 )
+ metaData.nquad_smooth_uv * ( metaData.vertex_index_bytes*4 + metaData.material_index_bytes + metaData.normal_index_bytes*4 + metaData.uv_index_bytes*4 );
console.log( "total bytes: " + total );
*/
return metaData;
};
function parseString( data, offset, length ) {
var charArray = new Uint8Array( data, offset, length );
var text = "";
for ( var i = 0; i < length; i ++ ) {
text += String.fromCharCode( charArray[ offset + i ] );
}
return text;
};
function parseUChar8( data, offset ) {
var charArray = new Uint8Array( data, offset, 1 );
return charArray[ 0 ];
};
function parseUInt32( data, offset ) {
var intArray = new Uint32Array( data, offset, 1 );
return intArray[ 0 ];
};
function init_vertices( start ) {
var nElements = md.nvertices;
var coordArray = new Float32Array( data, start, nElements * 3 );
var i, x, y, z;
for( i = 0; i < nElements; i ++ ) {
x = coordArray[ i * 3 ];
y = coordArray[ i * 3 + 1 ];
z = coordArray[ i * 3 + 2 ];
vertex( scope, x, y, z );
}
return nElements * 3 * Float32Array.BYTES_PER_ELEMENT;
};
function init_normals( start ) {
var nElements = md.nnormals;
if ( nElements ) {
var normalArray = new Int8Array( data, start, nElements * 3 );
var i, x, y, z;
for( i = 0; i < nElements; i ++ ) {
x = normalArray[ i * 3 ];
y = normalArray[ i * 3 + 1 ];
z = normalArray[ i * 3 + 2 ];
normals.push( x/127, y/127, z/127 );
}
}
return nElements * 3 * Int8Array.BYTES_PER_ELEMENT;
};
function init_uvs( start ) {
var nElements = md.nuvs;
if ( nElements ) {
var uvArray = new Float32Array( data, start, nElements * 2 );
var i, u, v;
for( i = 0; i < nElements; i ++ ) {
u = uvArray[ i * 2 ];
v = uvArray[ i * 2 + 1 ];
uvs.push( u, v );
}
}
return nElements * 2 * Float32Array.BYTES_PER_ELEMENT;
};
function init_uvs3( nElements, offset ) {
var i, uva, uvb, uvc, u1, u2, u3, v1, v2, v3;
var uvIndexBuffer = new Uint32Array( data, offset, 3 * nElements );
for( i = 0; i < nElements; i ++ ) {
uva = uvIndexBuffer[ i * 3 ];
uvb = uvIndexBuffer[ i * 3 + 1 ];
uvc = uvIndexBuffer[ i * 3 + 2 ];
u1 = uvs[ uva*2 ];
v1 = uvs[ uva*2 + 1 ];
u2 = uvs[ uvb*2 ];
v2 = uvs[ uvb*2 + 1 ];
u3 = uvs[ uvc*2 ];
v3 = uvs[ uvc*2 + 1 ];
uv3( scope.faceVertexUvs[ 0 ], u1, v1, u2, v2, u3, v3 );
}
};
function init_uvs4( nElements, offset ) {
var i, uva, uvb, uvc, uvd, u1, u2, u3, u4, v1, v2, v3, v4;
var uvIndexBuffer = new Uint32Array( data, offset, 4 * nElements );
for( i = 0; i < nElements; i ++ ) {
uva = uvIndexBuffer[ i * 4 ];
uvb = uvIndexBuffer[ i * 4 + 1 ];
uvc = uvIndexBuffer[ i * 4 + 2 ];
uvd = uvIndexBuffer[ i * 4 + 3 ];
u1 = uvs[ uva*2 ];
v1 = uvs[ uva*2 + 1 ];
u2 = uvs[ uvb*2 ];
v2 = uvs[ uvb*2 + 1 ];
u3 = uvs[ uvc*2 ];
v3 = uvs[ uvc*2 + 1 ];
u4 = uvs[ uvd*2 ];
v4 = uvs[ uvd*2 + 1 ];
uv4( scope.faceVertexUvs[ 0 ], u1, v1, u2, v2, u3, v3, u4, v4 );
}
};
function init_faces3_flat( nElements, offsetVertices, offsetMaterials ) {
var i, a, b, c, m;
var vertexIndexBuffer = new Uint32Array( data, offsetVertices, 3 * nElements );
var materialIndexBuffer = new Uint16Array( data, offsetMaterials, nElements );
for( i = 0; i < nElements; i ++ ) {
a = vertexIndexBuffer[ i * 3 ];
b = vertexIndexBuffer[ i * 3 + 1 ];
c = vertexIndexBuffer[ i * 3 + 2 ];
m = materialIndexBuffer[ i ];
f3( scope, a, b, c, m );
}
};
function init_faces4_flat( nElements, offsetVertices, offsetMaterials ) {
var i, a, b, c, d, m;
var vertexIndexBuffer = new Uint32Array( data, offsetVertices, 4 * nElements );
var materialIndexBuffer = new Uint16Array( data, offsetMaterials, nElements );
for( i = 0; i < nElements; i ++ ) {
a = vertexIndexBuffer[ i * 4 ];
b = vertexIndexBuffer[ i * 4 + 1 ];
c = vertexIndexBuffer[ i * 4 + 2 ];
d = vertexIndexBuffer[ i * 4 + 3 ];
m = materialIndexBuffer[ i ];
f4( scope, a, b, c, d, m );
}
};
function init_faces3_smooth( nElements, offsetVertices, offsetNormals, offsetMaterials ) {
var i, a, b, c, m;
var na, nb, nc;
var vertexIndexBuffer = new Uint32Array( data, offsetVertices, 3 * nElements );
var normalIndexBuffer = new Uint32Array( data, offsetNormals, 3 * nElements );
var materialIndexBuffer = new Uint16Array( data, offsetMaterials, nElements );
for( i = 0; i < nElements; i ++ ) {
a = vertexIndexBuffer[ i * 3 ];
b = vertexIndexBuffer[ i * 3 + 1 ];
c = vertexIndexBuffer[ i * 3 + 2 ];
na = normalIndexBuffer[ i * 3 ];
nb = normalIndexBuffer[ i * 3 + 1 ];
nc = normalIndexBuffer[ i * 3 + 2 ];
m = materialIndexBuffer[ i ];
f3n( scope, normals, a, b, c, m, na, nb, nc );
}
};
function init_faces4_smooth( nElements, offsetVertices, offsetNormals, offsetMaterials ) {
var i, a, b, c, d, m;
var na, nb, nc, nd;
var vertexIndexBuffer = new Uint32Array( data, offsetVertices, 4 * nElements );
var normalIndexBuffer = new Uint32Array( data, offsetNormals, 4 * nElements );
var materialIndexBuffer = new Uint16Array( data, offsetMaterials, nElements );
for( i = 0; i < nElements; i ++ ) {
a = vertexIndexBuffer[ i * 4 ];
b = vertexIndexBuffer[ i * 4 + 1 ];
c = vertexIndexBuffer[ i * 4 + 2 ];
d = vertexIndexBuffer[ i * 4 + 3 ];
na = normalIndexBuffer[ i * 4 ];
nb = normalIndexBuffer[ i * 4 + 1 ];
nc = normalIndexBuffer[ i * 4 + 2 ];
nd = normalIndexBuffer[ i * 4 + 3 ];
m = materialIndexBuffer[ i ];
f4n( scope, normals, a, b, c, d, m, na, nb, nc, nd );
}
};
function init_triangles_flat( start ) {
var nElements = md.ntri_flat;
if ( nElements ) {
var offsetMaterials = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 3;
init_faces3_flat( nElements, start, offsetMaterials );
}
};
function init_triangles_flat_uv( start ) {
var nElements = md.ntri_flat_uv;
if ( nElements ) {
var offsetUvs = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 3;
var offsetMaterials = offsetUvs + nElements * Uint32Array.BYTES_PER_ELEMENT * 3;
init_faces3_flat( nElements, start, offsetMaterials );
init_uvs3( nElements, offsetUvs );
}
};
function init_triangles_smooth( start ) {
var nElements = md.ntri_smooth;
if ( nElements ) {
var offsetNormals = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 3;
var offsetMaterials = offsetNormals + nElements * Uint32Array.BYTES_PER_ELEMENT * 3;
init_faces3_smooth( nElements, start, offsetNormals, offsetMaterials );
}
};
function init_triangles_smooth_uv( start ) {
var nElements = md.ntri_smooth_uv;
if ( nElements ) {
var offsetNormals = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 3;
var offsetUvs = offsetNormals + nElements * Uint32Array.BYTES_PER_ELEMENT * 3;
var offsetMaterials = offsetUvs + nElements * Uint32Array.BYTES_PER_ELEMENT * 3;
init_faces3_smooth( nElements, start, offsetNormals, offsetMaterials );
init_uvs3( nElements, offsetUvs );
}
};
function init_quads_flat( start ) {
var nElements = md.nquad_flat;
if ( nElements ) {
var offsetMaterials = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 4;
init_faces4_flat( nElements, start, offsetMaterials );
}
};
function init_quads_flat_uv( start ) {
var nElements = md.nquad_flat_uv;
if ( nElements ) {
var offsetUvs = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 4;
var offsetMaterials = offsetUvs + nElements * Uint32Array.BYTES_PER_ELEMENT * 4;
init_faces4_flat( nElements, start, offsetMaterials );
init_uvs4( nElements, offsetUvs );
}
};
function init_quads_smooth( start ) {
var nElements = md.nquad_smooth;
if ( nElements ) {
var offsetNormals = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 4;
var offsetMaterials = offsetNormals + nElements * Uint32Array.BYTES_PER_ELEMENT * 4;
init_faces4_smooth( nElements, start, offsetNormals, offsetMaterials );
}
};
function init_quads_smooth_uv( start ) {
var nElements = md.nquad_smooth_uv;
if ( nElements ) {
var offsetNormals = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 4;
var offsetUvs = offsetNormals + nElements * Uint32Array.BYTES_PER_ELEMENT * 4;
var offsetMaterials = offsetUvs + nElements * Uint32Array.BYTES_PER_ELEMENT * 4;
init_faces4_smooth( nElements, start, offsetNormals, offsetMaterials );
init_uvs4( nElements, offsetUvs );
}
};
};
function vertex ( scope, x, y, z ) {
scope.vertices.push( new THREE.Vector3( x, y, z ) );
};
function f3 ( scope, a, b, c, mi ) {
scope.faces.push( new THREE.Face3( a, b, c, null, null, mi ) );
};
function f4 ( scope, a, b, c, d, mi ) {
scope.faces.push( new THREE.Face4( a, b, c, d, null, null, mi ) );
};
function f3n ( scope, normals, a, b, c, mi, na, nb, nc ) {
var nax = normals[ na*3 ],
nay = normals[ na*3 + 1 ],
naz = normals[ na*3 + 2 ],
nbx = normals[ nb*3 ],
nby = normals[ nb*3 + 1 ],
nbz = normals[ nb*3 + 2 ],
ncx = normals[ nc*3 ],
ncy = normals[ nc*3 + 1 ],
ncz = normals[ nc*3 + 2 ];
scope.faces.push( new THREE.Face3( a, b, c,
[new THREE.Vector3( nax, nay, naz ),
new THREE.Vector3( nbx, nby, nbz ),
new THREE.Vector3( ncx, ncy, ncz )],
null,
mi ) );
};
function f4n ( scope, normals, a, b, c, d, mi, na, nb, nc, nd ) {
var nax = normals[ na*3 ],
nay = normals[ na*3 + 1 ],
naz = normals[ na*3 + 2 ],
nbx = normals[ nb*3 ],
nby = normals[ nb*3 + 1 ],
nbz = normals[ nb*3 + 2 ],
ncx = normals[ nc*3 ],
ncy = normals[ nc*3 + 1 ],
ncz = normals[ nc*3 + 2 ],
ndx = normals[ nd*3 ],
ndy = normals[ nd*3 + 1 ],
ndz = normals[ nd*3 + 2 ];
scope.faces.push( new THREE.Face4( a, b, c, d,
[new THREE.Vector3( nax, nay, naz ),
new THREE.Vector3( nbx, nby, nbz ),
new THREE.Vector3( ncx, ncy, ncz ),
new THREE.Vector3( ndx, ndy, ndz )],
null,
mi ) );
};
function uv3 ( where, u1, v1, u2, v2, u3, v3 ) {
var uv = [];
uv.push( new THREE.UV( u1, v1 ) );
uv.push( new THREE.UV( u2, v2 ) );
uv.push( new THREE.UV( u3, v3 ) );
where.push( uv );
};
function uv4 ( where, u1, v1, u2, v2, u3, v3, u4, v4 ) {
var uv = [];
uv.push( new THREE.UV( u1, v1 ) );
uv.push( new THREE.UV( u2, v2 ) );
uv.push( new THREE.UV( u3, v3 ) );
uv.push( new THREE.UV( u4, v4 ) );
where.push( uv );
};
Model.prototype = new THREE.Geometry();
Model.prototype.constructor = Model;
callback( new Model( texturePath ) );
};
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.JSONLoader = function ( showStatus ) {
THREE.Loader.call( this, showStatus );
};
THREE.JSONLoader.prototype = new THREE.Loader();
THREE.JSONLoader.prototype.constructor = THREE.JSONLoader;
THREE.JSONLoader.prototype.load = function ( url, callback, texturePath ) {
var worker, scope = this;
texturePath = texturePath ? texturePath : this.extractUrlBase( url );
this.onLoadStart();
this.loadAjaxJSON( this, url, callback, texturePath );
};
THREE.JSONLoader.prototype.loadAjaxJSON = function ( context, url, callback, texturePath, callbackProgress ) {
var xhr = new XMLHttpRequest();
var length = 0;
xhr.onreadystatechange = function () {
if ( xhr.readyState === xhr.DONE ) {
if ( xhr.status === 200 || xhr.status === 0 ) {
if ( xhr.responseText ) {
var json = JSON.parse( xhr.responseText );
context.createModel( json, callback, texturePath );
} else {
console.warn( "THREE.JSONLoader: [" + url + "] seems to be unreachable or file there is empty" );
}
// in context of more complex asset initialization
// do not block on single failed file
// maybe should go even one more level up
context.onLoadComplete();
} else {
console.error( "THREE.JSONLoader: Couldn't load [" + url + "] [" + xhr.status + "]" );
}
} else if ( xhr.readyState === xhr.LOADING ) {
if ( callbackProgress ) {
if ( length === 0 ) {
length = xhr.getResponseHeader( "Content-Length" );
}
callbackProgress( { total: length, loaded: xhr.responseText.length } );
}
} else if ( xhr.readyState === xhr.HEADERS_RECEIVED ) {
length = xhr.getResponseHeader( "Content-Length" );
}
};
xhr.open( "GET", url, true );
if ( xhr.overrideMimeType ) xhr.overrideMimeType( "text/plain; charset=x-user-defined" );
xhr.setRequestHeader( "Content-Type", "text/plain" );
xhr.send( null );
};
THREE.JSONLoader.prototype.createModel = function ( json, callback, texturePath ) {
var scope = this,
geometry = new THREE.Geometry(),
scale = ( json.scale !== undefined ) ? 1.0 / json.scale : 1.0;
this.initMaterials( geometry, json.materials, texturePath );
parseModel( scale );
parseSkin();
parseMorphing( scale );
geometry.computeCentroids();
geometry.computeFaceNormals();
if ( this.hasNormals( geometry ) ) geometry.computeTangents();
function parseModel( scale ) {
function isBitSet( value, position ) {
return value & ( 1 << position );
}
var i, j, fi,
offset, zLength, nVertices,
colorIndex, normalIndex, uvIndex, materialIndex,
type,
isQuad,
hasMaterial,
hasFaceUv, hasFaceVertexUv,
hasFaceNormal, hasFaceVertexNormal,
hasFaceColor, hasFaceVertexColor,
vertex, face, color, normal,
uvLayer, uvs, u, v,
faces = json.faces,
vertices = json.vertices,
normals = json.normals,
colors = json.colors,
nUvLayers = 0;
// disregard empty arrays
for ( i = 0; i < json.uvs.length; i++ ) {
if ( json.uvs[ i ].length ) nUvLayers ++;
}
for ( i = 0; i < nUvLayers; i++ ) {
geometry.faceUvs[ i ] = [];
geometry.faceVertexUvs[ i ] = [];
}
offset = 0;
zLength = vertices.length;
while ( offset < zLength ) {
vertex = new THREE.Vector3();
vertex.x = vertices[ offset ++ ] * scale;
vertex.y = vertices[ offset ++ ] * scale;
vertex.z = vertices[ offset ++ ] * scale;
geometry.vertices.push( vertex );
}
offset = 0;
zLength = faces.length;
while ( offset < zLength ) {
type = faces[ offset ++ ];
isQuad = isBitSet( type, 0 );
hasMaterial = isBitSet( type, 1 );
hasFaceUv = isBitSet( type, 2 );
hasFaceVertexUv = isBitSet( type, 3 );
hasFaceNormal = isBitSet( type, 4 );
hasFaceVertexNormal = isBitSet( type, 5 );
hasFaceColor = isBitSet( type, 6 );
hasFaceVertexColor = isBitSet( type, 7 );
//console.log("type", type, "bits", isQuad, hasMaterial, hasFaceUv, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor);
if ( isQuad ) {
face = new THREE.Face4();
face.a = faces[ offset ++ ];
face.b = faces[ offset ++ ];
face.c = faces[ offset ++ ];
face.d = faces[ offset ++ ];
nVertices = 4;
} else {
face = new THREE.Face3();
face.a = faces[ offset ++ ];
face.b = faces[ offset ++ ];
face.c = faces[ offset ++ ];
nVertices = 3;
}
if ( hasMaterial ) {
materialIndex = faces[ offset ++ ];
face.materialIndex = materialIndex;
}
// to get face <=> uv index correspondence
fi = geometry.faces.length;
if ( hasFaceUv ) {
for ( i = 0; i < nUvLayers; i++ ) {
uvLayer = json.uvs[ i ];
uvIndex = faces[ offset ++ ];
u = uvLayer[ uvIndex * 2 ];
v = uvLayer[ uvIndex * 2 + 1 ];
geometry.faceUvs[ i ][ fi ] = new THREE.UV( u, v );
}
}
if ( hasFaceVertexUv ) {
for ( i = 0; i < nUvLayers; i++ ) {
uvLayer = json.uvs[ i ];
uvs = [];
for ( j = 0; j < nVertices; j ++ ) {
uvIndex = faces[ offset ++ ];
u = uvLayer[ uvIndex * 2 ];
v = uvLayer[ uvIndex * 2 + 1 ];
uvs[ j ] = new THREE.UV( u, v );
}
geometry.faceVertexUvs[ i ][ fi ] = uvs;
}
}
if ( hasFaceNormal ) {
normalIndex = faces[ offset ++ ] * 3;
normal = new THREE.Vector3();
normal.x = normals[ normalIndex ++ ];
normal.y = normals[ normalIndex ++ ];
normal.z = normals[ normalIndex ];
face.normal = normal;
}
if ( hasFaceVertexNormal ) {
for ( i = 0; i < nVertices; i++ ) {
normalIndex = faces[ offset ++ ] * 3;
normal = new THREE.Vector3();
normal.x = normals[ normalIndex ++ ];
normal.y = normals[ normalIndex ++ ];
normal.z = normals[ normalIndex ];
face.vertexNormals.push( normal );
}
}
if ( hasFaceColor ) {
colorIndex = faces[ offset ++ ];
color = new THREE.Color( colors[ colorIndex ] );
face.color = color;
}
if ( hasFaceVertexColor ) {
for ( i = 0; i < nVertices; i++ ) {
colorIndex = faces[ offset ++ ];
color = new THREE.Color( colors[ colorIndex ] );
face.vertexColors.push( color );
}
}
geometry.faces.push( face );
}
};
function parseSkin() {
var i, l, x, y, z, w, a, b, c, d;
if ( json.skinWeights ) {
for ( i = 0, l = json.skinWeights.length; i < l; i += 2 ) {
x = json.skinWeights[ i ];
y = json.skinWeights[ i + 1 ];
z = 0;
w = 0;
geometry.skinWeights.push( new THREE.Vector4( x, y, z, w ) );
}
}
if ( json.skinIndices ) {
for ( i = 0, l = json.skinIndices.length; i < l; i += 2 ) {
a = json.skinIndices[ i ];
b = json.skinIndices[ i + 1 ];
c = 0;
d = 0;
geometry.skinIndices.push( new THREE.Vector4( a, b, c, d ) );
}
}
geometry.bones = json.bones;
geometry.animation = json.animation;
};
function parseMorphing( scale ) {
if ( json.morphTargets !== undefined ) {
var i, l, v, vl, dstVertices, srcVertices;
for ( i = 0, l = json.morphTargets.length; i < l; i ++ ) {
geometry.morphTargets[ i ] = {};
geometry.morphTargets[ i ].name = json.morphTargets[ i ].name;
geometry.morphTargets[ i ].vertices = [];
dstVertices = geometry.morphTargets[ i ].vertices;
srcVertices = json.morphTargets [ i ].vertices;
for( v = 0, vl = srcVertices.length; v < vl; v += 3 ) {
var vertex = new THREE.Vector3();
vertex.x = srcVertices[ v ] * scale;
vertex.y = srcVertices[ v + 1 ] * scale;
vertex.z = srcVertices[ v + 2 ] * scale;
dstVertices.push( vertex );
}
}
}
if ( json.morphColors !== undefined ) {
var i, l, c, cl, dstColors, srcColors, color;
for ( i = 0, l = json.morphColors.length; i < l; i++ ) {
geometry.morphColors[ i ] = {};
geometry.morphColors[ i ].name = json.morphColors[ i ].name;
geometry.morphColors[ i ].colors = [];
dstColors = geometry.morphColors[ i ].colors;
srcColors = json.morphColors [ i ].colors;
for ( c = 0, cl = srcColors.length; c < cl; c += 3 ) {
color = new THREE.Color( 0xffaa00 );
color.setRGB( srcColors[ c ], srcColors[ c + 1 ], srcColors[ c + 2 ] );
dstColors.push( color );
}
}
}
};
callback( geometry );
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.SceneLoader = function () {
this.onLoadStart = function () {};
this.onLoadProgress = function() {};
this.onLoadComplete = function () {};
this.callbackSync = function () {};
this.callbackProgress = function () {};
};
THREE.SceneLoader.prototype.constructor = THREE.SceneLoader;
THREE.SceneLoader.prototype.load = function( url, callbackFinished ) {
var context = this;
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function () {
if ( xhr.readyState == 4 ) {
if ( xhr.status == 200 || xhr.status == 0 ) {
var json = JSON.parse( xhr.responseText );
context.createScene( json, callbackFinished, url );
} else {
console.error( "THREE.SceneLoader: Couldn't load [" + url + "] [" + xhr.status + "]" );
}
}
};
xhr.open( "GET", url, true );
if ( xhr.overrideMimeType ) xhr.overrideMimeType( "text/plain; charset=x-user-defined" );
xhr.setRequestHeader( "Content-Type", "text/plain" );
xhr.send( null );
};
THREE.SceneLoader.prototype.createScene = function ( json, callbackFinished, url ) {
var scope = this;
var urlBase = THREE.Loader.prototype.extractUrlBase( url );
var dg, dm, dd, dl, dc, df, dt,
g, o, m, l, d, p, r, q, s, c, t, f, tt, pp, u,
geometry, material, camera, fog,
texture, images,
light,
data, binLoader, jsonLoader,
counter_models, counter_textures,
total_models, total_textures,
result;
data = json;
binLoader = new THREE.BinaryLoader();
jsonLoader = new THREE.JSONLoader();
counter_models = 0;
counter_textures = 0;
result = {
scene: new THREE.Scene(),
geometries: {},
materials: {},
textures: {},
objects: {},
cameras: {},
lights: {},
fogs: {},
empties: {}
};
if ( data.transform ) {
var position = data.transform.position,
rotation = data.transform.rotation,
scale = data.transform.scale;
if ( position )
result.scene.position.set( position[ 0 ], position[ 1 ], position [ 2 ] );
if ( rotation )
result.scene.rotation.set( rotation[ 0 ], rotation[ 1 ], rotation [ 2 ] );
if ( scale )
result.scene.scale.set( scale[ 0 ], scale[ 1 ], scale [ 2 ] );
if ( position || rotation || scale ) {
result.scene.updateMatrix();
result.scene.updateMatrixWorld();
}
}
function get_url( source_url, url_type ) {
if ( url_type == "relativeToHTML" ) {
return source_url;
} else {
return urlBase + "/" + source_url;
}
};
function handle_objects() {
var object;
for( dd in data.objects ) {
if ( !result.objects[ dd ] ) {
o = data.objects[ dd ];
if ( o.geometry !== undefined ) {
geometry = result.geometries[ o.geometry ];
// geometry already loaded
if ( geometry ) {
var hasNormals = false;
// not anymore support for multiple materials
// shouldn't really be array
material = result.materials[ o.materials[ 0 ] ];
hasNormals = material instanceof THREE.ShaderMaterial;
if ( hasNormals ) {
geometry.computeTangents();
}
p = o.position;
r = o.rotation;
q = o.quaternion;
s = o.scale;
m = o.matrix;
// turn off quaternions, for the moment
q = 0;
if ( o.materials.length == 0 ) {
material = new THREE.MeshFaceMaterial();
}
// dirty hack to handle meshes with multiple materials
// just use face materials defined in model
if ( o.materials.length > 1 ) {
material = new THREE.MeshFaceMaterial();
}
object = new THREE.Mesh( geometry, material );
object.name = dd;
if ( m ) {
object.matrixAutoUpdate = false;
object.matrix.set( m[0], m[1], m[2], m[3],
m[4], m[5], m[6], m[7],
m[8], m[9], m[10], m[11],
m[12], m[13], m[14], m[15]);
} else {
object.position.set( p[0], p[1], p[2] );
if ( q ) {
object.quaternion.set( q[0], q[1], q[2], q[3] );
object.useQuaternion = true;
} else {
object.rotation.set( r[0], r[1], r[2] );
}
object.scale.set( s[0], s[1], s[2] );
}
object.visible = o.visible;
object.doubleSided = o.doubleSided;
object.castShadow = o.castShadow;
object.receiveShadow = o.receiveShadow;
result.scene.add( object );
result.objects[ dd ] = object;
}
// pure Object3D
} else {
p = o.position;
r = o.rotation;
q = o.quaternion;
s = o.scale;
// turn off quaternions, for the moment
q = 0;
object = new THREE.Object3D();
object.name = dd;
object.position.set( p[0], p[1], p[2] );
if ( q ) {
object.quaternion.set( q[0], q[1], q[2], q[3] );
object.useQuaternion = true;
} else {
object.rotation.set( r[0], r[1], r[2] );
}
object.scale.set( s[0], s[1], s[2] );
object.visible = ( o.visible !== undefined ) ? o.visible : false;
result.scene.add( object );
result.objects[ dd ] = object;
result.empties[ dd ] = object;
}
}
}
};
function handle_mesh( geo, id ) {
result.geometries[ id ] = geo;
handle_objects();
};
function create_callback( id ) {
return function( geo ) {
handle_mesh( geo, id );
counter_models -= 1;
scope.onLoadComplete();
async_callback_gate();
}
};
function create_callback_embed( id ) {
return function( geo ) {
result.geometries[ id ] = geo;
}
};
function async_callback_gate() {
var progress = {
totalModels : total_models,
totalTextures : total_textures,
loadedModels : total_models - counter_models,
loadedTextures : total_textures - counter_textures
};
scope.callbackProgress( progress, result );
scope.onLoadProgress();
if( counter_models == 0 && counter_textures == 0 ) {
callbackFinished( result );
}
};
var callbackTexture = function( images ) {
counter_textures -= 1;
async_callback_gate();
scope.onLoadComplete();
};
// first go synchronous elements
// cameras
for( dc in data.cameras ) {
c = data.cameras[ dc ];
if ( c.type == "perspective" ) {
camera = new THREE.PerspectiveCamera( c.fov, c.aspect, c.near, c.far );
} else if ( c.type == "ortho" ) {
camera = new THREE.OrthographicCamera( c.left, c.right, c.top, c.bottom, c.near, c.far );
}
p = c.position;
t = c.target;
u = c.up;
camera.position.set( p[0], p[1], p[2] );
camera.target = new THREE.Vector3( t[0], t[1], t[2] );
if ( u ) camera.up.set( u[0], u[1], u[2] );
result.cameras[ dc ] = camera;
}
// lights
var hex, intensity;
for ( dl in data.lights ) {
l = data.lights[ dl ];
hex = ( l.color !== undefined ) ? l.color : 0xffffff;
intensity = ( l.intensity !== undefined ) ? l.intensity : 1;
if ( l.type == "directional" ) {
p = l.direction;
light = new THREE.DirectionalLight( hex, intensity );
light.position.set( p[0], p[1], p[2] );
light.position.normalize();
} else if ( l.type == "point" ) {
p = l.position;
d = l.distance;
light = new THREE.PointLight( hex, intensity, d );
light.position.set( p[0], p[1], p[2] );
} else if ( l.type == "ambient" ) {
light = new THREE.AmbientLight( hex );
}
result.scene.add( light );
result.lights[ dl ] = light;
}
// fogs
for( df in data.fogs ) {
f = data.fogs[ df ];
if ( f.type == "linear" ) {
fog = new THREE.Fog( 0x000000, f.near, f.far );
} else if ( f.type == "exp2" ) {
fog = new THREE.FogExp2( 0x000000, f.density );
}
c = f.color;
fog.color.setRGB( c[0], c[1], c[2] );
result.fogs[ df ] = fog;
}
// defaults
if ( result.cameras && data.defaults.camera ) {
result.currentCamera = result.cameras[ data.defaults.camera ];
}
if ( result.fogs && data.defaults.fog ) {
result.scene.fog = result.fogs[ data.defaults.fog ];
}
c = data.defaults.bgcolor;
result.bgColor = new THREE.Color();
result.bgColor.setRGB( c[0], c[1], c[2] );
result.bgColorAlpha = data.defaults.bgalpha;
// now come potentially asynchronous elements
// geometries
// count how many models will be loaded asynchronously
for( dg in data.geometries ) {
g = data.geometries[ dg ];
if ( g.type == "bin_mesh" || g.type == "ascii_mesh" ) {
counter_models += 1;
scope.onLoadStart();
}
}
total_models = counter_models;
for ( dg in data.geometries ) {
g = data.geometries[ dg ];
if ( g.type == "cube" ) {
geometry = new THREE.CubeGeometry( g.width, g.height, g.depth, g.segmentsWidth, g.segmentsHeight, g.segmentsDepth, null, g.flipped, g.sides );
result.geometries[ dg ] = geometry;
} else if ( g.type == "plane" ) {
geometry = new THREE.PlaneGeometry( g.width, g.height, g.segmentsWidth, g.segmentsHeight );
result.geometries[ dg ] = geometry;
} else if ( g.type == "sphere" ) {
geometry = new THREE.SphereGeometry( g.radius, g.segmentsWidth, g.segmentsHeight );
result.geometries[ dg ] = geometry;
} else if ( g.type == "cylinder" ) {
geometry = new THREE.CylinderGeometry( g.topRad, g.botRad, g.height, g.radSegs, g.heightSegs );
result.geometries[ dg ] = geometry;
} else if ( g.type == "torus" ) {
geometry = new THREE.TorusGeometry( g.radius, g.tube, g.segmentsR, g.segmentsT );
result.geometries[ dg ] = geometry;
} else if ( g.type == "icosahedron" ) {
geometry = new THREE.IcosahedronGeometry( g.radius, g.subdivisions );
result.geometries[ dg ] = geometry;
} else if ( g.type == "bin_mesh" ) {
binLoader.load( get_url( g.url, data.urlBaseType ), create_callback( dg ) );
} else if ( g.type == "ascii_mesh" ) {
jsonLoader.load( get_url( g.url, data.urlBaseType ), create_callback( dg ) );
} else if ( g.type == "embedded_mesh" ) {
var modelJson = data.embeds[ g.id ],
texture_path = "";
// Pass metadata along to jsonLoader so it knows the format version.
modelJson.metadata = data.metadata;
if ( modelJson ) {
jsonLoader.createModel( modelJson, create_callback_embed( dg ), texture_path );
}
}
}
// textures
// count how many textures will be loaded asynchronously
for( dt in data.textures ) {
tt = data.textures[ dt ];
if( tt.url instanceof Array ) {
counter_textures += tt.url.length;
for( var n = 0; n < tt.url.length; n ++ ) {
scope.onLoadStart();
}
} else {
counter_textures += 1;
scope.onLoadStart();
}
}
total_textures = counter_textures;
for( dt in data.textures ) {
tt = data.textures[ dt ];
if ( tt.mapping != undefined && THREE[ tt.mapping ] != undefined ) {
tt.mapping = new THREE[ tt.mapping ]();
}
if( tt.url instanceof Array ) {
var url_array = [];
for( var i = 0; i < tt.url.length; i ++ ) {
url_array[ i ] = get_url( tt.url[ i ], data.urlBaseType );
}
texture = THREE.ImageUtils.loadTextureCube( url_array, tt.mapping, callbackTexture );
} else {
texture = THREE.ImageUtils.loadTexture( get_url( tt.url, data.urlBaseType ), tt.mapping, callbackTexture );
if ( THREE[ tt.minFilter ] != undefined )
texture.minFilter = THREE[ tt.minFilter ];
if ( THREE[ tt.magFilter ] != undefined )
texture.magFilter = THREE[ tt.magFilter ];
if ( tt.repeat ) {
texture.repeat.set( tt.repeat[ 0 ], tt.repeat[ 1 ] );
if ( tt.repeat[ 0 ] != 1 ) texture.wrapS = THREE.RepeatWrapping;
if ( tt.repeat[ 1 ] != 1 ) texture.wrapT = THREE.RepeatWrapping;
}
if ( tt.offset ) {
texture.offset.set( tt.offset[ 0 ], tt.offset[ 1 ] );
}
// handle wrap after repeat so that default repeat can be overriden
if ( tt.wrap ) {
var wrapMap = {
"repeat" : THREE.RepeatWrapping,
"mirror" : THREE.MirroredRepeatWrapping
}
if ( wrapMap[ tt.wrap[ 0 ] ] !== undefined ) texture.wrapS = wrapMap[ tt.wrap[ 0 ] ];
if ( wrapMap[ tt.wrap[ 1 ] ] !== undefined ) texture.wrapT = wrapMap[ tt.wrap[ 1 ] ];
}
}
result.textures[ dt ] = texture;
}
// materials
for ( dm in data.materials ) {
m = data.materials[ dm ];
for ( pp in m.parameters ) {
if ( pp == "envMap" || pp == "map" || pp == "lightMap" ) {
m.parameters[ pp ] = result.textures[ m.parameters[ pp ] ];
} else if ( pp == "shading" ) {
m.parameters[ pp ] = ( m.parameters[ pp ] == "flat" ) ? THREE.FlatShading : THREE.SmoothShading;
} else if ( pp == "blending" ) {
m.parameters[ pp ] = THREE[ m.parameters[ pp ] ] ? THREE[ m.parameters[ pp ] ] : THREE.NormalBlending;
} else if ( pp == "combine" ) {
m.parameters[ pp ] = ( m.parameters[ pp ] == "MixOperation" ) ? THREE.MixOperation : THREE.MultiplyOperation;
} else if ( pp == "vertexColors" ) {
if ( m.parameters[ pp ] == "face" ) {
m.parameters[ pp ] = THREE.FaceColors;
// default to vertex colors if "vertexColors" is anything else face colors or 0 / null / false
} else if ( m.parameters[ pp ] ) {
m.parameters[ pp ] = THREE.VertexColors;
}
}
}
if ( m.parameters.opacity !== undefined && m.parameters.opacity < 1.0 ) {
m.parameters.transparent = true;
}
if ( m.parameters.normalMap ) {
var shader = THREE.ShaderUtils.lib[ "normal" ];
var uniforms = THREE.UniformsUtils.clone( shader.uniforms );
var diffuse = m.parameters.color;
var specular = m.parameters.specular;
var ambient = m.parameters.ambient;
var shininess = m.parameters.shininess;
uniforms[ "tNormal" ].texture = result.textures[ m.parameters.normalMap ];
if ( m.parameters.normalMapFactor ) {
uniforms[ "uNormalScale" ].value = m.parameters.normalMapFactor;
}
if ( m.parameters.map ) {
uniforms[ "tDiffuse" ].texture = m.parameters.map;
uniforms[ "enableDiffuse" ].value = true;
}
if ( m.parameters.lightMap ) {
uniforms[ "tAO" ].texture = m.parameters.lightMap;
uniforms[ "enableAO" ].value = true;
}
if ( m.parameters.specularMap ) {
uniforms[ "tSpecular" ].texture = result.textures[ m.parameters.specularMap ];
uniforms[ "enableSpecular" ].value = true;
}
uniforms[ "uDiffuseColor" ].value.setHex( diffuse );
uniforms[ "uSpecularColor" ].value.setHex( specular );
uniforms[ "uAmbientColor" ].value.setHex( ambient );
uniforms[ "uShininess" ].value = shininess;
if ( m.parameters.opacity ) {
uniforms[ "uOpacity" ].value = m.parameters.opacity;
}
var parameters = { fragmentShader: shader.fragmentShader, vertexShader: shader.vertexShader, uniforms: uniforms, lights: true, fog: true };
material = new THREE.ShaderMaterial( parameters );
} else {
material = new THREE[ m.type ]( m.parameters );
}
result.materials[ dm ] = material;
}
// objects ( synchronous init of procedural primitives )
handle_objects();
// synchronous callback
scope.callbackSync( result );
// just in case there are no async elements:
async_callback_gate();
};
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Material = function ( parameters ) {
parameters = parameters || {};
this.id = THREE.MaterialCount ++;
this.name = '';
this.opacity = parameters.opacity !== undefined ? parameters.opacity : 1;
this.transparent = parameters.transparent !== undefined ? parameters.transparent : false;
this.blending = parameters.blending !== undefined ? parameters.blending : THREE.NormalBlending;
this.blendSrc = parameters.blendSrc !== undefined ? parameters.blendSrc : THREE.SrcAlphaFactor;
this.blendDst = parameters.blendDst !== undefined ? parameters.blendDst : THREE.OneMinusSrcAlphaFactor;
this.blendEquation = parameters.blendEquation !== undefined ? parameters.blendEquation : THREE.AddEquation;
this.depthTest = parameters.depthTest !== undefined ? parameters.depthTest : true;
this.depthWrite = parameters.depthWrite !== undefined ? parameters.depthWrite : true;
this.polygonOffset = parameters.polygonOffset !== undefined ? parameters.polygonOffset : false;
this.polygonOffsetFactor = parameters.polygonOffsetFactor !== undefined ? parameters.polygonOffsetFactor : 0;
this.polygonOffsetUnits = parameters.polygonOffsetUnits !== undefined ? parameters.polygonOffsetUnits : 0;
this.alphaTest = parameters.alphaTest !== undefined ? parameters.alphaTest : 0;
this.overdraw = parameters.overdraw !== undefined ? parameters.overdraw : false; // Boolean for fixing antialiasing gaps in CanvasRenderer
this.visible = true;
this.needsUpdate = true;
}
THREE.MaterialCount = 0;
// shading
THREE.NoShading = 0;
THREE.FlatShading = 1;
THREE.SmoothShading = 2;
// colors
THREE.NoColors = 0;
THREE.FaceColors = 1;
THREE.VertexColors = 2;
// blending modes
THREE.NoBlending = 0;
THREE.NormalBlending = 1;
THREE.AdditiveBlending = 2;
THREE.SubtractiveBlending = 3;
THREE.MultiplyBlending = 4;
THREE.AdditiveAlphaBlending = 5;
THREE.CustomBlending = 6;
// custom blending equations
// (numbers start from 100 not to clash with other
// mappings to OpenGL constants defined in Texture.js)
THREE.AddEquation = 100;
THREE.SubtractEquation = 101;
THREE.ReverseSubtractEquation = 102;
// custom blending destination factors
THREE.ZeroFactor = 200;
THREE.OneFactor = 201;
THREE.SrcColorFactor = 202;
THREE.OneMinusSrcColorFactor = 203;
THREE.SrcAlphaFactor = 204;
THREE.OneMinusSrcAlphaFactor = 205;
THREE.DstAlphaFactor = 206;
THREE.OneMinusDstAlphaFactor = 207;
// custom blending source factors
//THREE.ZeroFactor = 200;
//THREE.OneFactor = 201;
//THREE.SrcAlphaFactor = 204;
//THREE.OneMinusSrcAlphaFactor = 205;
//THREE.DstAlphaFactor = 206;
//THREE.OneMinusDstAlphaFactor = 207;
THREE.DstColorFactor = 208;
THREE.OneMinusDstColorFactor = 209;
THREE.SrcAlphaSaturateFactor = 210;
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* blending: THREE.NormalBlending,
* depthTest: <bool>,
*
* linewidth: <float>,
* linecap: "round",
* linejoin: "round",
*
* vertexColors: <bool>
*
* fog: <bool>
* }
*/
THREE.LineBasicMaterial = function ( parameters ) {
THREE.Material.call( this, parameters );
parameters = parameters || {};
this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff );
this.linewidth = parameters.linewidth !== undefined ? parameters.linewidth : 1;
this.linecap = parameters.linecap !== undefined ? parameters.linecap : 'round';
this.linejoin = parameters.linejoin !== undefined ? parameters.linejoin : 'round';
this.vertexColors = parameters.vertexColors ? parameters.vertexColors : false;
this.fog = parameters.fog !== undefined ? parameters.fog : true;
};
THREE.LineBasicMaterial.prototype = new THREE.Material();
THREE.LineBasicMaterial.prototype.constructor = THREE.LineBasicMaterial;
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* shading: THREE.SmoothShading,
* blending: THREE.NormalBlending,
* depthTest: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
*
* fog: <bool>
* }
*/
THREE.MeshBasicMaterial = function ( parameters ) {
THREE.Material.call( this, parameters );
parameters = parameters || {};
// color property represents emissive for MeshBasicMaterial
this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff );
this.map = parameters.map !== undefined ? parameters.map : null;
this.lightMap = parameters.lightMap !== undefined ? parameters.lightMap : null;
this.envMap = parameters.envMap !== undefined ? parameters.envMap : null;
this.combine = parameters.combine !== undefined ? parameters.combine : THREE.MultiplyOperation;
this.reflectivity = parameters.reflectivity !== undefined ? parameters.reflectivity : 1;
this.refractionRatio = parameters.refractionRatio !== undefined ? parameters.refractionRatio : 0.98;
this.fog = parameters.fog !== undefined ? parameters.fog : true;
this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading;
this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false;
this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1;
this.wireframeLinecap = parameters.wireframeLinecap !== undefined ? parameters.wireframeLinecap : 'round';
this.wireframeLinejoin = parameters.wireframeLinejoin !== undefined ? parameters.wireframeLinejoin : 'round';
this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : THREE.NoColors;
this.skinning = parameters.skinning !== undefined ? parameters.skinning : false;
this.morphTargets = parameters.morphTargets !== undefined ? parameters.morphTargets : false;
};
THREE.MeshBasicMaterial.prototype = new THREE.Material();
THREE.MeshBasicMaterial.prototype.constructor = THREE.MeshBasicMaterial;
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* ambient: <hex>,
* emissive: <hex>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* shading: THREE.SmoothShading,
* blending: THREE.NormalBlending,
* depthTest: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>,
*
* fog: <bool>
* }
*/
THREE.MeshLambertMaterial = function ( parameters ) {
THREE.Material.call( this, parameters );
parameters = parameters || {};
// color property represents diffuse for MeshLambertMaterial
this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff );
this.ambient = parameters.ambient !== undefined ? new THREE.Color( parameters.ambient ) : new THREE.Color( 0xffffff );
this.emissive = parameters.emissive !== undefined ? new THREE.Color( parameters.emissive ) : new THREE.Color( 0x000000 );
this.wrapAround = parameters.wrapAround !== undefined ? parameters.wrapAround: false;
this.wrapRGB = new THREE.Vector3( 1, 1, 1 );
this.map = parameters.map !== undefined ? parameters.map : null;
this.lightMap = parameters.lightMap !== undefined ? parameters.lightMap : null;
this.envMap = parameters.envMap !== undefined ? parameters.envMap : null;
this.combine = parameters.combine !== undefined ? parameters.combine : THREE.MultiplyOperation;
this.reflectivity = parameters.reflectivity !== undefined ? parameters.reflectivity : 1;
this.refractionRatio = parameters.refractionRatio !== undefined ? parameters.refractionRatio : 0.98;
this.fog = parameters.fog !== undefined ? parameters.fog : true;
this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading;
this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false;
this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1;
this.wireframeLinecap = parameters.wireframeLinecap !== undefined ? parameters.wireframeLinecap : 'round';
this.wireframeLinejoin = parameters.wireframeLinejoin !== undefined ? parameters.wireframeLinejoin : 'round';
this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : THREE.NoColors;
this.skinning = parameters.skinning !== undefined ? parameters.skinning : false;
this.morphTargets = parameters.morphTargets !== undefined ? parameters.morphTargets : false;
this.morphNormals = parameters.morphNormals !== undefined ? parameters.morphNormals : false;
};
THREE.MeshLambertMaterial.prototype = new THREE.Material();
THREE.MeshLambertMaterial.prototype.constructor = THREE.MeshLambertMaterial;
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* ambient: <hex>,
* emissive: <hex>,
* specular: <hex>,
* shininess: <float>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* shading: THREE.SmoothShading,
* blending: THREE.NormalBlending,
* depthTest: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>,
*
* fog: <bool>
* }
*/
THREE.MeshPhongMaterial = function ( parameters ) {
THREE.Material.call( this, parameters );
parameters = parameters || {};
// color property represents diffuse for MeshPhongMaterial
this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff );
this.ambient = parameters.ambient !== undefined ? new THREE.Color( parameters.ambient ) : new THREE.Color( 0xffffff );
this.emissive = parameters.emissive !== undefined ? new THREE.Color( parameters.emissive ) : new THREE.Color( 0x000000 );
this.specular = parameters.specular !== undefined ? new THREE.Color( parameters.specular ) : new THREE.Color( 0x111111 );
this.shininess = parameters.shininess !== undefined ? parameters.shininess : 30;
this.metal = parameters.metal !== undefined ? parameters.metal : false;
this.perPixel = parameters.perPixel !== undefined ? parameters.perPixel : false;
this.wrapAround = parameters.wrapAround !== undefined ? parameters.wrapAround: false;
this.wrapRGB = new THREE.Vector3( 1, 1, 1 );
this.map = parameters.map !== undefined ? parameters.map : null;
this.lightMap = parameters.lightMap !== undefined ? parameters.lightMap : null;
this.envMap = parameters.envMap !== undefined ? parameters.envMap : null;
this.combine = parameters.combine !== undefined ? parameters.combine : THREE.MultiplyOperation;
this.reflectivity = parameters.reflectivity !== undefined ? parameters.reflectivity : 1;
this.refractionRatio = parameters.refractionRatio !== undefined ? parameters.refractionRatio : 0.98;
this.fog = parameters.fog !== undefined ? parameters.fog : true;
this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading;
this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false;
this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1;
this.wireframeLinecap = parameters.wireframeLinecap !== undefined ? parameters.wireframeLinecap : 'round';
this.wireframeLinejoin = parameters.wireframeLinejoin !== undefined ? parameters.wireframeLinejoin : 'round';
this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : THREE.NoColors;
this.skinning = parameters.skinning !== undefined ? parameters.skinning : false;
this.morphTargets = parameters.morphTargets !== undefined ? parameters.morphTargets : false;
this.morphNormals = parameters.morphNormals !== undefined ? parameters.morphNormals : false;
};
THREE.MeshPhongMaterial.prototype = new THREE.Material();
THREE.MeshPhongMaterial.prototype.constructor = THREE.MeshPhongMaterial;
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* opacity: <float>,
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* wireframe: <boolean>,
* wireframeLinewidth: <float>
* }
*/
THREE.MeshDepthMaterial = function ( parameters ) {
THREE.Material.call( this, parameters );
parameters = parameters || {};
this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading; // doesn't really apply here, normals are not used
this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false;
this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1;
};
THREE.MeshDepthMaterial.prototype = new THREE.Material();
THREE.MeshDepthMaterial.prototype.constructor = THREE.MeshDepthMaterial;
/**
* @author mr.doob / http://mrdoob.com/
*
* parameters = {
* opacity: <float>,
* shading: THREE.FlatShading,
* blending: THREE.NormalBlending,
* depthTest: <bool>,
* wireframe: <boolean>,
* wireframeLinewidth: <float>
* }
*/
THREE.MeshNormalMaterial = function ( parameters ) {
THREE.Material.call( this, parameters );
parameters = parameters || {};
this.shading = parameters.shading ? parameters.shading : THREE.FlatShading;
this.wireframe = parameters.wireframe ? parameters.wireframe : false;
this.wireframeLinewidth = parameters.wireframeLinewidth ? parameters.wireframeLinewidth : 1;
};
THREE.MeshNormalMaterial.prototype = new THREE.Material();
THREE.MeshNormalMaterial.prototype.constructor = THREE.MeshNormalMaterial;
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.MeshFaceMaterial = function () {
};
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* size: <float>,
*
* blending: THREE.NormalBlending,
* depthTest: <bool>,
*
* vertexColors: <bool>,
*
* fog: <bool>
* }
*/
THREE.ParticleBasicMaterial = function ( parameters ) {
THREE.Material.call( this, parameters );
parameters = parameters || {};
this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff );
this.map = parameters.map !== undefined ? parameters.map : null;
this.size = parameters.size !== undefined ? parameters.size : 1;
this.sizeAttenuation = parameters.sizeAttenuation !== undefined ? parameters.sizeAttenuation : true;
this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : false;
this.fog = parameters.fog !== undefined ? parameters.fog : true;
};
THREE.ParticleBasicMaterial.prototype = new THREE.Material();
THREE.ParticleBasicMaterial.prototype.constructor = THREE.ParticleBasicMaterial;
/**
* @author mr.doob / http://mrdoob.com/
*
* parameters = {
* color: <hex>,
* program: <function>,
* opacity: <float>,
* blending: THREE.NormalBlending
* }
*/
THREE.ParticleCanvasMaterial = function ( parameters ) {
THREE.Material.call( this, parameters );
parameters = parameters || {};
this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff );
this.program = parameters.program !== undefined ? parameters.program : function ( context, color ) {};
};
THREE.ParticleCanvasMaterial.prototype = new THREE.Material();
THREE.ParticleCanvasMaterial.prototype.constructor = THREE.ParticleCanvasMaterial;
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.ParticleDOMMaterial = function ( domElement ) {
THREE.Material.call( this );
this.domElement = domElement;
};
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* fragmentShader: <string>,
* vertexShader: <string>,
*
* uniforms: { "parameter1": { type: "f", value: 1.0 }, "parameter2": { type: "i" value2: 2 } },
*
* shading: THREE.SmoothShading,
* blending: THREE.NormalBlending,
* depthTest: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* lights: <bool>,
*
* vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>,
*
* fog: <bool>
* }
*/
THREE.ShaderMaterial = function ( parameters ) {
THREE.Material.call( this, parameters );
parameters = parameters || {};
this.fragmentShader = parameters.fragmentShader !== undefined ? parameters.fragmentShader : "void main() {}";
this.vertexShader = parameters.vertexShader !== undefined ? parameters.vertexShader : "void main() {}";
this.uniforms = parameters.uniforms !== undefined ? parameters.uniforms : {};
this.attributes = parameters.attributes;
this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading;
this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false;
this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1;
this.fog = parameters.fog !== undefined ? parameters.fog : false; // set to use scene fog
this.lights = parameters.lights !== undefined ? parameters.lights : false; // set to use scene lights
this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : THREE.NoColors; // set to use "color" attribute stream
this.skinning = parameters.skinning !== undefined ? parameters.skinning : false; // set to use skinning attribute streams
this.morphTargets = parameters.morphTargets !== undefined ? parameters.morphTargets : false; // set to use morph targets
this.morphNormals = parameters.morphNormals !== undefined ? parameters.morphNormals : false; // set to use morph normals
};
THREE.ShaderMaterial.prototype = new THREE.Material();
THREE.ShaderMaterial.prototype.constructor = THREE.ShaderMaterial;
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author szimek / https://github.com/szimek/
*/
THREE.Texture = function ( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type ) {
this.id = THREE.TextureCount ++;
this.image = image;
this.mapping = mapping !== undefined ? mapping : new THREE.UVMapping();
this.wrapS = wrapS !== undefined ? wrapS : THREE.ClampToEdgeWrapping;
this.wrapT = wrapT !== undefined ? wrapT : THREE.ClampToEdgeWrapping;
this.magFilter = magFilter !== undefined ? magFilter : THREE.LinearFilter;
this.minFilter = minFilter !== undefined ? minFilter : THREE.LinearMipMapLinearFilter;
this.format = format !== undefined ? format : THREE.RGBAFormat;
this.type = type !== undefined ? type : THREE.UnsignedByteType;
this.offset = new THREE.Vector2( 0, 0 );
this.repeat = new THREE.Vector2( 1, 1 );
this.generateMipmaps = true;
this.premultiplyAlpha = false;
this.needsUpdate = false;
this.onUpdate = null;
};
THREE.Texture.prototype = {
constructor: THREE.Texture,
clone: function () {
var clonedTexture = new THREE.Texture( this.image, this.mapping, this.wrapS, this.wrapT, this.magFilter, this.minFilter, this.format, this.type );
clonedTexture.offset.copy( this.offset );
clonedTexture.repeat.copy( this.repeat );
return clonedTexture;
}
};
THREE.TextureCount = 0;
THREE.MultiplyOperation = 0;
THREE.MixOperation = 1;
// Mapping modes
THREE.UVMapping = function () {};
THREE.CubeReflectionMapping = function () {};
THREE.CubeRefractionMapping = function () {};
THREE.SphericalReflectionMapping = function () {};
THREE.SphericalRefractionMapping = function () {};
// Wrapping modes
THREE.RepeatWrapping = 0;
THREE.ClampToEdgeWrapping = 1;
THREE.MirroredRepeatWrapping = 2;
// Filters
THREE.NearestFilter = 3;
THREE.NearestMipMapNearestFilter = 4;
THREE.NearestMipMapLinearFilter = 5;
THREE.LinearFilter = 6;
THREE.LinearMipMapNearestFilter = 7;
THREE.LinearMipMapLinearFilter = 8;
// Types
THREE.ByteType = 9;
THREE.UnsignedByteType = 10;
THREE.ShortType = 11;
THREE.UnsignedShortType = 12;
THREE.IntType = 13;
THREE.UnsignedIntType = 14;
THREE.FloatType = 15;
// Formats
THREE.AlphaFormat = 16;
THREE.RGBFormat = 17;
THREE.RGBAFormat = 18;
THREE.LuminanceFormat = 19;
THREE.LuminanceAlphaFormat = 20;
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.DataTexture = function ( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter ) {
THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type );
this.image = { data: data, width: width, height: height };
};
THREE.DataTexture.prototype = new THREE.Texture();
THREE.DataTexture.prototype.constructor = THREE.DataTexture;
THREE.DataTexture.prototype.clone = function () {
var clonedTexture = new THREE.DataTexture( this.image.data, this.image.width, this.image.height, this.format, this.type, this.mapping, this.wrapS, this.wrapT, this.magFilter, this.minFilter );
clonedTexture.offset.copy( this.offset );
clonedTexture.repeat.copy( this.repeat );
return clonedTexture;
};
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.Particle = function ( material ) {
THREE.Object3D.call( this );
this.material = material;
};
THREE.Particle.prototype = new THREE.Object3D();
THREE.Particle.prototype.constructor = THREE.Particle;
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.ParticleSystem = function ( geometry, material ) {
THREE.Object3D.call( this );
this.geometry = geometry;
this.material = ( material !== undefined ) ? material : new THREE.ParticleBasicMaterial( { color: Math.random() * 0xffffff } );
this.sortParticles = false;
if ( this.geometry ) {
// calc bound radius
if( !this.geometry.boundingSphere ) {
this.geometry.computeBoundingSphere();
}
this.boundRadius = geometry.boundingSphere.radius;
}
this.frustumCulled = false;
};
THREE.ParticleSystem.prototype = new THREE.Object3D();
THREE.ParticleSystem.prototype.constructor = THREE.ParticleSystem;
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.Line = function ( geometry, material, type ) {
THREE.Object3D.call( this );
this.geometry = geometry;
this.material = ( material !== undefined ) ? material : new THREE.LineBasicMaterial( { color: Math.random() * 0xffffff } );
this.type = ( type !== undefined ) ? type : THREE.LineStrip;
if ( this.geometry ) {
if ( ! this.geometry.boundingSphere ) {
this.geometry.computeBoundingSphere();
}
}
};
THREE.LineStrip = 0;
THREE.LinePieces = 1;
THREE.Line.prototype = new THREE.Object3D();
THREE.Line.prototype.constructor = THREE.Line;
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
*/
THREE.Mesh = function ( geometry, material ) {
THREE.Object3D.call( this );
this.geometry = geometry;
this.material = ( material !== undefined ) ? material : new THREE.MeshBasicMaterial( { color: Math.random() * 0xffffff, wireframe: true } );
if ( this.geometry ) {
// calc bound radius
if( ! this.geometry.boundingSphere ) {
this.geometry.computeBoundingSphere();
}
this.boundRadius = geometry.boundingSphere.radius;
// setup morph targets
if( this.geometry.morphTargets.length ) {
this.morphTargetBase = -1;
this.morphTargetForcedOrder = [];
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for( var m = 0; m < this.geometry.morphTargets.length; m ++ ) {
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ this.geometry.morphTargets[ m ].name ] = m;
}
}
}
}
THREE.Mesh.prototype = new THREE.Object3D();
THREE.Mesh.prototype.constructor = THREE.Mesh;
THREE.Mesh.prototype.supr = THREE.Object3D.prototype;
/*
* Get Morph Target Index by Name
*/
THREE.Mesh.prototype.getMorphTargetIndexByName = function( name ) {
if ( this.morphTargetDictionary[ name ] !== undefined ) {
return this.morphTargetDictionary[ name ];
}
console.log( "THREE.Mesh.getMorphTargetIndexByName: morph target " + name + " does not exist. Returning 0." );
return 0;
}
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Bone = function( belongsToSkin ) {
THREE.Object3D.call( this );
this.skin = belongsToSkin;
this.skinMatrix = new THREE.Matrix4();
};
THREE.Bone.prototype = new THREE.Object3D();
THREE.Bone.prototype.constructor = THREE.Bone;
THREE.Bone.prototype.supr = THREE.Object3D.prototype;
THREE.Bone.prototype.update = function( parentSkinMatrix, forceUpdate ) {
// update local
if ( this.matrixAutoUpdate ) {
forceUpdate |= this.updateMatrix();
}
// update skin matrix
if ( forceUpdate || this.matrixWorldNeedsUpdate ) {
if( parentSkinMatrix ) {
this.skinMatrix.multiply( parentSkinMatrix, this.matrix );
} else {
this.skinMatrix.copy( this.matrix );
}
this.matrixWorldNeedsUpdate = false;
forceUpdate = true;
}
// update children
var child, i, l = this.children.length;
for ( i = 0; i < l; i ++ ) {
this.children[ i ].update( this.skinMatrix, forceUpdate );
}
};
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.SkinnedMesh = function ( geometry, material ) {
THREE.Mesh.call( this, geometry, material );
// init bones
this.identityMatrix = new THREE.Matrix4();
this.bones = [];
this.boneMatrices = [];
var b, bone, gbone, p, q, s;
if ( this.geometry.bones !== undefined ) {
for ( b = 0; b < this.geometry.bones.length; b ++ ) {
gbone = this.geometry.bones[ b ];
p = gbone.pos;
q = gbone.rotq;
s = gbone.scl;
bone = this.addBone();
bone.name = gbone.name;
bone.position.set( p[0], p[1], p[2] );
bone.quaternion.set( q[0], q[1], q[2], q[3] );
bone.useQuaternion = true;
if ( s !== undefined ) {
bone.scale.set( s[0], s[1], s[2] );
} else {
bone.scale.set( 1, 1, 1 );
}
}
for ( b = 0; b < this.bones.length; b ++ ) {
gbone = this.geometry.bones[ b ];
bone = this.bones[ b ];
if ( gbone.parent === -1 ) {
this.add( bone );
} else {
this.bones[ gbone.parent ].add( bone );
}
}
this.boneMatrices = new Float32Array( 16 * this.bones.length );
this.pose();
}
};
THREE.SkinnedMesh.prototype = new THREE.Mesh();
THREE.SkinnedMesh.prototype.constructor = THREE.SkinnedMesh;
THREE.SkinnedMesh.prototype.addBone = function( bone ) {
if ( bone === undefined ) {
bone = new THREE.Bone( this );
}
this.bones.push( bone );
return bone;
};
THREE.SkinnedMesh.prototype.updateMatrixWorld = function ( force ) {
this.matrixAutoUpdate && this.updateMatrix();
// update matrixWorld
if ( this.matrixWorldNeedsUpdate || force ) {
if ( this.parent ) {
this.matrixWorld.multiply( this.parent.matrixWorld, this.matrix );
} else {
this.matrixWorld.copy( this.matrix );
}
this.matrixWorldNeedsUpdate = false;
force = true;
}
// update children
for ( var i = 0, l = this.children.length; i < l; i ++ ) {
var child = this.children[ i ];
if ( child instanceof THREE.Bone ) {
child.update( this.identityMatrix, false );
} else {
child.updateMatrixWorld( true );
}
}
// flatten bone matrices to array
var b, bl = this.bones.length,
ba = this.bones,
bm = this.boneMatrices;
for ( b = 0; b < bl; b ++ ) {
ba[ b ].skinMatrix.flattenToArrayOffset( bm, b * 16 );
}
};
/*
* Pose
*/
THREE.SkinnedMesh.prototype.pose = function() {
this.updateMatrixWorld( true );
var bim, bone, boneInverses = [];
for ( var b = 0; b < this.bones.length; b ++ ) {
bone = this.bones[ b ];
var inverseMatrix = new THREE.Matrix4();
inverseMatrix.getInverse( bone.skinMatrix );
boneInverses.push( inverseMatrix );
bone.skinMatrix.flattenToArrayOffset( this.boneMatrices, b * 16 );
}
// project vertices to local
if ( this.geometry.skinVerticesA === undefined ) {
this.geometry.skinVerticesA = [];
this.geometry.skinVerticesB = [];
var orgVertex, vertex;
for ( var i = 0; i < this.geometry.skinIndices.length; i ++ ) {
orgVertex = this.geometry.vertices[ i ];
var indexA = this.geometry.skinIndices[ i ].x;
var indexB = this.geometry.skinIndices[ i ].y;
vertex = new THREE.Vector3( orgVertex.x, orgVertex.y, orgVertex.z );
this.geometry.skinVerticesA.push( boneInverses[ indexA ].multiplyVector3( vertex ) );
vertex = new THREE.Vector3( orgVertex.x, orgVertex.y, orgVertex.z );
this.geometry.skinVerticesB.push( boneInverses[ indexB ].multiplyVector3( vertex ) );
// todo: add more influences
// normalize weights
if ( this.geometry.skinWeights[ i ].x + this.geometry.skinWeights[ i ].y !== 1 ) {
var len = ( 1.0 - ( this.geometry.skinWeights[ i ].x + this.geometry.skinWeights[ i ].y ) ) * 0.5;
this.geometry.skinWeights[ i ].x += len;
this.geometry.skinWeights[ i ].y += len;
}
}
}
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.MorphAnimMesh = function ( geometry, material ) {
THREE.Mesh.call( this, geometry, material );
// API
this.duration = 1000; // milliseconds
this.mirroredLoop = false;
this.time = 0;
// internals
this.lastKeyframe = 0;
this.currentKeyframe = 0;
this.direction = 1;
this.directionBackwards = false;
this.setFrameRange( 0, this.geometry.morphTargets.length - 1 );
};
THREE.MorphAnimMesh.prototype = new THREE.Mesh();
THREE.MorphAnimMesh.prototype.constructor = THREE.MorphAnimMesh;
THREE.MorphAnimMesh.prototype.setFrameRange = function ( start, end ) {
this.startKeyframe = start;
this.endKeyframe = end;
this.length = this.endKeyframe - this.startKeyframe + 1;
};
THREE.MorphAnimMesh.prototype.setDirectionForward = function () {
this.direction = 1;
this.directionBackwards = false;
};
THREE.MorphAnimMesh.prototype.setDirectionBackward = function () {
this.direction = -1;
this.directionBackwards = true;
};
THREE.MorphAnimMesh.prototype.parseAnimations = function () {
var geometry = this.geometry;
if ( ! geometry.animations ) geometry.animations = {};
var firstAnimation, animations = geometry.animations;
var pattern = /([a-z]+)(\d+)/;
for ( var i = 0, il = geometry.morphTargets.length; i < il; i ++ ) {
var morph = geometry.morphTargets[ i ];
var parts = morph.name.match( pattern );
if ( parts && parts.length > 1 ) {
var label = parts[ 1 ];
var num = parts[ 2 ];
if ( ! animations[ label ] ) animations[ label ] = { start: Infinity, end: -Infinity };
var animation = animations[ label ];
if ( i < animation.start ) animation.start = i;
if ( i > animation.end ) animation.end = i;
if ( ! firstAnimation ) firstAnimation = label;
}
}
geometry.firstAnimation = firstAnimation;
};
THREE.MorphAnimMesh.prototype.setAnimationLabel = function ( label, start, end ) {
if ( ! this.geometry.animations ) this.geometry.animations = {};
this.geometry.animations[ label ] = { start: start, end: end };
};
THREE.MorphAnimMesh.prototype.playAnimation = function ( label, fps ) {
var animation = this.geometry.animations[ label ];
if ( animation ) {
this.setFrameRange( animation.start, animation.end );
this.duration = 1000 * ( ( animation.end - animation.start ) / fps );
this.time = 0;
} else {
console.warn( "animation[" + label + "] undefined" );
}
};
THREE.MorphAnimMesh.prototype.updateAnimation = function ( delta ) {
var frameTime = this.duration / this.length;
this.time += this.direction * delta;
if ( this.mirroredLoop ) {
if ( this.time > this.duration || this.time < 0 ) {
this.direction *= -1;
if ( this.time > this.duration ) {
this.time = this.duration;
this.directionBackwards = true;
}
if ( this.time < 0 ) {
this.time = 0;
this.directionBackwards = false;
}
}
} else {
this.time = this.time % this.duration;
if ( this.time < 0 ) this.time += this.duration;
}
var keyframe = this.startKeyframe + THREE.Math.clamp( Math.floor( this.time / frameTime ), 0, this.length - 1 );
if ( keyframe !== this.currentKeyframe ) {
this.morphTargetInfluences[ this.lastKeyframe ] = 0;
this.morphTargetInfluences[ this.currentKeyframe ] = 1;
this.morphTargetInfluences[ keyframe ] = 0;
this.lastKeyframe = this.currentKeyframe;
this.currentKeyframe = keyframe;
}
var mix = ( this.time % frameTime ) / frameTime;
if ( this.directionBackwards ) {
mix = 1 - mix;
}
this.morphTargetInfluences[ this.currentKeyframe ] = mix;
this.morphTargetInfluences[ this.lastKeyframe ] = 1 - mix;
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.Ribbon = function ( geometry, material ) {
THREE.Object3D.call( this );
this.geometry = geometry;
this.material = material;
};
THREE.Ribbon.prototype = new THREE.Object3D();
THREE.Ribbon.prototype.constructor = THREE.Ribbon;
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author mr.doob / http://mrdoob.com/
*/
THREE.LOD = function () {
THREE.Object3D.call( this );
this.LODs = [];
};
THREE.LOD.prototype = new THREE.Object3D();
THREE.LOD.prototype.constructor = THREE.LOD;
THREE.LOD.prototype.supr = THREE.Object3D.prototype;
THREE.LOD.prototype.addLevel = function ( object3D, visibleAtDistance ) {
if ( visibleAtDistance === undefined ) {
visibleAtDistance = 0;
}
visibleAtDistance = Math.abs( visibleAtDistance );
for ( var l = 0; l < this.LODs.length; l ++ ) {
if ( visibleAtDistance < this.LODs[ l ].visibleAtDistance ) {
break;
}
}
this.LODs.splice( l, 0, { visibleAtDistance: visibleAtDistance, object3D: object3D } );
this.add( object3D );
};
THREE.LOD.prototype.update = function ( camera ) {
if ( this.LODs.length > 1 ) {
camera.matrixWorldInverse.getInverse( camera.matrixWorld );
var inverse = camera.matrixWorldInverse;
var distance = -( inverse.elements[2] * this.matrixWorld.elements[12] + inverse.elements[6] * this.matrixWorld.elements[13] + inverse.elements[10] * this.matrixWorld.elements[14] + inverse.elements[14] );
this.LODs[ 0 ].object3D.visible = true;
for ( var l = 1; l < this.LODs.length; l ++ ) {
if( distance >= this.LODs[ l ].visibleAtDistance ) {
this.LODs[ l - 1 ].object3D.visible = false;
this.LODs[ l ].object3D.visible = true;
} else {
break;
}
}
for( ; l < this.LODs.length; l ++ ) {
this.LODs[ l ].object3D.visible = false;
}
}
};
/**
* @author mikael emtinger / http://gomo.se/
*/
THREE.Sprite = function ( parameters ) {
THREE.Object3D.call( this );
this.color = ( parameters.color !== undefined ) ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff );
this.map = ( parameters.map !== undefined ) ? parameters.map : new THREE.Texture();
this.blending = ( parameters.blending !== undefined ) ? parameters.blending : THREE.NormalBlending;
this.blendSrc = parameters.blendSrc !== undefined ? parameters.blendSrc : THREE.SrcAlphaFactor;
this.blendDst = parameters.blendDst !== undefined ? parameters.blendDst : THREE.OneMinusSrcAlphaFactor;
this.blendEquation = parameters.blendEquation !== undefined ? parameters.blendEquation : THREE.AddEquation;
this.useScreenCoordinates = ( parameters.useScreenCoordinates !== undefined ) ? parameters.useScreenCoordinates : true;
this.mergeWith3D = ( parameters.mergeWith3D !== undefined ) ? parameters.mergeWith3D : !this.useScreenCoordinates;
this.affectedByDistance = ( parameters.affectedByDistance !== undefined ) ? parameters.affectedByDistance : !this.useScreenCoordinates;
this.scaleByViewport = ( parameters.scaleByViewport !== undefined ) ? parameters.scaleByViewport : !this.affectedByDistance;
this.alignment = ( parameters.alignment instanceof THREE.Vector2 ) ? parameters.alignment : THREE.SpriteAlignment.center;
this.rotation3d = this.rotation;
this.rotation = 0;
this.opacity = 1;
this.uvOffset = new THREE.Vector2( 0, 0 );
this.uvScale = new THREE.Vector2( 1, 1 );
};
THREE.Sprite.prototype = new THREE.Object3D();
THREE.Sprite.prototype.constructor = THREE.Sprite;
/*
* Custom update matrix
*/
THREE.Sprite.prototype.updateMatrix = function () {
this.matrix.setPosition( this.position );
this.rotation3d.set( 0, 0, this.rotation );
this.matrix.setRotationFromEuler( this.rotation3d );
if ( this.scale.x !== 1 || this.scale.y !== 1 ) {
this.matrix.scale( this.scale );
this.boundRadiusScale = Math.max( this.scale.x, this.scale.y );
}
this.matrixWorldNeedsUpdate = true;
};
/*
* Alignment
*/
THREE.SpriteAlignment = {};
THREE.SpriteAlignment.topLeft = new THREE.Vector2( 1, -1 );
THREE.SpriteAlignment.topCenter = new THREE.Vector2( 0, -1 );
THREE.SpriteAlignment.topRight = new THREE.Vector2( -1, -1 );
THREE.SpriteAlignment.centerLeft = new THREE.Vector2( 1, 0 );
THREE.SpriteAlignment.center = new THREE.Vector2( 0, 0 );
THREE.SpriteAlignment.centerRight = new THREE.Vector2( -1, 0 );
THREE.SpriteAlignment.bottomLeft = new THREE.Vector2( 1, 1 );
THREE.SpriteAlignment.bottomCenter = new THREE.Vector2( 0, 1 );
THREE.SpriteAlignment.bottomRight = new THREE.Vector2( -1, 1 );
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.Scene = function () {
THREE.Object3D.call( this );
this.fog = null;
this.overrideMaterial = null;
this.matrixAutoUpdate = false;
this.__objects = [];
this.__lights = [];
this.__objectsAdded = [];
this.__objectsRemoved = [];
};
THREE.Scene.prototype = new THREE.Object3D();
THREE.Scene.prototype.constructor = THREE.Scene;
THREE.Scene.prototype.__addObject = function ( object ) {
if ( object instanceof THREE.Light ) {
if ( this.__lights.indexOf( object ) === - 1 ) {
this.__lights.push( object );
}
} else if ( !( object instanceof THREE.Camera || object instanceof THREE.Bone ) ) {
if ( this.__objects.indexOf( object ) === - 1 ) {
this.__objects.push( object );
this.__objectsAdded.push( object );
// check if previously removed
var i = this.__objectsRemoved.indexOf( object );
if ( i !== -1 ) {
this.__objectsRemoved.splice( i, 1 );
}
}
}
for ( var c = 0; c < object.children.length; c ++ ) {
this.__addObject( object.children[ c ] );
}
};
THREE.Scene.prototype.__removeObject = function ( object ) {
if ( object instanceof THREE.Light ) {
var i = this.__lights.indexOf( object );
if ( i !== -1 ) {
this.__lights.splice( i, 1 );
}
} else if ( !( object instanceof THREE.Camera ) ) {
var i = this.__objects.indexOf( object );
if( i !== -1 ) {
this.__objects.splice( i, 1 );
this.__objectsRemoved.push( object );
// check if previously added
var ai = this.__objectsAdded.indexOf( object );
if ( ai !== -1 ) {
this.__objectsAdded.splice( ai, 1 );
}
}
}
for ( var c = 0; c < object.children.length; c ++ ) {
this.__removeObject( object.children[ c ] );
}
};
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Fog = function ( hex, near, far ) {
this.color = new THREE.Color( hex );
this.near = ( near !== undefined ) ? near : 1;
this.far = ( far !== undefined ) ? far : 1000;
};
/**
* @author mr.doob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.FogExp2 = function ( hex, density ) {
this.color = new THREE.Color( hex );
this.density = ( density !== undefined ) ? density : 0.00025;
};
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.DOMRenderer = function () {
console.log( 'THREE.DOMRenderer', THREE.REVISION );
var _renderData, _elements,
_width, _height, _widthHalf, _heightHalf, _transformProp,
_projector = new THREE.Projector();
var getSupportedProp = function ( proparray ) {
var root = document.documentElement
for ( var i = 0; i < proparray.length; i ++ ) {
if ( typeof root.style[ proparray[ i ] ] === "string" ) {
return proparray[i];
}
}
return null;
};
_transformProp = getSupportedProp( [ 'transform', 'MozTransform', 'WebkitTransform', 'msTransform', 'OTransform' ] );
this.domElement = document.createElement( 'div' );
this.setSize = function ( width, height ) {
_width = width;
_height = height;
_widthHalf = _width / 2;
_heightHalf = _height / 2;
};
this.render = function ( scene, camera ) {
var e, el, m, ml, element, material, dom, v1x, v1y;
_renderData = _projector.projectScene( scene, camera );
_elements = _renderData.elements;
for ( e = 0, el = _elements.length; e < el; e ++ ) {
element = _elements[ e ];
if ( element instanceof THREE.RenderableParticle && element.material instanceof THREE.ParticleDOMMaterial ) {
dom = element.material.domElement;
v1x = element.x * _widthHalf + _widthHalf - ( dom.offsetWidth >> 1 );
v1y = element.y * _heightHalf + _heightHalf - ( dom.offsetHeight >> 1 );
dom.style.left = v1x + 'px';
dom.style.top = v1y + 'px';
dom.style.zIndex = Math.abs( Math.floor( ( 1 - element.z ) * camera.far / camera.near ) )
if ( _transformProp ) {
var scaleX = element.scale.x * _widthHalf;
var scaleY = element.scale.y * _heightHalf;
var scaleVal = "scale(" + scaleX + "," + scaleY + ")";
dom.style[ _transformProp ] = scaleVal;
}
}
}
};
};
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.CanvasRenderer = function ( parameters ) {
console.log( 'THREE.CanvasRenderer', THREE.REVISION );
parameters = parameters || {};
var _this = this,
_renderData, _elements, _lights,
_projector = new THREE.Projector(),
_canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElement( 'canvas' ),
_canvasWidth, _canvasHeight, _canvasWidthHalf, _canvasHeightHalf,
_context = _canvas.getContext( '2d' ),
_clearColor = new THREE.Color( 0x000000 ),
_clearOpacity = 0,
_contextGlobalAlpha = 1,
_contextGlobalCompositeOperation = 0,
_contextStrokeStyle = null,
_contextFillStyle = null,
_contextLineWidth = null,
_contextLineCap = null,
_contextLineJoin = null,
_v1, _v2, _v3, _v4,
_v5 = new THREE.RenderableVertex(),
_v6 = new THREE.RenderableVertex(),
_v1x, _v1y, _v2x, _v2y, _v3x, _v3y,
_v4x, _v4y, _v5x, _v5y, _v6x, _v6y,
_color = new THREE.Color(),
_color1 = new THREE.Color(),
_color2 = new THREE.Color(),
_color3 = new THREE.Color(),
_color4 = new THREE.Color(),
_patterns = [], _imagedatas = [],
_near, _far,
_image, _uvs,
_uv1x, _uv1y, _uv2x, _uv2y, _uv3x, _uv3y,
_clipRect = new THREE.Rectangle(),
_clearRect = new THREE.Rectangle(),
_bboxRect = new THREE.Rectangle(),
_enableLighting = false,
_ambientLight = new THREE.Color(),
_directionalLights = new THREE.Color(),
_pointLights = new THREE.Color(),
_pi2 = Math.PI * 2,
_vector3 = new THREE.Vector3(), // Needed for PointLight
_pixelMap, _pixelMapContext, _pixelMapImage, _pixelMapData,
_gradientMap, _gradientMapContext, _gradientMapQuality = 16;
_pixelMap = document.createElement( 'canvas' );
_pixelMap.width = _pixelMap.height = 2;
_pixelMapContext = _pixelMap.getContext( '2d' );
_pixelMapContext.fillStyle = 'rgba(0,0,0,1)';
_pixelMapContext.fillRect( 0, 0, 2, 2 );
_pixelMapImage = _pixelMapContext.getImageData( 0, 0, 2, 2 );
_pixelMapData = _pixelMapImage.data;
_gradientMap = document.createElement( 'canvas' );
_gradientMap.width = _gradientMap.height = _gradientMapQuality;
_gradientMapContext = _gradientMap.getContext( '2d' );
_gradientMapContext.translate( - _gradientMapQuality / 2, - _gradientMapQuality / 2 );
_gradientMapContext.scale( _gradientMapQuality, _gradientMapQuality );
_gradientMapQuality --; // Fix UVs
this.domElement = _canvas;
this.autoClear = true;
this.sortObjects = true;
this.sortElements = true;
this.info = {
render: {
vertices: 0,
faces: 0
}
}
this.setSize = function ( width, height ) {
_canvasWidth = width;
_canvasHeight = height;
_canvasWidthHalf = Math.floor( _canvasWidth / 2 );
_canvasHeightHalf = Math.floor( _canvasHeight / 2 );
_canvas.width = _canvasWidth;
_canvas.height = _canvasHeight;
_clipRect.set( - _canvasWidthHalf, - _canvasHeightHalf, _canvasWidthHalf, _canvasHeightHalf );
_clearRect.set( - _canvasWidthHalf, - _canvasHeightHalf, _canvasWidthHalf, _canvasHeightHalf );
_contextGlobalAlpha = 1;
_contextGlobalCompositeOperation = 0;
_contextStrokeStyle = null;
_contextFillStyle = null;
_contextLineWidth = null;
_contextLineCap = null;
_contextLineJoin = null;
};
this.setClearColor = function ( color, opacity ) {
_clearColor.copy( color );
_clearOpacity = opacity !== undefined ? opacity : 1;
_clearRect.set( - _canvasWidthHalf, - _canvasHeightHalf, _canvasWidthHalf, _canvasHeightHalf );
};
this.setClearColorHex = function ( hex, opacity ) {
_clearColor.setHex( hex );
_clearOpacity = opacity !== undefined ? opacity : 1;
_clearRect.set( - _canvasWidthHalf, - _canvasHeightHalf, _canvasWidthHalf, _canvasHeightHalf );
};
this.clear = function () {
_context.setTransform( 1, 0, 0, - 1, _canvasWidthHalf, _canvasHeightHalf );
if ( !_clearRect.isEmpty() ) {
_clearRect.minSelf( _clipRect );
_clearRect.inflate( 2 );
if ( _clearOpacity < 1 ) {
_context.clearRect( Math.floor( _clearRect.getX() ), Math.floor( _clearRect.getY() ), Math.floor( _clearRect.getWidth() ), Math.floor( _clearRect.getHeight() ) );
}
if ( _clearOpacity > 0 ) {
setBlending( THREE.NormalBlending );
setOpacity( 1 );
setFillStyle( 'rgba(' + Math.floor( _clearColor.r * 255 ) + ',' + Math.floor( _clearColor.g * 255 ) + ',' + Math.floor( _clearColor.b * 255 ) + ',' + _clearOpacity + ')' );
_context.fillRect( Math.floor( _clearRect.getX() ), Math.floor( _clearRect.getY() ), Math.floor( _clearRect.getWidth() ), Math.floor( _clearRect.getHeight() ) );
}
_clearRect.empty();
}
};
this.render = function ( scene, camera ) {
var e, el, element, material;
this.autoClear ? this.clear() : _context.setTransform( 1, 0, 0, - 1, _canvasWidthHalf, _canvasHeightHalf );
_this.info.render.vertices = 0;
_this.info.render.faces = 0;
_renderData = _projector.projectScene( scene, camera, this.sortElements );
_elements = _renderData.elements;
_lights = _renderData.lights;
_context.fillStyle = 'rgba( 0, 255, 255, 0.5 )';
_context.fillRect( _clipRect.getX(), _clipRect.getY(), _clipRect.getWidth(), _clipRect.getHeight() );
_enableLighting = _lights.length > 0;
if ( _enableLighting ) {
calculateLights( _lights );
}
for ( e = 0, el = _elements.length; e < el; e++ ) {
element = _elements[ e ];
material = element.material;
material = material instanceof THREE.MeshFaceMaterial ? element.faceMaterial : material;
if ( material === undefined || material.visible === false ) continue;
_bboxRect.empty();
if ( element instanceof THREE.RenderableParticle ) {
_v1 = element;
_v1.x *= _canvasWidthHalf; _v1.y *= _canvasHeightHalf;
renderParticle( _v1, element, material, scene );
} else if ( element instanceof THREE.RenderableLine ) {
_v1 = element.v1; _v2 = element.v2;
_v1.positionScreen.x *= _canvasWidthHalf; _v1.positionScreen.y *= _canvasHeightHalf;
_v2.positionScreen.x *= _canvasWidthHalf; _v2.positionScreen.y *= _canvasHeightHalf;
_bboxRect.addPoint( _v1.positionScreen.x, _v1.positionScreen.y );
_bboxRect.addPoint( _v2.positionScreen.x, _v2.positionScreen.y );
if ( _clipRect.intersects( _bboxRect ) ) {
renderLine( _v1, _v2, element, material, scene );
}
} else if ( element instanceof THREE.RenderableFace3 ) {
_v1 = element.v1; _v2 = element.v2; _v3 = element.v3;
_v1.positionScreen.x *= _canvasWidthHalf; _v1.positionScreen.y *= _canvasHeightHalf;
_v2.positionScreen.x *= _canvasWidthHalf; _v2.positionScreen.y *= _canvasHeightHalf;
_v3.positionScreen.x *= _canvasWidthHalf; _v3.positionScreen.y *= _canvasHeightHalf;
if ( material.overdraw ) {
expand( _v1.positionScreen, _v2.positionScreen );
expand( _v2.positionScreen, _v3.positionScreen );
expand( _v3.positionScreen, _v1.positionScreen );
}
_bboxRect.add3Points( _v1.positionScreen.x, _v1.positionScreen.y,
_v2.positionScreen.x, _v2.positionScreen.y,
_v3.positionScreen.x, _v3.positionScreen.y );
if ( _clipRect.intersects( _bboxRect ) ) {
renderFace3( _v1, _v2, _v3, 0, 1, 2, element, material, scene );
}
} else if ( element instanceof THREE.RenderableFace4 ) {
_v1 = element.v1; _v2 = element.v2; _v3 = element.v3; _v4 = element.v4;
_v1.positionScreen.x *= _canvasWidthHalf; _v1.positionScreen.y *= _canvasHeightHalf;
_v2.positionScreen.x *= _canvasWidthHalf; _v2.positionScreen.y *= _canvasHeightHalf;
_v3.positionScreen.x *= _canvasWidthHalf; _v3.positionScreen.y *= _canvasHeightHalf;
_v4.positionScreen.x *= _canvasWidthHalf; _v4.positionScreen.y *= _canvasHeightHalf;
_v5.positionScreen.copy( _v2.positionScreen );
_v6.positionScreen.copy( _v4.positionScreen );
if ( material.overdraw ) {
expand( _v1.positionScreen, _v2.positionScreen );
expand( _v2.positionScreen, _v4.positionScreen );
expand( _v4.positionScreen, _v1.positionScreen );
expand( _v3.positionScreen, _v5.positionScreen );
expand( _v3.positionScreen, _v6.positionScreen );
}
_bboxRect.addPoint( _v1.positionScreen.x, _v1.positionScreen.y );
_bboxRect.addPoint( _v2.positionScreen.x, _v2.positionScreen.y );
_bboxRect.addPoint( _v3.positionScreen.x, _v3.positionScreen.y );
_bboxRect.addPoint( _v4.positionScreen.x, _v4.positionScreen.y );
if ( _clipRect.intersects( _bboxRect ) ) {
renderFace4( _v1, _v2, _v3, _v4, _v5, _v6, element, material, scene );
}
}
/*
_context.lineWidth = 1;
_context.strokeStyle = 'rgba( 0, 255, 0, 0.5 )';
_context.strokeRect( _bboxRect.getX(), _bboxRect.getY(), _bboxRect.getWidth(), _bboxRect.getHeight() );
*/
_clearRect.addRectangle( _bboxRect );
}
_context.lineWidth = 1;
_context.strokeStyle = 'rgba( 255, 0, 0, 0.5 )';
_context.strokeRect( _clearRect.getX(), _clearRect.getY(), _clearRect.getWidth(), _clearRect.getHeight() );
_context.setTransform( 1, 0, 0, 1, 0, 0 );
//
function calculateLights( lights ) {
var l, ll, light, lightColor;
_ambientLight.setRGB( 0, 0, 0 );
_directionalLights.setRGB( 0, 0, 0 );
_pointLights.setRGB( 0, 0, 0 );
for ( l = 0, ll = lights.length; l < ll; l ++ ) {
light = lights[ l ];
lightColor = light.color;
if ( light instanceof THREE.AmbientLight ) {
_ambientLight.r += lightColor.r;
_ambientLight.g += lightColor.g;
_ambientLight.b += lightColor.b;
} else if ( light instanceof THREE.DirectionalLight ) {
// for particles
_directionalLights.r += lightColor.r;
_directionalLights.g += lightColor.g;
_directionalLights.b += lightColor.b;
} else if ( light instanceof THREE.PointLight ) {
// for particles
_pointLights.r += lightColor.r;
_pointLights.g += lightColor.g;
_pointLights.b += lightColor.b;
}
}
}
function calculateLight( lights, position, normal, color ) {
var l, ll, light, lightColor, lightPosition, amount;
for ( l = 0, ll = lights.length; l < ll; l ++ ) {
light = lights[ l ];
lightColor = light.color;
if ( light instanceof THREE.DirectionalLight ) {
lightPosition = light.matrixWorld.getPosition();
amount = normal.dot( lightPosition );
if ( amount <= 0 ) continue;
amount *= light.intensity;
color.r += lightColor.r * amount;
color.g += lightColor.g * amount;
color.b += lightColor.b * amount;
} else if ( light instanceof THREE.PointLight ) {
lightPosition = light.matrixWorld.getPosition();
amount = normal.dot( _vector3.sub( lightPosition, position ).normalize() );
if ( amount <= 0 ) continue;
amount *= light.distance == 0 ? 1 : 1 - Math.min( position.distanceTo( lightPosition ) / light.distance, 1 );
if ( amount == 0 ) continue;
amount *= light.intensity;
color.r += lightColor.r * amount;
color.g += lightColor.g * amount;
color.b += lightColor.b * amount;
}
}
}
function renderParticle ( v1, element, material, scene ) {
setOpacity( material.opacity );
setBlending( material.blending );
var width, height, scaleX, scaleY,
bitmap, bitmapWidth, bitmapHeight;
if ( material instanceof THREE.ParticleBasicMaterial ) {
if ( material.map ) {
bitmap = material.map.image;
bitmapWidth = bitmap.width >> 1;
bitmapHeight = bitmap.height >> 1;
scaleX = element.scale.x * _canvasWidthHalf;
scaleY = element.scale.y * _canvasHeightHalf;
width = scaleX * bitmapWidth;
height = scaleY * bitmapHeight;
// TODO: Rotations break this...
_bboxRect.set( v1.x - width, v1.y - height, v1.x + width, v1.y + height );
if ( !_clipRect.intersects( _bboxRect ) ) {
return;
}
_context.save();
_context.translate( v1.x, v1.y );
_context.rotate( - element.rotation );
_context.scale( scaleX, - scaleY );
_context.translate( - bitmapWidth, - bitmapHeight );
_context.drawImage( bitmap, 0, 0 );
_context.restore();
}
_context.beginPath();
_context.moveTo( v1.x - 10, v1.y );
_context.lineTo( v1.x + 10, v1.y );
_context.moveTo( v1.x, v1.y - 10 );
_context.lineTo( v1.x, v1.y + 10 );
_context.closePath();
_context.strokeStyle = 'rgb(255,255,0)';
_context.stroke();
} else if ( material instanceof THREE.ParticleCanvasMaterial ) {
width = element.scale.x * _canvasWidthHalf;
height = element.scale.y * _canvasHeightHalf;
_bboxRect.set( v1.x - width, v1.y - height, v1.x + width, v1.y + height );
if ( !_clipRect.intersects( _bboxRect ) ) {
return;
}
setStrokeStyle( material.color.getContextStyle() );
setFillStyle( material.color.getContextStyle() );
_context.save();
_context.translate( v1.x, v1.y );
_context.rotate( - element.rotation );
_context.scale( width, height );
material.program( _context );
_context.restore();
}
}
function renderLine( v1, v2, element, material, scene ) {
setOpacity( material.opacity );
setBlending( material.blending );
_context.beginPath();
_context.moveTo( v1.positionScreen.x, v1.positionScreen.y );
_context.lineTo( v2.positionScreen.x, v2.positionScreen.y );
_context.closePath();
if ( material instanceof THREE.LineBasicMaterial ) {
setLineWidth( material.linewidth );
setLineCap( material.linecap );
setLineJoin( material.linejoin );
setStrokeStyle( material.color.getContextStyle() );
_context.stroke();
_bboxRect.inflate( material.linewidth * 2 );
}
}
function renderFace3( v1, v2, v3, uv1, uv2, uv3, element, material, scene ) {
_this.info.render.vertices += 3;
_this.info.render.faces ++;
setOpacity( material.opacity );
setBlending( material.blending );
_v1x = v1.positionScreen.x; _v1y = v1.positionScreen.y;
_v2x = v2.positionScreen.x; _v2y = v2.positionScreen.y;
_v3x = v3.positionScreen.x; _v3y = v3.positionScreen.y;
drawTriangle( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y );
if ( material instanceof THREE.MeshBasicMaterial ) {
if ( material.map ) {
if ( material.map.mapping instanceof THREE.UVMapping ) {
_uvs = element.uvs[ 0 ];
patternPath( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y, _uvs[ uv1 ].u, _uvs[ uv1 ].v, _uvs[ uv2 ].u, _uvs[ uv2 ].v, _uvs[ uv3 ].u, _uvs[ uv3 ].v, material.map );
}
} else if ( material.envMap ) {
if ( material.envMap.mapping instanceof THREE.SphericalReflectionMapping ) {
var cameraMatrix = camera.matrixWorldInverse;
_vector3.copy( element.vertexNormalsWorld[ uv1 ] );
_uv1x = ( _vector3.x * cameraMatrix.elements[0] + _vector3.y * cameraMatrix.elements[4] + _vector3.z * cameraMatrix.elements[8] ) * 0.5 + 0.5;
_uv1y = - ( _vector3.x * cameraMatrix.elements[1] + _vector3.y * cameraMatrix.elements[5] + _vector3.z * cameraMatrix.elements[9] ) * 0.5 + 0.5;
_vector3.copy( element.vertexNormalsWorld[ uv2 ] );
_uv2x = ( _vector3.x * cameraMatrix.elements[0] + _vector3.y * cameraMatrix.elements[4] + _vector3.z * cameraMatrix.elements[8] ) * 0.5 + 0.5;
_uv2y = - ( _vector3.x * cameraMatrix.elements[1] + _vector3.y * cameraMatrix.elements[5] + _vector3.z * cameraMatrix.elements[9] ) * 0.5 + 0.5;
_vector3.copy( element.vertexNormalsWorld[ uv3 ] );
_uv3x = ( _vector3.x * cameraMatrix.elements[0] + _vector3.y * cameraMatrix.elements[4] + _vector3.z * cameraMatrix.elements[8] ) * 0.5 + 0.5;
_uv3y = - ( _vector3.x * cameraMatrix.elements[1] + _vector3.y * cameraMatrix.elements[5] + _vector3.z * cameraMatrix.elements[9] ) * 0.5 + 0.5;
patternPath( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y, _uv1x, _uv1y, _uv2x, _uv2y, _uv3x, _uv3y, material.envMap );
}/* else if ( material.envMap.mapping == THREE.SphericalRefractionMapping ) {
}*/
} else {
material.wireframe ? strokePath( material.color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( material.color );
}
} else if ( material instanceof THREE.MeshLambertMaterial ) {
if ( _enableLighting ) {
if ( !material.wireframe && material.shading == THREE.SmoothShading && element.vertexNormalsWorld.length == 3 ) {
_color1.r = _color2.r = _color3.r = _ambientLight.r;
_color1.g = _color2.g = _color3.g = _ambientLight.g;
_color1.b = _color2.b = _color3.b = _ambientLight.b;
calculateLight( _lights, element.v1.positionWorld, element.vertexNormalsWorld[ 0 ], _color1 );
calculateLight( _lights, element.v2.positionWorld, element.vertexNormalsWorld[ 1 ], _color2 );
calculateLight( _lights, element.v3.positionWorld, element.vertexNormalsWorld[ 2 ], _color3 );
_color1.r = Math.max( 0, Math.min( material.color.r * _color1.r, 1 ) );
_color1.g = Math.max( 0, Math.min( material.color.g * _color1.g, 1 ) );
_color1.b = Math.max( 0, Math.min( material.color.b * _color1.b, 1 ) );
_color2.r = Math.max( 0, Math.min( material.color.r * _color2.r, 1 ) );
_color2.g = Math.max( 0, Math.min( material.color.g * _color2.g, 1 ) );
_color2.b = Math.max( 0, Math.min( material.color.b * _color2.b, 1 ) );
_color3.r = Math.max( 0, Math.min( material.color.r * _color3.r, 1 ) );
_color3.g = Math.max( 0, Math.min( material.color.g * _color3.g, 1 ) );
_color3.b = Math.max( 0, Math.min( material.color.b * _color3.b, 1 ) );
_color4.r = ( _color2.r + _color3.r ) * 0.5;
_color4.g = ( _color2.g + _color3.g ) * 0.5;
_color4.b = ( _color2.b + _color3.b ) * 0.5;
_image = getGradientTexture( _color1, _color2, _color3, _color4 );
clipImage( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y, 0, 0, 1, 0, 0, 1, _image );
} else {
_color.r = _ambientLight.r;
_color.g = _ambientLight.g;
_color.b = _ambientLight.b;
calculateLight( _lights, element.centroidWorld, element.normalWorld, _color );
_color.r = Math.max( 0, Math.min( material.color.r * _color.r, 1 ) );
_color.g = Math.max( 0, Math.min( material.color.g * _color.g, 1 ) );
_color.b = Math.max( 0, Math.min( material.color.b * _color.b, 1 ) );
material.wireframe ? strokePath( _color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( _color );
}
} else {
material.wireframe ? strokePath( material.color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( material.color );
}
} else if ( material instanceof THREE.MeshDepthMaterial ) {
_near = camera.near;
_far = camera.far;
_color1.r = _color1.g = _color1.b = 1 - smoothstep( v1.positionScreen.z, _near, _far );
_color2.r = _color2.g = _color2.b = 1 - smoothstep( v2.positionScreen.z, _near, _far );
_color3.r = _color3.g = _color3.b = 1 - smoothstep( v3.positionScreen.z, _near, _far );
_color4.r = ( _color2.r + _color3.r ) * 0.5;
_color4.g = ( _color2.g + _color3.g ) * 0.5;
_color4.b = ( _color2.b + _color3.b ) * 0.5;
_image = getGradientTexture( _color1, _color2, _color3, _color4 );
clipImage( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y, 0, 0, 1, 0, 0, 1, _image );
} else if ( material instanceof THREE.MeshNormalMaterial ) {
_color.r = normalToComponent( element.normalWorld.x );
_color.g = normalToComponent( element.normalWorld.y );
_color.b = normalToComponent( element.normalWorld.z );
material.wireframe ? strokePath( _color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( _color );
}
}
function renderFace4( v1, v2, v3, v4, v5, v6, element, material, scene ) {
_this.info.render.vertices += 4;
_this.info.render.faces ++;
setOpacity( material.opacity );
setBlending( material.blending );
if ( material.map || material.envMap ) {
// Let renderFace3() handle this
renderFace3( v1, v2, v4, 0, 1, 3, element, material, scene );
renderFace3( v5, v3, v6, 1, 2, 3, element, material, scene );
return;
}
_v1x = v1.positionScreen.x; _v1y = v1.positionScreen.y;
_v2x = v2.positionScreen.x; _v2y = v2.positionScreen.y;
_v3x = v3.positionScreen.x; _v3y = v3.positionScreen.y;
_v4x = v4.positionScreen.x; _v4y = v4.positionScreen.y;
_v5x = v5.positionScreen.x; _v5y = v5.positionScreen.y;
_v6x = v6.positionScreen.x; _v6y = v6.positionScreen.y;
if ( material instanceof THREE.MeshBasicMaterial ) {
drawQuad( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y, _v4x, _v4y );
material.wireframe ? strokePath( material.color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( material.color );
} else if ( material instanceof THREE.MeshLambertMaterial ) {
if ( _enableLighting ) {
if ( !material.wireframe && material.shading == THREE.SmoothShading && element.vertexNormalsWorld.length == 4 ) {
_color1.r = _color2.r = _color3.r = _color4.r = _ambientLight.r;
_color1.g = _color2.g = _color3.g = _color4.g = _ambientLight.g;
_color1.b = _color2.b = _color3.b = _color4.b = _ambientLight.b;
calculateLight( _lights, element.v1.positionWorld, element.vertexNormalsWorld[ 0 ], _color1 );
calculateLight( _lights, element.v2.positionWorld, element.vertexNormalsWorld[ 1 ], _color2 );
calculateLight( _lights, element.v4.positionWorld, element.vertexNormalsWorld[ 3 ], _color3 );
calculateLight( _lights, element.v3.positionWorld, element.vertexNormalsWorld[ 2 ], _color4 );
_color1.r = Math.max( 0, Math.min( material.color.r * _color1.r, 1 ) );
_color1.g = Math.max( 0, Math.min( material.color.g * _color1.g, 1 ) );
_color1.b = Math.max( 0, Math.min( material.color.b * _color1.b, 1 ) );
_color2.r = Math.max( 0, Math.min( material.color.r * _color2.r, 1 ) );
_color2.g = Math.max( 0, Math.min( material.color.g * _color2.g, 1 ) );
_color2.b = Math.max( 0, Math.min( material.color.b * _color2.b, 1 ) );
_color3.r = Math.max( 0, Math.min( material.color.r * _color3.r, 1 ) );
_color3.g = Math.max( 0, Math.min( material.color.g * _color3.g, 1 ) );
_color3.b = Math.max( 0, Math.min( material.color.b * _color3.b, 1 ) );
_color4.r = Math.max( 0, Math.min( material.color.r * _color4.r, 1 ) );
_color4.g = Math.max( 0, Math.min( material.color.g * _color4.g, 1 ) );
_color4.b = Math.max( 0, Math.min( material.color.b * _color4.b, 1 ) );
_image = getGradientTexture( _color1, _color2, _color3, _color4 );
// TODO: UVs are incorrect, v4->v3?
drawTriangle( _v1x, _v1y, _v2x, _v2y, _v4x, _v4y );
clipImage( _v1x, _v1y, _v2x, _v2y, _v4x, _v4y, 0, 0, 1, 0, 0, 1, _image );
drawTriangle( _v5x, _v5y, _v3x, _v3y, _v6x, _v6y );
clipImage( _v5x, _v5y, _v3x, _v3y, _v6x, _v6y, 1, 0, 1, 1, 0, 1, _image );
} else {
_color.r = _ambientLight.r;
_color.g = _ambientLight.g;
_color.b = _ambientLight.b;
calculateLight( _lights, element.centroidWorld, element.normalWorld, _color );
_color.r = Math.max( 0, Math.min( material.color.r * _color.r, 1 ) );
_color.g = Math.max( 0, Math.min( material.color.g * _color.g, 1 ) );
_color.b = Math.max( 0, Math.min( material.color.b * _color.b, 1 ) );
drawQuad( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y, _v4x, _v4y );
material.wireframe ? strokePath( _color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( _color );
}
} else {
drawQuad( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y, _v4x, _v4y );
material.wireframe ? strokePath( material.color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( material.color );
}
} else if ( material instanceof THREE.MeshNormalMaterial ) {
_color.r = normalToComponent( element.normalWorld.x );
_color.g = normalToComponent( element.normalWorld.y );
_color.b = normalToComponent( element.normalWorld.z );
drawQuad( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y, _v4x, _v4y );
material.wireframe ? strokePath( _color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( _color );
} else if ( material instanceof THREE.MeshDepthMaterial ) {
_near = camera.near;
_far = camera.far;
_color1.r = _color1.g = _color1.b = 1 - smoothstep( v1.positionScreen.z, _near, _far );
_color2.r = _color2.g = _color2.b = 1 - smoothstep( v2.positionScreen.z, _near, _far );
_color3.r = _color3.g = _color3.b = 1 - smoothstep( v4.positionScreen.z, _near, _far );
_color4.r = _color4.g = _color4.b = 1 - smoothstep( v3.positionScreen.z, _near, _far );
_image = getGradientTexture( _color1, _color2, _color3, _color4 );
// TODO: UVs are incorrect, v4->v3?
drawTriangle( _v1x, _v1y, _v2x, _v2y, _v4x, _v4y );
clipImage( _v1x, _v1y, _v2x, _v2y, _v4x, _v4y, 0, 0, 1, 0, 0, 1, _image );
drawTriangle( _v5x, _v5y, _v3x, _v3y, _v6x, _v6y );
clipImage( _v5x, _v5y, _v3x, _v3y, _v6x, _v6y, 1, 0, 1, 1, 0, 1, _image );
}
}
//
function drawTriangle( x0, y0, x1, y1, x2, y2 ) {
_context.beginPath();
_context.moveTo( x0, y0 );
_context.lineTo( x1, y1 );
_context.lineTo( x2, y2 );
_context.lineTo( x0, y0 );
_context.closePath();
}
function drawQuad( x0, y0, x1, y1, x2, y2, x3, y3 ) {
_context.beginPath();
_context.moveTo( x0, y0 );
_context.lineTo( x1, y1 );
_context.lineTo( x2, y2 );
_context.lineTo( x3, y3 );
_context.lineTo( x0, y0 );
_context.closePath();
}
function strokePath( color, linewidth, linecap, linejoin ) {
setLineWidth( linewidth );
setLineCap( linecap );
setLineJoin( linejoin );
setStrokeStyle( color.getContextStyle() );
_context.stroke();
_bboxRect.inflate( linewidth * 2 );
}
function fillPath( color ) {
setFillStyle( color.getContextStyle() );
_context.fill();
}
function patternPath( x0, y0, x1, y1, x2, y2, u0, v0, u1, v1, u2, v2, texture ) {
if ( texture.image.width == 0 ) return;
if ( texture.needsUpdate == true || _patterns[ texture.id ] == undefined ) {
var repeatX = texture.wrapS == THREE.RepeatWrapping;
var repeatY = texture.wrapT == THREE.RepeatWrapping;
_patterns[ texture.id ] = _context.createPattern( texture.image, repeatX && repeatY ? 'repeat' : repeatX && !repeatY ? 'repeat-x' : !repeatX && repeatY ? 'repeat-y' : 'no-repeat' );
texture.needsUpdate = false;
}
setFillStyle( _patterns[ texture.id ] );
// http://extremelysatisfactorytotalitarianism.com/blog/?p=2120
var a, b, c, d, e, f, det, idet,
offsetX = texture.offset.x / texture.repeat.x,
offsetY = texture.offset.y / texture.repeat.y,
width = texture.image.width * texture.repeat.x,
height = texture.image.height * texture.repeat.y;
u0 = ( u0 + offsetX ) * width;
v0 = ( v0 + offsetY ) * height;
u1 = ( u1 + offsetX ) * width;
v1 = ( v1 + offsetY ) * height;
u2 = ( u2 + offsetX ) * width;
v2 = ( v2 + offsetY ) * height;
x1 -= x0; y1 -= y0;
x2 -= x0; y2 -= y0;
u1 -= u0; v1 -= v0;
u2 -= u0; v2 -= v0;
det = u1 * v2 - u2 * v1;
if ( det == 0 ) {
if ( _imagedatas[ texture.id ] === undefined ) {
var canvas = document.createElement( 'canvas' )
canvas.width = texture.image.width;
canvas.height = texture.image.height;
var context = canvas.getContext( '2d' );
context.drawImage( texture.image, 0, 0 );
_imagedatas[ texture.id ] = context.getImageData( 0, 0, texture.image.width, texture.image.height ).data;
// variables cannot be deleted in ES5 strict mode
//delete canvas;
}
var data = _imagedatas[ texture.id ];
var index = ( Math.floor( u0 ) + Math.floor( v0 ) * texture.image.width ) * 4;
_color.setRGB( data[ index ] / 255, data[ index + 1 ] / 255, data[ index + 2 ] / 255 );
fillPath( _color );
return;
}
idet = 1 / det;
a = ( v2 * x1 - v1 * x2 ) * idet;
b = ( v2 * y1 - v1 * y2 ) * idet;
c = ( u1 * x2 - u2 * x1 ) * idet;
d = ( u1 * y2 - u2 * y1 ) * idet;
e = x0 - a * u0 - c * v0;
f = y0 - b * u0 - d * v0;
_context.save();
_context.transform( a, b, c, d, e, f );
_context.fill();
_context.restore();
}
function clipImage( x0, y0, x1, y1, x2, y2, u0, v0, u1, v1, u2, v2, image ) {
// http://extremelysatisfactorytotalitarianism.com/blog/?p=2120
var a, b, c, d, e, f, det, idet,
width = image.width - 1,
height = image.height - 1;
u0 *= width; v0 *= height;
u1 *= width; v1 *= height;
u2 *= width; v2 *= height;
x1 -= x0; y1 -= y0;
x2 -= x0; y2 -= y0;
u1 -= u0; v1 -= v0;
u2 -= u0; v2 -= v0;
det = u1 * v2 - u2 * v1;
idet = 1 / det;
a = ( v2 * x1 - v1 * x2 ) * idet;
b = ( v2 * y1 - v1 * y2 ) * idet;
c = ( u1 * x2 - u2 * x1 ) * idet;
d = ( u1 * y2 - u2 * y1 ) * idet;
e = x0 - a * u0 - c * v0;
f = y0 - b * u0 - d * v0;
_context.save();
_context.transform( a, b, c, d, e, f );
_context.clip();
_context.drawImage( image, 0, 0 );
_context.restore();
}
function getGradientTexture( color1, color2, color3, color4 ) {
// http://mrdoob.com/blog/post/710
var c1r = ~~ ( color1.r * 255 ), c1g = ~~ ( color1.g * 255 ), c1b = ~~ ( color1.b * 255 ),
c2r = ~~ ( color2.r * 255 ), c2g = ~~ ( color2.g * 255 ), c2b = ~~ ( color2.b * 255 ),
c3r = ~~ ( color3.r * 255 ), c3g = ~~ ( color3.g * 255 ), c3b = ~~ ( color3.b * 255 ),
c4r = ~~ ( color4.r * 255 ), c4g = ~~ ( color4.g * 255 ), c4b = ~~ ( color4.b * 255 );
_pixelMapData[ 0 ] = c1r < 0 ? 0 : c1r > 255 ? 255 : c1r;
_pixelMapData[ 1 ] = c1g < 0 ? 0 : c1g > 255 ? 255 : c1g;
_pixelMapData[ 2 ] = c1b < 0 ? 0 : c1b > 255 ? 255 : c1b;
_pixelMapData[ 4 ] = c2r < 0 ? 0 : c2r > 255 ? 255 : c2r;
_pixelMapData[ 5 ] = c2g < 0 ? 0 : c2g > 255 ? 255 : c2g;
_pixelMapData[ 6 ] = c2b < 0 ? 0 : c2b > 255 ? 255 : c2b;
_pixelMapData[ 8 ] = c3r < 0 ? 0 : c3r > 255 ? 255 : c3r;
_pixelMapData[ 9 ] = c3g < 0 ? 0 : c3g > 255 ? 255 : c3g;
_pixelMapData[ 10 ] = c3b < 0 ? 0 : c3b > 255 ? 255 : c3b;
_pixelMapData[ 12 ] = c4r < 0 ? 0 : c4r > 255 ? 255 : c4r;
_pixelMapData[ 13 ] = c4g < 0 ? 0 : c4g > 255 ? 255 : c4g;
_pixelMapData[ 14 ] = c4b < 0 ? 0 : c4b > 255 ? 255 : c4b;
_pixelMapContext.putImageData( _pixelMapImage, 0, 0 );
_gradientMapContext.drawImage( _pixelMap, 0, 0 );
return _gradientMap;
}
function smoothstep( value, min, max ) {
var x = ( value - min ) / ( max - min );
return x * x * ( 3 - 2 * x );
}
function normalToComponent( normal ) {
var component = ( normal + 1 ) * 0.5;
return component < 0 ? 0 : ( component > 1 ? 1 : component );
}
// Hide anti-alias gaps
function expand( v1, v2 ) {
var x = v2.x - v1.x, y = v2.y - v1.y,
det = x * x + y * y, idet;
if ( det == 0 ) return;
idet = 1 / Math.sqrt( det );
x *= idet; y *= idet;
v2.x += x; v2.y += y;
v1.x -= x; v1.y -= y;
}
};
// Context cached methods.
function setOpacity( value ) {
if ( _contextGlobalAlpha != value ) {
_context.globalAlpha = _contextGlobalAlpha = value;
}
}
function setBlending( value ) {
if ( _contextGlobalCompositeOperation != value ) {
switch ( value ) {
case THREE.NormalBlending:
_context.globalCompositeOperation = 'source-over';
break;
case THREE.AdditiveBlending:
_context.globalCompositeOperation = 'lighter';
break;
}
_contextGlobalCompositeOperation = value;
}
}
function setLineWidth( value ) {
if ( _contextLineWidth != value ) {
_context.lineWidth = _contextLineWidth = value;
}
}
function setLineCap( value ) {
// "butt", "round", "square"
if ( _contextLineCap != value ) {
_context.lineCap = _contextLineCap = value;
}
}
function setLineJoin( value ) {
// "round", "bevel", "miter"
if ( _contextLineJoin != value ) {
_context.lineJoin = _contextLineJoin = value;
}
}
function setStrokeStyle( style ) {
if ( _contextStrokeStyle != style ) {
_context.strokeStyle = _contextStrokeStyle = style;
}
}
function setFillStyle( style ) {
if ( _contextFillStyle != style ) {
_context.fillStyle = _contextFillStyle = style;
}
}
};
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.SVGRenderer = function () {
console.log( 'THREE.SVGRenderer', THREE.REVISION );
var _this = this,
_renderData, _elements, _lights,
_projector = new THREE.Projector(),
_svg = document.createElementNS('http://www.w3.org/2000/svg', 'svg'),
_svgWidth, _svgHeight, _svgWidthHalf, _svgHeightHalf,
_v1, _v2, _v3, _v4,
_clipRect = new THREE.Rectangle(),
_bboxRect = new THREE.Rectangle(),
_enableLighting = false,
_color = new THREE.Color(),
_ambientLight = new THREE.Color(),
_directionalLights = new THREE.Color(),
_pointLights = new THREE.Color(),
_w, // z-buffer to w-buffer
_vector3 = new THREE.Vector3(), // Needed for PointLight
_svgPathPool = [], _svgCirclePool = [], _svgLinePool = [],
_svgNode, _pathCount, _circleCount, _lineCount,
_quality = 1;
this.domElement = _svg;
this.autoClear = true;
this.sortObjects = true;
this.sortElements = true;
this.info = {
render: {
vertices: 0,
faces: 0
}
}
this.setQuality = function( quality ) {
switch(quality) {
case "high": _quality = 1; break;
case "low": _quality = 0; break;
}
};
this.setSize = function( width, height ) {
_svgWidth = width; _svgHeight = height;
_svgWidthHalf = _svgWidth / 2; _svgHeightHalf = _svgHeight / 2;
_svg.setAttribute( 'viewBox', ( - _svgWidthHalf ) + ' ' + ( - _svgHeightHalf ) + ' ' + _svgWidth + ' ' + _svgHeight );
_svg.setAttribute( 'width', _svgWidth );
_svg.setAttribute( 'height', _svgHeight );
_clipRect.set( - _svgWidthHalf, - _svgHeightHalf, _svgWidthHalf, _svgHeightHalf );
};
this.clear = function () {
while ( _svg.childNodes.length > 0 ) {
_svg.removeChild( _svg.childNodes[ 0 ] );
}
};
this.render = function ( scene, camera ) {
var e, el, element, material;
this.autoClear && this.clear();
_this.info.render.vertices = 0;
_this.info.render.faces = 0;
_renderData = _projector.projectScene( scene, camera, this.sortElements );
_elements = _renderData.elements;
_lights = _renderData.lights;
_pathCount = 0; _circleCount = 0; _lineCount = 0;
_enableLighting = _lights.length > 0;
if ( _enableLighting ) {
calculateLights( _lights );
}
for ( e = 0, el = _elements.length; e < el; e ++ ) {
element = _elements[ e ];
material = element.material;
material = material instanceof THREE.MeshFaceMaterial ? element.faceMaterial : material;
if ( material === undefined || material.visible === false ) continue;
_bboxRect.empty();
if ( element instanceof THREE.RenderableParticle ) {
_v1 = element;
_v1.x *= _svgWidthHalf; _v1.y *= -_svgHeightHalf;
renderParticle( _v1, element, material, scene );
} else if ( element instanceof THREE.RenderableLine ) {
_v1 = element.v1; _v2 = element.v2;
_v1.positionScreen.x *= _svgWidthHalf; _v1.positionScreen.y *= - _svgHeightHalf;
_v2.positionScreen.x *= _svgWidthHalf; _v2.positionScreen.y *= - _svgHeightHalf;
_bboxRect.addPoint( _v1.positionScreen.x, _v1.positionScreen.y );
_bboxRect.addPoint( _v2.positionScreen.x, _v2.positionScreen.y );
if ( !_clipRect.intersects( _bboxRect ) ) {
continue;
}
renderLine( _v1, _v2, element, material, scene );
} else if ( element instanceof THREE.RenderableFace3 ) {
_v1 = element.v1; _v2 = element.v2; _v3 = element.v3;
_v1.positionScreen.x *= _svgWidthHalf; _v1.positionScreen.y *= - _svgHeightHalf;
_v2.positionScreen.x *= _svgWidthHalf; _v2.positionScreen.y *= - _svgHeightHalf;
_v3.positionScreen.x *= _svgWidthHalf; _v3.positionScreen.y *= - _svgHeightHalf;
_bboxRect.addPoint( _v1.positionScreen.x, _v1.positionScreen.y );
_bboxRect.addPoint( _v2.positionScreen.x, _v2.positionScreen.y );
_bboxRect.addPoint( _v3.positionScreen.x, _v3.positionScreen.y );
if ( !_clipRect.intersects( _bboxRect ) ) {
continue;
}
renderFace3( _v1, _v2, _v3, element, material, scene );
} else if ( element instanceof THREE.RenderableFace4 ) {
_v1 = element.v1; _v2 = element.v2; _v3 = element.v3; _v4 = element.v4;
_v1.positionScreen.x *= _svgWidthHalf; _v1.positionScreen.y *= -_svgHeightHalf;
_v2.positionScreen.x *= _svgWidthHalf; _v2.positionScreen.y *= -_svgHeightHalf;
_v3.positionScreen.x *= _svgWidthHalf; _v3.positionScreen.y *= -_svgHeightHalf;
_v4.positionScreen.x *= _svgWidthHalf; _v4.positionScreen.y *= -_svgHeightHalf;
_bboxRect.addPoint( _v1.positionScreen.x, _v1.positionScreen.y );
_bboxRect.addPoint( _v2.positionScreen.x, _v2.positionScreen.y );
_bboxRect.addPoint( _v3.positionScreen.x, _v3.positionScreen.y );
_bboxRect.addPoint( _v4.positionScreen.x, _v4.positionScreen.y );
if ( !_clipRect.intersects( _bboxRect) ) {
continue;
}
renderFace4( _v1, _v2, _v3, _v4, element, material, scene );
}
}
};
function calculateLights( lights ) {
var l, ll, light, lightColor;
_ambientLight.setRGB( 0, 0, 0 );
_directionalLights.setRGB( 0, 0, 0 );
_pointLights.setRGB( 0, 0, 0 );
for ( l = 0, ll = lights.length; l < ll; l++ ) {
light = lights[ l ];
lightColor = light.color;
if ( light instanceof THREE.AmbientLight ) {
_ambientLight.r += lightColor.r;
_ambientLight.g += lightColor.g;
_ambientLight.b += lightColor.b;
} else if ( light instanceof THREE.DirectionalLight ) {
_directionalLights.r += lightColor.r;
_directionalLights.g += lightColor.g;
_directionalLights.b += lightColor.b;
} else if ( light instanceof THREE.PointLight ) {
_pointLights.r += lightColor.r;
_pointLights.g += lightColor.g;
_pointLights.b += lightColor.b;
}
}
}
function calculateLight( lights, position, normal, color ) {
var l, ll, light, lightColor, lightPosition, amount;
for ( l = 0, ll = lights.length; l < ll; l ++ ) {
light = lights[ l ];
lightColor = light.color;
if ( light instanceof THREE.DirectionalLight ) {
lightPosition = light.matrixWorld.getPosition();
amount = normal.dot( lightPosition );
if ( amount <= 0 ) continue;
amount *= light.intensity;
color.r += lightColor.r * amount;
color.g += lightColor.g * amount;
color.b += lightColor.b * amount;
} else if ( light instanceof THREE.PointLight ) {
lightPosition = light.matrixWorld.getPosition();
amount = normal.dot( _vector3.sub( lightPosition, position ).normalize() );
if ( amount <= 0 ) continue;
amount *= light.distance == 0 ? 1 : 1 - Math.min( position.distanceTo( lightPosition ) / light.distance, 1 );
if ( amount == 0 ) continue;
amount *= light.intensity;
color.r += lightColor.r * amount;
color.g += lightColor.g * amount;
color.b += lightColor.b * amount;
}
}
}
function renderParticle( v1, element, material, scene ) {
/*
_svgNode = getCircleNode( _circleCount++ );
_svgNode.setAttribute( 'cx', v1.x );
_svgNode.setAttribute( 'cy', v1.y );
_svgNode.setAttribute( 'r', element.scale.x * _svgWidthHalf );
if ( material instanceof THREE.ParticleCircleMaterial ) {
if ( _enableLighting ) {
_color.r = _ambientLight.r + _directionalLights.r + _pointLights.r;
_color.g = _ambientLight.g + _directionalLights.g + _pointLights.g;
_color.b = _ambientLight.b + _directionalLights.b + _pointLights.b;
_color.r = material.color.r * _color.r;
_color.g = material.color.g * _color.g;
_color.b = material.color.b * _color.b;
_color.updateStyleString();
} else {
_color = material.color;
}
_svgNode.setAttribute( 'style', 'fill: ' + _color.__styleString );
}
_svg.appendChild( _svgNode );
*/
}
function renderLine ( v1, v2, element, material, scene ) {
_svgNode = getLineNode( _lineCount ++ );
_svgNode.setAttribute( 'x1', v1.positionScreen.x );
_svgNode.setAttribute( 'y1', v1.positionScreen.y );
_svgNode.setAttribute( 'x2', v2.positionScreen.x );
_svgNode.setAttribute( 'y2', v2.positionScreen.y );
if ( material instanceof THREE.LineBasicMaterial ) {
_svgNode.setAttribute( 'style', 'fill: none; stroke: ' + material.color.getContextStyle() + '; stroke-width: ' + material.linewidth + '; stroke-opacity: ' + material.opacity + '; stroke-linecap: ' + material.linecap + '; stroke-linejoin: ' + material.linejoin );
_svg.appendChild( _svgNode );
}
}
function renderFace3( v1, v2, v3, element, material, scene ) {
_this.info.render.vertices += 3;
_this.info.render.faces ++;
_svgNode = getPathNode( _pathCount ++ );
_svgNode.setAttribute( 'd', 'M ' + v1.positionScreen.x + ' ' + v1.positionScreen.y + ' L ' + v2.positionScreen.x + ' ' + v2.positionScreen.y + ' L ' + v3.positionScreen.x + ',' + v3.positionScreen.y + 'z' );
if ( material instanceof THREE.MeshBasicMaterial ) {
_color.copy( material.color );
} else if ( material instanceof THREE.MeshLambertMaterial ) {
if ( _enableLighting ) {
_color.r = _ambientLight.r;
_color.g = _ambientLight.g;
_color.b = _ambientLight.b;
calculateLight( _lights, element.centroidWorld, element.normalWorld, _color );
_color.r = Math.max( 0, Math.min( material.color.r * _color.r, 1 ) );
_color.g = Math.max( 0, Math.min( material.color.g * _color.g, 1 ) );
_color.b = Math.max( 0, Math.min( material.color.b * _color.b, 1 ) );
} else {
_color.copy( material.color );
}
} else if ( material instanceof THREE.MeshDepthMaterial ) {
_w = 1 - ( material.__2near / (material.__farPlusNear - element.z * material.__farMinusNear) );
_color.setRGB( _w, _w, _w );
} else if ( material instanceof THREE.MeshNormalMaterial ) {
_color.setRGB( normalToComponent( element.normalWorld.x ), normalToComponent( element.normalWorld.y ), normalToComponent( element.normalWorld.z ) );
}
if ( material.wireframe ) {
_svgNode.setAttribute( 'style', 'fill: none; stroke: ' + _color.getContextStyle() + '; stroke-width: ' + material.wireframeLinewidth + '; stroke-opacity: ' + material.opacity + '; stroke-linecap: ' + material.wireframeLinecap + '; stroke-linejoin: ' + material.wireframeLinejoin );
} else {
_svgNode.setAttribute( 'style', 'fill: ' + _color.getContextStyle() + '; fill-opacity: ' + material.opacity );
}
_svg.appendChild( _svgNode );
}
function renderFace4( v1, v2, v3, v4, element, material, scene ) {
_this.info.render.vertices += 4;
_this.info.render.faces ++;
_svgNode = getPathNode( _pathCount ++ );
_svgNode.setAttribute( 'd', 'M ' + v1.positionScreen.x + ' ' + v1.positionScreen.y + ' L ' + v2.positionScreen.x + ' ' + v2.positionScreen.y + ' L ' + v3.positionScreen.x + ',' + v3.positionScreen.y + ' L ' + v4.positionScreen.x + ',' + v4.positionScreen.y + 'z' );
if ( material instanceof THREE.MeshBasicMaterial ) {
_color.copy( material.color );
} else if ( material instanceof THREE.MeshLambertMaterial ) {
if ( _enableLighting ) {
_color.r = _ambientLight.r;
_color.g = _ambientLight.g;
_color.b = _ambientLight.b;
calculateLight( _lights, element.centroidWorld, element.normalWorld, _color );
_color.r = Math.max( 0, Math.min( material.color.r * _color.r, 1 ) );
_color.g = Math.max( 0, Math.min( material.color.g * _color.g, 1 ) );
_color.b = Math.max( 0, Math.min( material.color.b * _color.b, 1 ) );
} else {
_color.copy( material.color );
}
} else if ( material instanceof THREE.MeshDepthMaterial ) {
_w = 1 - ( material.__2near / (material.__farPlusNear - element.z * material.__farMinusNear) );
_color.setRGB( _w, _w, _w );
} else if ( material instanceof THREE.MeshNormalMaterial ) {
_color.setRGB( normalToComponent( element.normalWorld.x ), normalToComponent( element.normalWorld.y ), normalToComponent( element.normalWorld.z ) );
}
if ( material.wireframe ) {
_svgNode.setAttribute( 'style', 'fill: none; stroke: ' + _color.getContextStyle() + '; stroke-width: ' + material.wireframeLinewidth + '; stroke-opacity: ' + material.opacity + '; stroke-linecap: ' + material.wireframeLinecap + '; stroke-linejoin: ' + material.wireframeLinejoin );
} else {
_svgNode.setAttribute( 'style', 'fill: ' + _color.getContextStyle() + '; fill-opacity: ' + material.opacity );
}
_svg.appendChild( _svgNode );
}
function getLineNode( id ) {
if ( _svgLinePool[ id ] == null ) {
_svgLinePool[ id ] = document.createElementNS( 'http://www.w3.org/2000/svg', 'line' );
if ( _quality == 0 ) {
_svgLinePool[ id ].setAttribute( 'shape-rendering', 'crispEdges' ); //optimizeSpeed
}
return _svgLinePool[ id ];
}
return _svgLinePool[ id ];
}
function getPathNode( id ) {
if ( _svgPathPool[ id ] == null ) {
_svgPathPool[ id ] = document.createElementNS( 'http://www.w3.org/2000/svg', 'path' );
if ( _quality == 0 ) {
_svgPathPool[ id ].setAttribute( 'shape-rendering', 'crispEdges' ); //optimizeSpeed
}
return _svgPathPool[ id ];
}
return _svgPathPool[ id ];
}
function getCircleNode( id ) {
if ( _svgCirclePool[id] == null ) {
_svgCirclePool[ id ] = document.createElementNS( 'http://www.w3.org/2000/svg', 'circle' );
if ( _quality == 0 ) {
_svgCirclePool[id].setAttribute( 'shape-rendering', 'crispEdges' ); //optimizeSpeed
}
return _svgCirclePool[ id ];
}
return _svgCirclePool[ id ];
}
function normalToComponent( normal ) {
var component = ( normal + 1 ) * 0.5;
return component < 0 ? 0 : ( component > 1 ? 1 : component );
}
function pad( str ) {
while ( str.length < 6 ) str = '0' + str;
return str;
}
};
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
*/
THREE.ShaderChunk = {
// FOG
fog_pars_fragment: [
"#ifdef USE_FOG",
"uniform vec3 fogColor;",
"#ifdef FOG_EXP2",
"uniform float fogDensity;",
"#else",
"uniform float fogNear;",
"uniform float fogFar;",
"#endif",
"#endif"
].join("\n"),
fog_fragment: [
"#ifdef USE_FOG",
"float depth = gl_FragCoord.z / gl_FragCoord.w;",
"#ifdef FOG_EXP2",
"const float LOG2 = 1.442695;",
"float fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );",
"fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );",
"#else",
"float fogFactor = smoothstep( fogNear, fogFar, depth );",
"#endif",
"gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );",
"#endif"
].join("\n"),
// ENVIRONMENT MAP
envmap_pars_fragment: [
"#ifdef USE_ENVMAP",
"varying vec3 vReflect;",
"uniform float reflectivity;",
"uniform samplerCube envMap;",
"uniform float flipEnvMap;",
"uniform int combine;",
"#endif"
].join("\n"),
envmap_fragment: [
"#ifdef USE_ENVMAP",
"#ifdef DOUBLE_SIDED",
"float flipNormal = ( -1.0 + 2.0 * float( gl_FrontFacing ) );",
"vec4 cubeColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * vReflect.x, vReflect.yz ) );",
"#else",
"vec4 cubeColor = textureCube( envMap, vec3( flipEnvMap * vReflect.x, vReflect.yz ) );",
"#endif",
"#ifdef GAMMA_INPUT",
"cubeColor.xyz *= cubeColor.xyz;",
"#endif",
"if ( combine == 1 ) {",
"gl_FragColor.xyz = mix( gl_FragColor.xyz, cubeColor.xyz, reflectivity );",
"} else {",
"gl_FragColor.xyz = gl_FragColor.xyz * cubeColor.xyz;",
"}",
"#endif"
].join("\n"),
envmap_pars_vertex: [
"#ifdef USE_ENVMAP",
"varying vec3 vReflect;",
"uniform float refractionRatio;",
"uniform bool useRefract;",
"#endif"
].join("\n"),
envmap_vertex : [
"#ifdef USE_ENVMAP",
"vec4 mPosition = objectMatrix * vec4( position, 1.0 );",
"vec3 nWorld = mat3( objectMatrix[ 0 ].xyz, objectMatrix[ 1 ].xyz, objectMatrix[ 2 ].xyz ) * normal;",
"if ( useRefract ) {",
"vReflect = refract( normalize( mPosition.xyz - cameraPosition ), normalize( nWorld.xyz ), refractionRatio );",
"} else {",
"vReflect = reflect( normalize( mPosition.xyz - cameraPosition ), normalize( nWorld.xyz ) );",
"}",
"#endif"
].join("\n"),
// COLOR MAP (particles)
map_particle_pars_fragment: [
"#ifdef USE_MAP",
"uniform sampler2D map;",
"#endif"
].join("\n"),
map_particle_fragment: [
"#ifdef USE_MAP",
"gl_FragColor = gl_FragColor * texture2D( map, gl_PointCoord );",
"#endif"
].join("\n"),
// COLOR MAP (triangles)
map_pars_vertex: [
"#ifdef USE_MAP",
"varying vec2 vUv;",
"uniform vec4 offsetRepeat;",
"#endif"
].join("\n"),
map_pars_fragment: [
"#ifdef USE_MAP",
"varying vec2 vUv;",
"uniform sampler2D map;",
"#endif"
].join("\n"),
map_vertex: [
"#ifdef USE_MAP",
"vUv = uv * offsetRepeat.zw + offsetRepeat.xy;",
"#endif"
].join("\n"),
map_fragment: [
"#ifdef USE_MAP",
"#ifdef GAMMA_INPUT",
"vec4 texelColor = texture2D( map, vUv );",
"texelColor.xyz *= texelColor.xyz;",
"gl_FragColor = gl_FragColor * texelColor;",
"#else",
"gl_FragColor = gl_FragColor * texture2D( map, vUv );",
"#endif",
"#endif"
].join("\n"),
// LIGHT MAP
lightmap_pars_fragment: [
"#ifdef USE_LIGHTMAP",
"varying vec2 vUv2;",
"uniform sampler2D lightMap;",
"#endif"
].join("\n"),
lightmap_pars_vertex: [
"#ifdef USE_LIGHTMAP",
"varying vec2 vUv2;",
"#endif"
].join("\n"),
lightmap_fragment: [
"#ifdef USE_LIGHTMAP",
"gl_FragColor = gl_FragColor * texture2D( lightMap, vUv2 );",
"#endif"
].join("\n"),
lightmap_vertex: [
"#ifdef USE_LIGHTMAP",
"vUv2 = uv2;",
"#endif"
].join("\n"),
// LIGHTS LAMBERT
lights_lambert_pars_vertex: [
"uniform vec3 ambient;",
"uniform vec3 diffuse;",
"uniform vec3 emissive;",
"uniform vec3 ambientLightColor;",
"#if MAX_DIR_LIGHTS > 0",
"uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];",
"uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];",
"#endif",
"#if MAX_POINT_LIGHTS > 0",
"uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];",
"uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];",
"uniform float pointLightDistance[ MAX_POINT_LIGHTS ];",
"#endif",
"#if MAX_SPOT_LIGHTS > 0",
"uniform vec3 spotLightColor[ MAX_SPOT_LIGHTS ];",
"uniform vec3 spotLightPosition[ MAX_SPOT_LIGHTS ];",
"uniform vec3 spotLightDirection[ MAX_SPOT_LIGHTS ];",
"uniform float spotLightDistance[ MAX_SPOT_LIGHTS ];",
"uniform float spotLightAngle[ MAX_SPOT_LIGHTS ];",
"uniform float spotLightExponent[ MAX_SPOT_LIGHTS ];",
"#endif",
"#ifdef WRAP_AROUND",
"uniform vec3 wrapRGB;",
"#endif"
].join("\n"),
lights_lambert_vertex: [
"vLightFront = vec3( 0.0 );",
"#ifdef DOUBLE_SIDED",
"vLightBack = vec3( 0.0 );",
"#endif",
"transformedNormal = normalize( transformedNormal );",
"#if MAX_DIR_LIGHTS > 0",
"for( int i = 0; i < MAX_DIR_LIGHTS; i ++ ) {",
"vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );",
"vec3 dirVector = normalize( lDirection.xyz );",
"float dotProduct = dot( transformedNormal, dirVector );",
"vec3 directionalLightWeighting = vec3( max( dotProduct, 0.0 ) );",
"#ifdef DOUBLE_SIDED",
"vec3 directionalLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );",
"#ifdef WRAP_AROUND",
"vec3 directionalLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );",
"#endif",
"#endif",
"#ifdef WRAP_AROUND",
"vec3 directionalLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );",
"directionalLightWeighting = mix( directionalLightWeighting, directionalLightWeightingHalf, wrapRGB );",
"#ifdef DOUBLE_SIDED",
"directionalLightWeightingBack = mix( directionalLightWeightingBack, directionalLightWeightingHalfBack, wrapRGB );",
"#endif",
"#endif",
"vLightFront += directionalLightColor[ i ] * directionalLightWeighting;",
"#ifdef DOUBLE_SIDED",
"vLightBack += directionalLightColor[ i ] * directionalLightWeightingBack;",
"#endif",
"}",
"#endif",
"#if MAX_POINT_LIGHTS > 0",
"for( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {",
"vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );",
"vec3 lVector = lPosition.xyz - mvPosition.xyz;",
"float lDistance = 1.0;",
"if ( pointLightDistance[ i ] > 0.0 )",
"lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );",
"lVector = normalize( lVector );",
"float dotProduct = dot( transformedNormal, lVector );",
"vec3 pointLightWeighting = vec3( max( dotProduct, 0.0 ) );",
"#ifdef DOUBLE_SIDED",
"vec3 pointLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );",
"#ifdef WRAP_AROUND",
"vec3 pointLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );",
"#endif",
"#endif",
"#ifdef WRAP_AROUND",
"vec3 pointLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );",
"pointLightWeighting = mix( pointLightWeighting, pointLightWeightingHalf, wrapRGB );",
"#ifdef DOUBLE_SIDED",
"pointLightWeightingBack = mix( pointLightWeightingBack, pointLightWeightingHalfBack, wrapRGB );",
"#endif",
"#endif",
"vLightFront += pointLightColor[ i ] * pointLightWeighting * lDistance;",
"#ifdef DOUBLE_SIDED",
"vLightBack += pointLightColor[ i ] * pointLightWeightingBack * lDistance;",
"#endif",
"}",
"#endif",
"#if MAX_SPOT_LIGHTS > 0",
"for( int i = 0; i < MAX_SPOT_LIGHTS; i ++ ) {",
"vec4 lPosition = viewMatrix * vec4( spotLightPosition[ i ], 1.0 );",
"vec3 lVector = lPosition.xyz - mvPosition.xyz;",
"lVector = normalize( lVector );",
"float spotEffect = dot( spotLightDirection[ i ], normalize( spotLightPosition[ i ] - mPosition.xyz ) );",
"if ( spotEffect > spotLightAngle[ i ] ) {",
"spotEffect = pow( spotEffect, spotLightExponent[ i ] );",
"float lDistance = 1.0;",
"if ( spotLightDistance[ i ] > 0.0 )",
"lDistance = 1.0 - min( ( length( lVector ) / spotLightDistance[ i ] ), 1.0 );",
"float dotProduct = dot( transformedNormal, lVector );",
"vec3 spotLightWeighting = vec3( max( dotProduct, 0.0 ) );",
"#ifdef DOUBLE_SIDED",
"vec3 spotLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );",
"#ifdef WRAP_AROUND",
"vec3 spotLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );",
"#endif",
"#endif",
"#ifdef WRAP_AROUND",
"vec3 spotLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );",
"spotLightWeighting = mix( spotLightWeighting, spotLightWeightingHalf, wrapRGB );",
"#ifdef DOUBLE_SIDED",
"spotLightWeightingBack = mix( spotLightWeightingBack, spotLightWeightingHalfBack, wrapRGB );",
"#endif",
"#endif",
"vLightFront += spotLightColor[ i ] * spotLightWeighting * lDistance * spotEffect;",
"#ifdef DOUBLE_SIDED",
"vLightBack += spotLightColor[ i ] * spotLightWeightingBack * lDistance * spotEffect;",
"#endif",
"}",
"}",
"#endif",
"vLightFront = vLightFront * diffuse + ambient * ambientLightColor + emissive;",
"#ifdef DOUBLE_SIDED",
"vLightBack = vLightBack * diffuse + ambient * ambientLightColor + emissive;",
"#endif"
].join("\n"),
// LIGHTS PHONG
lights_phong_pars_vertex: [
"#ifndef PHONG_PER_PIXEL",
"#if MAX_POINT_LIGHTS > 0",
"uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];",
"uniform float pointLightDistance[ MAX_POINT_LIGHTS ];",
"varying vec4 vPointLight[ MAX_POINT_LIGHTS ];",
"#endif",
"#if MAX_SPOT_LIGHTS > 0",
"uniform vec3 spotLightPosition[ MAX_SPOT_LIGHTS ];",
"uniform float spotLightDistance[ MAX_SPOT_LIGHTS ];",
"varying vec4 vSpotLight[ MAX_SPOT_LIGHTS ];",
"#endif",
"#endif",
"#if MAX_SPOT_LIGHTS > 0",
"varying vec3 vWorldPosition;",
"#endif"
].join("\n"),
lights_phong_vertex: [
"#ifndef PHONG_PER_PIXEL",
"#if MAX_POINT_LIGHTS > 0",
"for( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {",
"vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );",
"vec3 lVector = lPosition.xyz - mvPosition.xyz;",
"float lDistance = 1.0;",
"if ( pointLightDistance[ i ] > 0.0 )",
"lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );",
"vPointLight[ i ] = vec4( lVector, lDistance );",
"}",
"#endif",
"#if MAX_SPOT_LIGHTS > 0",
"for( int i = 0; i < MAX_SPOT_LIGHTS; i ++ ) {",
"vec4 lPosition = viewMatrix * vec4( spotLightPosition[ i ], 1.0 );",
"vec3 lVector = lPosition.xyz - mvPosition.xyz;",
"float lDistance = 1.0;",
"if ( spotLightDistance[ i ] > 0.0 )",
"lDistance = 1.0 - min( ( length( lVector ) / spotLightDistance[ i ] ), 1.0 );",
"vSpotLight[ i ] = vec4( lVector, lDistance );",
"}",
"#endif",
"#endif",
"#if MAX_SPOT_LIGHTS > 0",
"vWorldPosition = mPosition.xyz;",
"#endif"
].join("\n"),
lights_phong_pars_fragment: [
"uniform vec3 ambientLightColor;",
"#if MAX_DIR_LIGHTS > 0",
"uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];",
"uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];",
"#endif",
"#if MAX_POINT_LIGHTS > 0",
"uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];",
"#ifdef PHONG_PER_PIXEL",
"uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];",
"uniform float pointLightDistance[ MAX_POINT_LIGHTS ];",
"#else",
"varying vec4 vPointLight[ MAX_POINT_LIGHTS ];",
"#endif",
"#endif",
"#if MAX_SPOT_LIGHTS > 0",
"uniform vec3 spotLightColor[ MAX_SPOT_LIGHTS ];",
"uniform vec3 spotLightPosition[ MAX_SPOT_LIGHTS ];",
"uniform vec3 spotLightDirection[ MAX_SPOT_LIGHTS ];",
"uniform float spotLightAngle[ MAX_SPOT_LIGHTS ];",
"uniform float spotLightExponent[ MAX_SPOT_LIGHTS ];",
"#ifdef PHONG_PER_PIXEL",
"uniform float spotLightDistance[ MAX_SPOT_LIGHTS ];",
"#else",
"varying vec4 vSpotLight[ MAX_SPOT_LIGHTS ];",
"#endif",
"varying vec3 vWorldPosition;",
"#endif",
"#ifdef WRAP_AROUND",
"uniform vec3 wrapRGB;",
"#endif",
"varying vec3 vViewPosition;",
"varying vec3 vNormal;"
].join("\n"),
lights_phong_fragment: [
"vec3 normal = normalize( vNormal );",
"vec3 viewPosition = normalize( vViewPosition );",
"#ifdef DOUBLE_SIDED",
"normal = normal * ( -1.0 + 2.0 * float( gl_FrontFacing ) );",
"#endif",
"#if MAX_POINT_LIGHTS > 0",
"vec3 pointDiffuse = vec3( 0.0 );",
"vec3 pointSpecular = vec3( 0.0 );",
"for ( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {",
"#ifdef PHONG_PER_PIXEL",
"vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );",
"vec3 lVector = lPosition.xyz + vViewPosition.xyz;",
"float lDistance = 1.0;",
"if ( pointLightDistance[ i ] > 0.0 )",
"lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );",
"lVector = normalize( lVector );",
"#else",
"vec3 lVector = normalize( vPointLight[ i ].xyz );",
"float lDistance = vPointLight[ i ].w;",
"#endif",
// diffuse
"float dotProduct = dot( normal, lVector );",
"#ifdef WRAP_AROUND",
"float pointDiffuseWeightFull = max( dotProduct, 0.0 );",
"float pointDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );",
"vec3 pointDiffuseWeight = mix( vec3 ( pointDiffuseWeightFull ), vec3( pointDiffuseWeightHalf ), wrapRGB );",
"#else",
"float pointDiffuseWeight = max( dotProduct, 0.0 );",
"#endif",
"pointDiffuse += diffuse * pointLightColor[ i ] * pointDiffuseWeight * lDistance;",
// specular
"vec3 pointHalfVector = normalize( lVector + viewPosition );",
"float pointDotNormalHalf = max( dot( normal, pointHalfVector ), 0.0 );",
"float pointSpecularWeight = max( pow( pointDotNormalHalf, shininess ), 0.0 );",
"#ifdef PHYSICALLY_BASED_SHADING",
// 2.0 => 2.0001 is hack to work around ANGLE bug
"float specularNormalization = ( shininess + 2.0001 ) / 8.0;",
"vec3 schlick = specular + vec3( 1.0 - specular ) * pow( 1.0 - dot( lVector, pointHalfVector ), 5.0 );",
"pointSpecular += schlick * pointLightColor[ i ] * pointSpecularWeight * pointDiffuseWeight * lDistance * specularNormalization;",
"#else",
"pointSpecular += specular * pointLightColor[ i ] * pointSpecularWeight * pointDiffuseWeight * lDistance;",
"#endif",
"}",
"#endif",
"#if MAX_SPOT_LIGHTS > 0",
"vec3 spotDiffuse = vec3( 0.0 );",
"vec3 spotSpecular = vec3( 0.0 );",
"for ( int i = 0; i < MAX_SPOT_LIGHTS; i ++ ) {",
"#ifdef PHONG_PER_PIXEL",
"vec4 lPosition = viewMatrix * vec4( spotLightPosition[ i ], 1.0 );",
"vec3 lVector = lPosition.xyz + vViewPosition.xyz;",
"float lDistance = 1.0;",
"if ( spotLightDistance[ i ] > 0.0 )",
"lDistance = 1.0 - min( ( length( lVector ) / spotLightDistance[ i ] ), 1.0 );",
"lVector = normalize( lVector );",
"#else",
"vec3 lVector = normalize( vSpotLight[ i ].xyz );",
"float lDistance = vSpotLight[ i ].w;",
"#endif",
"float spotEffect = dot( spotLightDirection[ i ], normalize( spotLightPosition[ i ] - vWorldPosition ) );",
"if ( spotEffect > spotLightAngle[ i ] ) {",
"spotEffect = pow( spotEffect, spotLightExponent[ i ] );",
// diffuse
"float dotProduct = dot( normal, lVector );",
"#ifdef WRAP_AROUND",
"float spotDiffuseWeightFull = max( dotProduct, 0.0 );",
"float spotDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );",
"vec3 spotDiffuseWeight = mix( vec3 ( spotDiffuseWeightFull ), vec3( spotDiffuseWeightHalf ), wrapRGB );",
"#else",
"float spotDiffuseWeight = max( dotProduct, 0.0 );",
"#endif",
"spotDiffuse += diffuse * spotLightColor[ i ] * spotDiffuseWeight * lDistance * spotEffect;",
// specular
"vec3 spotHalfVector = normalize( lVector + viewPosition );",
"float spotDotNormalHalf = max( dot( normal, spotHalfVector ), 0.0 );",
"float spotSpecularWeight = max( pow( spotDotNormalHalf, shininess ), 0.0 );",
"#ifdef PHYSICALLY_BASED_SHADING",
// 2.0 => 2.0001 is hack to work around ANGLE bug
"float specularNormalization = ( shininess + 2.0001 ) / 8.0;",
"vec3 schlick = specular + vec3( 1.0 - specular ) * pow( 1.0 - dot( lVector, spotHalfVector ), 5.0 );",
"spotSpecular += schlick * spotLightColor[ i ] * spotSpecularWeight * spotDiffuseWeight * lDistance * specularNormalization * spotEffect;",
"#else",
"spotSpecular += specular * spotLightColor[ i ] * spotSpecularWeight * spotDiffuseWeight * lDistance * spotEffect;",
"#endif",
"}",
"}",
"#endif",
"#if MAX_DIR_LIGHTS > 0",
"vec3 dirDiffuse = vec3( 0.0 );",
"vec3 dirSpecular = vec3( 0.0 );" ,
"for( int i = 0; i < MAX_DIR_LIGHTS; i ++ ) {",
"vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );",
"vec3 dirVector = normalize( lDirection.xyz );",
// diffuse
"float dotProduct = dot( normal, dirVector );",
"#ifdef WRAP_AROUND",
"float dirDiffuseWeightFull = max( dotProduct, 0.0 );",
"float dirDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );",
"vec3 dirDiffuseWeight = mix( vec3( dirDiffuseWeightFull ), vec3( dirDiffuseWeightHalf ), wrapRGB );",
"#else",
"float dirDiffuseWeight = max( dotProduct, 0.0 );",
"#endif",
"dirDiffuse += diffuse * directionalLightColor[ i ] * dirDiffuseWeight;",
// specular
"vec3 dirHalfVector = normalize( dirVector + viewPosition );",
"float dirDotNormalHalf = max( dot( normal, dirHalfVector ), 0.0 );",
"float dirSpecularWeight = max( pow( dirDotNormalHalf, shininess ), 0.0 );",
"#ifdef PHYSICALLY_BASED_SHADING",
/*
// fresnel term from skin shader
"const float F0 = 0.128;",
"float base = 1.0 - dot( viewPosition, dirHalfVector );",
"float exponential = pow( base, 5.0 );",
"float fresnel = exponential + F0 * ( 1.0 - exponential );",
*/
/*
// fresnel term from fresnel shader
"const float mFresnelBias = 0.08;",
"const float mFresnelScale = 0.3;",
"const float mFresnelPower = 5.0;",
"float fresnel = mFresnelBias + mFresnelScale * pow( 1.0 + dot( normalize( -viewPosition ), normal ), mFresnelPower );",
*/
// 2.0 => 2.0001 is hack to work around ANGLE bug
"float specularNormalization = ( shininess + 2.0001 ) / 8.0;",
//"dirSpecular += specular * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight * specularNormalization * fresnel;",
"vec3 schlick = specular + vec3( 1.0 - specular ) * pow( 1.0 - dot( dirVector, dirHalfVector ), 5.0 );",
"dirSpecular += schlick * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight * specularNormalization;",
"#else",
"dirSpecular += specular * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight;",
"#endif",
"}",
"#endif",
"vec3 totalDiffuse = vec3( 0.0 );",
"vec3 totalSpecular = vec3( 0.0 );",
"#if MAX_DIR_LIGHTS > 0",
"totalDiffuse += dirDiffuse;",
"totalSpecular += dirSpecular;",
"#endif",
"#if MAX_POINT_LIGHTS > 0",
"totalDiffuse += pointDiffuse;",
"totalSpecular += pointSpecular;",
"#endif",
"#if MAX_SPOT_LIGHTS > 0",
"totalDiffuse += spotDiffuse;",
"totalSpecular += spotSpecular;",
"#endif",
"#ifdef METAL",
"gl_FragColor.xyz = gl_FragColor.xyz * ( emissive + totalDiffuse + ambientLightColor * ambient + totalSpecular );",
"#else",
"gl_FragColor.xyz = gl_FragColor.xyz * ( emissive + totalDiffuse + ambientLightColor * ambient ) + totalSpecular;",
"#endif"
].join("\n"),
// VERTEX COLORS
color_pars_fragment: [
"#ifdef USE_COLOR",
"varying vec3 vColor;",
"#endif"
].join("\n"),
color_fragment: [
"#ifdef USE_COLOR",
"gl_FragColor = gl_FragColor * vec4( vColor, opacity );",
"#endif"
].join("\n"),
color_pars_vertex: [
"#ifdef USE_COLOR",
"varying vec3 vColor;",
"#endif"
].join("\n"),
color_vertex: [
"#ifdef USE_COLOR",
"#ifdef GAMMA_INPUT",
"vColor = color * color;",
"#else",
"vColor = color;",
"#endif",
"#endif"
].join("\n"),
// SKINNING
skinning_pars_vertex: [
"#ifdef USE_SKINNING",
"uniform mat4 boneGlobalMatrices[ MAX_BONES ];",
"#endif"
].join("\n"),
skinning_vertex: [
"#ifdef USE_SKINNING",
"gl_Position = ( boneGlobalMatrices[ int( skinIndex.x ) ] * skinVertexA ) * skinWeight.x;",
"gl_Position += ( boneGlobalMatrices[ int( skinIndex.y ) ] * skinVertexB ) * skinWeight.y;",
"gl_Position = projectionMatrix * modelViewMatrix * gl_Position;",
"#endif"
].join("\n"),
// MORPHING
morphtarget_pars_vertex: [
"#ifdef USE_MORPHTARGETS",
"#ifndef USE_MORPHNORMALS",
"uniform float morphTargetInfluences[ 8 ];",
"#else",
"uniform float morphTargetInfluences[ 4 ];",
"#endif",
"#endif"
].join("\n"),
morphtarget_vertex: [
"#ifdef USE_MORPHTARGETS",
"vec3 morphed = vec3( 0.0 );",
"morphed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];",
"morphed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];",
"morphed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];",
"morphed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];",
"#ifndef USE_MORPHNORMALS",
"morphed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];",
"morphed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];",
"morphed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];",
"morphed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];",
"#endif",
"morphed += position;",
"gl_Position = projectionMatrix * modelViewMatrix * vec4( morphed, 1.0 );",
"#endif"
].join("\n"),
default_vertex : [
"#ifndef USE_MORPHTARGETS",
"#ifndef USE_SKINNING",
"gl_Position = projectionMatrix * mvPosition;",
"#endif",
"#endif"
].join("\n"),
morphnormal_vertex: [
"#ifdef USE_MORPHNORMALS",
"vec3 morphedNormal = vec3( 0.0 );",
"morphedNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];",
"morphedNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];",
"morphedNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];",
"morphedNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];",
"morphedNormal += normal;",
"vec3 transformedNormal = normalMatrix * morphedNormal;",
"#else",
"vec3 transformedNormal = normalMatrix * normal;",
"#endif"
].join("\n"),
// SHADOW MAP
// based on SpiderGL shadow map and Fabien Sanglard's GLSL shadow mapping examples
// http://spidergl.org/example.php?id=6
// http://fabiensanglard.net/shadowmapping
shadowmap_pars_fragment: [
"#ifdef USE_SHADOWMAP",
"uniform sampler2D shadowMap[ MAX_SHADOWS ];",
"uniform vec2 shadowMapSize[ MAX_SHADOWS ];",
"uniform float shadowDarkness[ MAX_SHADOWS ];",
"uniform float shadowBias[ MAX_SHADOWS ];",
"varying vec4 vShadowCoord[ MAX_SHADOWS ];",
"float unpackDepth( const in vec4 rgba_depth ) {",
"const vec4 bit_shift = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );",
"float depth = dot( rgba_depth, bit_shift );",
"return depth;",
"}",
"#endif"
].join("\n"),
shadowmap_fragment: [
"#ifdef USE_SHADOWMAP",
"#ifdef SHADOWMAP_DEBUG",
"vec3 frustumColors[3];",
"frustumColors[0] = vec3( 1.0, 0.5, 0.0 );",
"frustumColors[1] = vec3( 0.0, 1.0, 0.8 );",
"frustumColors[2] = vec3( 0.0, 0.5, 1.0 );",
"#endif",
"#ifdef SHADOWMAP_CASCADE",
"int inFrustumCount = 0;",
"#endif",
"float fDepth;",
"vec3 shadowColor = vec3( 1.0 );",
"for( int i = 0; i < MAX_SHADOWS; i ++ ) {",
"vec3 shadowCoord = vShadowCoord[ i ].xyz / vShadowCoord[ i ].w;",
// "if ( something && something )" breaks ATI OpenGL shader compiler
// "if ( all( something, something ) )" using this instead
"bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );",
"bool inFrustum = all( inFrustumVec );",
// don't shadow pixels outside of light frustum
// use just first frustum (for cascades)
// don't shadow pixels behind far plane of light frustum
"#ifdef SHADOWMAP_CASCADE",
"inFrustumCount += int( inFrustum );",
"bvec3 frustumTestVec = bvec3( inFrustum, inFrustumCount == 1, shadowCoord.z <= 1.0 );",
"#else",
"bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );",
"#endif",
"bool frustumTest = all( frustumTestVec );",
"if ( frustumTest ) {",
"shadowCoord.z += shadowBias[ i ];",
"#ifdef SHADOWMAP_SOFT",
// Percentage-close filtering
// (9 pixel kernel)
// http://fabiensanglard.net/shadowmappingPCF/
"float shadow = 0.0;",
/*
// nested loops breaks shader compiler / validator on some ATI cards when using OpenGL
// must enroll loop manually
"for ( float y = -1.25; y <= 1.25; y += 1.25 )",
"for ( float x = -1.25; x <= 1.25; x += 1.25 ) {",
"vec4 rgbaDepth = texture2D( shadowMap[ i ], vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy );",
// doesn't seem to produce any noticeable visual difference compared to simple "texture2D" lookup
//"vec4 rgbaDepth = texture2DProj( shadowMap[ i ], vec4( vShadowCoord[ i ].w * ( vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy ), 0.05, vShadowCoord[ i ].w ) );",
"float fDepth = unpackDepth( rgbaDepth );",
"if ( fDepth < shadowCoord.z )",
"shadow += 1.0;",
"}",
"shadow /= 9.0;",
*/
"const float shadowDelta = 1.0 / 9.0;",
"float xPixelOffset = 1.0 / shadowMapSize[ i ].x;",
"float yPixelOffset = 1.0 / shadowMapSize[ i ].y;",
"float dx0 = -1.25 * xPixelOffset;",
"float dy0 = -1.25 * yPixelOffset;",
"float dx1 = 1.25 * xPixelOffset;",
"float dy1 = 1.25 * yPixelOffset;",
"fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy0 ) ) );",
"if ( fDepth < shadowCoord.z ) shadow += shadowDelta;",
"fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy0 ) ) );",
"if ( fDepth < shadowCoord.z ) shadow += shadowDelta;",
"fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy0 ) ) );",
"if ( fDepth < shadowCoord.z ) shadow += shadowDelta;",
"fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, 0.0 ) ) );",
"if ( fDepth < shadowCoord.z ) shadow += shadowDelta;",
"fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy ) );",
"if ( fDepth < shadowCoord.z ) shadow += shadowDelta;",
"fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, 0.0 ) ) );",
"if ( fDepth < shadowCoord.z ) shadow += shadowDelta;",
"fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy1 ) ) );",
"if ( fDepth < shadowCoord.z ) shadow += shadowDelta;",
"fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy1 ) ) );",
"if ( fDepth < shadowCoord.z ) shadow += shadowDelta;",
"fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy1 ) ) );",
"if ( fDepth < shadowCoord.z ) shadow += shadowDelta;",
"shadowColor = shadowColor * vec3( ( 1.0 - shadowDarkness[ i ] * shadow ) );",
"#else",
"vec4 rgbaDepth = texture2D( shadowMap[ i ], shadowCoord.xy );",
"float fDepth = unpackDepth( rgbaDepth );",
"if ( fDepth < shadowCoord.z )",
// spot with multiple shadows is darker
"shadowColor = shadowColor * vec3( 1.0 - shadowDarkness[ i ] );",
// spot with multiple shadows has the same color as single shadow spot
//"shadowColor = min( shadowColor, vec3( shadowDarkness[ i ] ) );",
"#endif",
"}",
"#ifdef SHADOWMAP_DEBUG",
"#ifdef SHADOWMAP_CASCADE",
"if ( inFrustum && inFrustumCount == 1 ) gl_FragColor.xyz *= frustumColors[ i ];",
"#else",
"if ( inFrustum ) gl_FragColor.xyz *= frustumColors[ i ];",
"#endif",
"#endif",
"}",
"#ifdef GAMMA_OUTPUT",
"shadowColor *= shadowColor;",
"#endif",
"gl_FragColor.xyz = gl_FragColor.xyz * shadowColor;",
"#endif"
].join("\n"),
shadowmap_pars_vertex: [
"#ifdef USE_SHADOWMAP",
"varying vec4 vShadowCoord[ MAX_SHADOWS ];",
"uniform mat4 shadowMatrix[ MAX_SHADOWS ];",
"#endif"
].join("\n"),
shadowmap_vertex: [
"#ifdef USE_SHADOWMAP",
"for( int i = 0; i < MAX_SHADOWS; i ++ ) {",
"#ifdef USE_MORPHTARGETS",
"vShadowCoord[ i ] = shadowMatrix[ i ] * objectMatrix * vec4( morphed, 1.0 );",
"#else",
"vShadowCoord[ i ] = shadowMatrix[ i ] * objectMatrix * vec4( position, 1.0 );",
"#endif",
"}",
"#endif"
].join("\n"),
// ALPHATEST
alphatest_fragment: [
"#ifdef ALPHATEST",
"if ( gl_FragColor.a < ALPHATEST ) discard;",
"#endif"
].join("\n"),
// LINEAR SPACE
linear_to_gamma_fragment: [
"#ifdef GAMMA_OUTPUT",
"gl_FragColor.xyz = sqrt( gl_FragColor.xyz );",
"#endif"
].join("\n"),
};
THREE.UniformsUtils = {
merge: function ( uniforms ) {
var u, p, tmp, merged = {};
for ( u = 0; u < uniforms.length; u++ ) {
tmp = this.clone( uniforms[ u ] );
for ( p in tmp ) {
merged[ p ] = tmp[ p ];
}
}
return merged;
},
clone: function ( uniforms_src ) {
var u, p, parameter, parameter_src, uniforms_dst = {};
for ( u in uniforms_src ) {
uniforms_dst[ u ] = {};
for ( p in uniforms_src[ u ] ) {
parameter_src = uniforms_src[ u ][ p ];
if ( parameter_src instanceof THREE.Color ||
parameter_src instanceof THREE.Vector2 ||
parameter_src instanceof THREE.Vector3 ||
parameter_src instanceof THREE.Vector4 ||
parameter_src instanceof THREE.Matrix4 ||
parameter_src instanceof THREE.Texture ) {
uniforms_dst[ u ][ p ] = parameter_src.clone();
} else if ( parameter_src instanceof Array ) {
uniforms_dst[ u ][ p ] = parameter_src.slice();
} else {
uniforms_dst[ u ][ p ] = parameter_src;
}
}
}
return uniforms_dst;
}
};
THREE.UniformsLib = {
common: {
"diffuse" : { type: "c", value: new THREE.Color( 0xeeeeee ) },
"opacity" : { type: "f", value: 1.0 },
"map" : { type: "t", value: 0, texture: null },
"offsetRepeat" : { type: "v4", value: new THREE.Vector4( 0, 0, 1, 1 ) },
"lightMap" : { type: "t", value: 2, texture: null },
"envMap" : { type: "t", value: 1, texture: null },
"flipEnvMap" : { type: "f", value: -1 },
"useRefract" : { type: "i", value: 0 },
"reflectivity" : { type: "f", value: 1.0 },
"refractionRatio" : { type: "f", value: 0.98 },
"combine" : { type: "i", value: 0 },
"morphTargetInfluences" : { type: "f", value: 0 }
},
fog : {
"fogDensity" : { type: "f", value: 0.00025 },
"fogNear" : { type: "f", value: 1 },
"fogFar" : { type: "f", value: 2000 },
"fogColor" : { type: "c", value: new THREE.Color( 0xffffff ) }
},
lights: {
"ambientLightColor" : { type: "fv", value: [] },
"directionalLightDirection" : { type: "fv", value: [] },
"directionalLightColor" : { type: "fv", value: [] },
"pointLightColor" : { type: "fv", value: [] },
"pointLightPosition" : { type: "fv", value: [] },
"pointLightDistance" : { type: "fv1", value: [] },
"spotLightColor" : { type: "fv", value: [] },
"spotLightPosition" : { type: "fv", value: [] },
"spotLightDirection" : { type: "fv", value: [] },
"spotLightDistance" : { type: "fv1", value: [] },
"spotLightAngle" : { type: "fv1", value: [] },
"spotLightExponent" : { type: "fv1", value: [] }
},
particle: {
"psColor" : { type: "c", value: new THREE.Color( 0xeeeeee ) },
"opacity" : { type: "f", value: 1.0 },
"size" : { type: "f", value: 1.0 },
"scale" : { type: "f", value: 1.0 },
"map" : { type: "t", value: 0, texture: null },
"fogDensity" : { type: "f", value: 0.00025 },
"fogNear" : { type: "f", value: 1 },
"fogFar" : { type: "f", value: 2000 },
"fogColor" : { type: "c", value: new THREE.Color( 0xffffff ) }
},
shadowmap: {
"shadowMap": { type: "tv", value: 6, texture: [] },
"shadowMapSize": { type: "v2v", value: [] },
"shadowBias" : { type: "fv1", value: [] },
"shadowDarkness": { type: "fv1", value: [] },
"shadowMatrix" : { type: "m4v", value: [] },
}
};
THREE.ShaderLib = {
'depth': {
uniforms: {
"mNear": { type: "f", value: 1.0 },
"mFar" : { type: "f", value: 2000.0 },
"opacity" : { type: "f", value: 1.0 }
},
vertexShader: [
"void main() {",
"gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );",
"}"
].join("\n"),
fragmentShader: [
"uniform float mNear;",
"uniform float mFar;",
"uniform float opacity;",
"void main() {",
"float depth = gl_FragCoord.z / gl_FragCoord.w;",
"float color = 1.0 - smoothstep( mNear, mFar, depth );",
"gl_FragColor = vec4( vec3( color ), opacity );",
"}"
].join("\n")
},
'normal': {
uniforms: {
"opacity" : { type: "f", value: 1.0 }
},
vertexShader: [
"varying vec3 vNormal;",
"void main() {",
"vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );",
"vNormal = normalMatrix * normal;",
"gl_Position = projectionMatrix * mvPosition;",
"}"
].join("\n"),
fragmentShader: [
"uniform float opacity;",
"varying vec3 vNormal;",
"void main() {",
"gl_FragColor = vec4( 0.5 * normalize( vNormal ) + 0.5, opacity );",
"}"
].join("\n")
},
'basic': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ "common" ],
THREE.UniformsLib[ "fog" ],
THREE.UniformsLib[ "shadowmap" ]
] ),
vertexShader: [
THREE.ShaderChunk[ "map_pars_vertex" ],
THREE.ShaderChunk[ "lightmap_pars_vertex" ],
THREE.ShaderChunk[ "envmap_pars_vertex" ],
THREE.ShaderChunk[ "color_pars_vertex" ],
THREE.ShaderChunk[ "skinning_pars_vertex" ],
THREE.ShaderChunk[ "morphtarget_pars_vertex" ],
THREE.ShaderChunk[ "shadowmap_pars_vertex" ],
"void main() {",
"vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );",
THREE.ShaderChunk[ "map_vertex" ],
THREE.ShaderChunk[ "lightmap_vertex" ],
THREE.ShaderChunk[ "envmap_vertex" ],
THREE.ShaderChunk[ "color_vertex" ],
THREE.ShaderChunk[ "skinning_vertex" ],
THREE.ShaderChunk[ "morphtarget_vertex" ],
THREE.ShaderChunk[ "default_vertex" ],
THREE.ShaderChunk[ "shadowmap_vertex" ],
"}"
].join("\n"),
fragmentShader: [
"uniform vec3 diffuse;",
"uniform float opacity;",
THREE.ShaderChunk[ "color_pars_fragment" ],
THREE.ShaderChunk[ "map_pars_fragment" ],
THREE.ShaderChunk[ "lightmap_pars_fragment" ],
THREE.ShaderChunk[ "envmap_pars_fragment" ],
THREE.ShaderChunk[ "fog_pars_fragment" ],
THREE.ShaderChunk[ "shadowmap_pars_fragment" ],
"void main() {",
"gl_FragColor = vec4( diffuse, opacity );",
THREE.ShaderChunk[ "map_fragment" ],
THREE.ShaderChunk[ "alphatest_fragment" ],
THREE.ShaderChunk[ "lightmap_fragment" ],
THREE.ShaderChunk[ "color_fragment" ],
THREE.ShaderChunk[ "envmap_fragment" ],
THREE.ShaderChunk[ "shadowmap_fragment" ],
THREE.ShaderChunk[ "linear_to_gamma_fragment" ],
THREE.ShaderChunk[ "fog_fragment" ],
"}"
].join("\n")
},
'lambert': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ "common" ],
THREE.UniformsLib[ "fog" ],
THREE.UniformsLib[ "lights" ],
THREE.UniformsLib[ "shadowmap" ],
{
"ambient" : { type: "c", value: new THREE.Color( 0xffffff ) },
"emissive" : { type: "c", value: new THREE.Color( 0x000000 ) },
"wrapRGB" : { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) }
}
] ),
vertexShader: [
"varying vec3 vLightFront;",
"#ifdef DOUBLE_SIDED",
"varying vec3 vLightBack;",
"#endif",
THREE.ShaderChunk[ "map_pars_vertex" ],
THREE.ShaderChunk[ "lightmap_pars_vertex" ],
THREE.ShaderChunk[ "envmap_pars_vertex" ],
THREE.ShaderChunk[ "lights_lambert_pars_vertex" ],
THREE.ShaderChunk[ "color_pars_vertex" ],
THREE.ShaderChunk[ "skinning_pars_vertex" ],
THREE.ShaderChunk[ "morphtarget_pars_vertex" ],
THREE.ShaderChunk[ "shadowmap_pars_vertex" ],
"void main() {",
"vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );",
THREE.ShaderChunk[ "map_vertex" ],
THREE.ShaderChunk[ "lightmap_vertex" ],
THREE.ShaderChunk[ "envmap_vertex" ],
THREE.ShaderChunk[ "color_vertex" ],
THREE.ShaderChunk[ "morphnormal_vertex" ],
"#ifndef USE_ENVMAP",
"vec4 mPosition = objectMatrix * vec4( position, 1.0 );",
"#endif",
THREE.ShaderChunk[ "lights_lambert_vertex" ],
THREE.ShaderChunk[ "skinning_vertex" ],
THREE.ShaderChunk[ "morphtarget_vertex" ],
THREE.ShaderChunk[ "default_vertex" ],
THREE.ShaderChunk[ "shadowmap_vertex" ],
"}"
].join("\n"),
fragmentShader: [
"uniform float opacity;",
"varying vec3 vLightFront;",
"#ifdef DOUBLE_SIDED",
"varying vec3 vLightBack;",
"#endif",
THREE.ShaderChunk[ "color_pars_fragment" ],
THREE.ShaderChunk[ "map_pars_fragment" ],
THREE.ShaderChunk[ "lightmap_pars_fragment" ],
THREE.ShaderChunk[ "envmap_pars_fragment" ],
THREE.ShaderChunk[ "fog_pars_fragment" ],
THREE.ShaderChunk[ "shadowmap_pars_fragment" ],
"void main() {",
"gl_FragColor = vec4( vec3 ( 1.0 ), opacity );",
THREE.ShaderChunk[ "map_fragment" ],
THREE.ShaderChunk[ "alphatest_fragment" ],
"#ifdef DOUBLE_SIDED",
//"float isFront = float( gl_FrontFacing );",
//"gl_FragColor.xyz *= isFront * vLightFront + ( 1.0 - isFront ) * vLightBack;",
"if ( gl_FrontFacing )",
"gl_FragColor.xyz *= vLightFront;",
"else",
"gl_FragColor.xyz *= vLightBack;",
"#else",
"gl_FragColor.xyz *= vLightFront;",
"#endif",
THREE.ShaderChunk[ "lightmap_fragment" ],
THREE.ShaderChunk[ "color_fragment" ],
THREE.ShaderChunk[ "envmap_fragment" ],
THREE.ShaderChunk[ "shadowmap_fragment" ],
THREE.ShaderChunk[ "linear_to_gamma_fragment" ],
THREE.ShaderChunk[ "fog_fragment" ],
"}"
].join("\n")
},
'phong': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ "common" ],
THREE.UniformsLib[ "fog" ],
THREE.UniformsLib[ "lights" ],
THREE.UniformsLib[ "shadowmap" ],
{
"ambient" : { type: "c", value: new THREE.Color( 0xffffff ) },
"emissive" : { type: "c", value: new THREE.Color( 0x000000 ) },
"specular" : { type: "c", value: new THREE.Color( 0x111111 ) },
"shininess": { type: "f", value: 30 },
"wrapRGB" : { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) }
}
] ),
vertexShader: [
"varying vec3 vViewPosition;",
"varying vec3 vNormal;",
THREE.ShaderChunk[ "map_pars_vertex" ],
THREE.ShaderChunk[ "lightmap_pars_vertex" ],
THREE.ShaderChunk[ "envmap_pars_vertex" ],
THREE.ShaderChunk[ "lights_phong_pars_vertex" ],
THREE.ShaderChunk[ "color_pars_vertex" ],
THREE.ShaderChunk[ "skinning_pars_vertex" ],
THREE.ShaderChunk[ "morphtarget_pars_vertex" ],
THREE.ShaderChunk[ "shadowmap_pars_vertex" ],
"void main() {",
"vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );",
THREE.ShaderChunk[ "map_vertex" ],
THREE.ShaderChunk[ "lightmap_vertex" ],
THREE.ShaderChunk[ "envmap_vertex" ],
THREE.ShaderChunk[ "color_vertex" ],
"#ifndef USE_ENVMAP",
"vec4 mPosition = objectMatrix * vec4( position, 1.0 );",
"#endif",
"vViewPosition = -mvPosition.xyz;",
THREE.ShaderChunk[ "morphnormal_vertex" ],
"vNormal = transformedNormal;",
THREE.ShaderChunk[ "lights_phong_vertex" ],
THREE.ShaderChunk[ "skinning_vertex" ],
THREE.ShaderChunk[ "morphtarget_vertex" ],
THREE.ShaderChunk[ "default_vertex" ],
THREE.ShaderChunk[ "shadowmap_vertex" ],
"}"
].join("\n"),
fragmentShader: [
"uniform vec3 diffuse;",
"uniform float opacity;",
"uniform vec3 ambient;",
"uniform vec3 emissive;",
"uniform vec3 specular;",
"uniform float shininess;",
THREE.ShaderChunk[ "color_pars_fragment" ],
THREE.ShaderChunk[ "map_pars_fragment" ],
THREE.ShaderChunk[ "lightmap_pars_fragment" ],
THREE.ShaderChunk[ "envmap_pars_fragment" ],
THREE.ShaderChunk[ "fog_pars_fragment" ],
THREE.ShaderChunk[ "lights_phong_pars_fragment" ],
THREE.ShaderChunk[ "shadowmap_pars_fragment" ],
"void main() {",
"gl_FragColor = vec4( vec3 ( 1.0 ), opacity );",
THREE.ShaderChunk[ "map_fragment" ],
THREE.ShaderChunk[ "alphatest_fragment" ],
THREE.ShaderChunk[ "lights_phong_fragment" ],
THREE.ShaderChunk[ "lightmap_fragment" ],
THREE.ShaderChunk[ "color_fragment" ],
THREE.ShaderChunk[ "envmap_fragment" ],
THREE.ShaderChunk[ "shadowmap_fragment" ],
THREE.ShaderChunk[ "linear_to_gamma_fragment" ],
THREE.ShaderChunk[ "fog_fragment" ],
"}"
].join("\n")
},
'particle_basic': {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ "particle" ],
THREE.UniformsLib[ "shadowmap" ]
] ),
vertexShader: [
"uniform float size;",
"uniform float scale;",
THREE.ShaderChunk[ "color_pars_vertex" ],
THREE.ShaderChunk[ "shadowmap_pars_vertex" ],
"void main() {",
THREE.ShaderChunk[ "color_vertex" ],
"vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );",
"#ifdef USE_SIZEATTENUATION",
"gl_PointSize = size * ( scale / length( mvPosition.xyz ) );",
"#else",
"gl_PointSize = size;",
"#endif",
"gl_Position = projectionMatrix * mvPosition;",
THREE.ShaderChunk[ "shadowmap_vertex" ],
"}"
].join("\n"),
fragmentShader: [
"uniform vec3 psColor;",
"uniform float opacity;",
THREE.ShaderChunk[ "color_pars_fragment" ],
THREE.ShaderChunk[ "map_particle_pars_fragment" ],
THREE.ShaderChunk[ "fog_pars_fragment" ],
THREE.ShaderChunk[ "shadowmap_pars_fragment" ],
"void main() {",
"gl_FragColor = vec4( psColor, opacity );",
THREE.ShaderChunk[ "map_particle_fragment" ],
THREE.ShaderChunk[ "alphatest_fragment" ],
THREE.ShaderChunk[ "color_fragment" ],
THREE.ShaderChunk[ "shadowmap_fragment" ],
THREE.ShaderChunk[ "fog_fragment" ],
"}"
].join("\n")
},
// Depth encoding into RGBA texture
// based on SpiderGL shadow map example
// http://spidergl.org/example.php?id=6
// originally from
// http://www.gamedev.net/topic/442138-packing-a-float-into-a-a8r8g8b8-texture-shader/page__whichpage__1%25EF%25BF%25BD
// see also here:
// http://aras-p.info/blog/2009/07/30/encoding-floats-to-rgba-the-final/
'depthRGBA': {
uniforms: {},
vertexShader: [
THREE.ShaderChunk[ "morphtarget_pars_vertex" ],
"void main() {",
"vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );",
THREE.ShaderChunk[ "morphtarget_vertex" ],
THREE.ShaderChunk[ "default_vertex" ],
"}"
].join("\n"),
fragmentShader: [
"vec4 pack_depth( const in float depth ) {",
"const vec4 bit_shift = vec4( 256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0 );",
"const vec4 bit_mask = vec4( 0.0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0 );",
"vec4 res = fract( depth * bit_shift );",
"res -= res.xxyz * bit_mask;",
"return res;",
"}",
"void main() {",
"gl_FragData[ 0 ] = pack_depth( gl_FragCoord.z );",
//"gl_FragData[ 0 ] = pack_depth( gl_FragCoord.z / gl_FragCoord.w );",
//"float z = ( ( gl_FragCoord.z / gl_FragCoord.w ) - 3.0 ) / ( 4000.0 - 3.0 );",
//"gl_FragData[ 0 ] = pack_depth( z );",
//"gl_FragData[ 0 ] = vec4( z, z, z, 1.0 );",
"}"
].join("\n")
}
};/**
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author szimek / https://github.com/szimek/
*/
THREE.WebGLRenderer = function ( parameters ) {
console.log( 'THREE.WebGLRenderer', THREE.REVISION );
parameters = parameters || {};
var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElement( 'canvas' ),
_precision = parameters.precision !== undefined ? parameters.precision : 'highp',
_alpha = parameters.alpha !== undefined ? parameters.alpha : true,
_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
_antialias = parameters.antialias !== undefined ? parameters.antialias : false,
_stencil = parameters.stencil !== undefined ? parameters.stencil : true,
_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,
_clearColor = parameters.clearColor !== undefined ? new THREE.Color( parameters.clearColor ) : new THREE.Color( 0x000000 ),
_clearAlpha = parameters.clearAlpha !== undefined ? parameters.clearAlpha : 0,
_maxLights = parameters.maxLights !== undefined ? parameters.maxLights : 4;
// public properties
this.domElement = _canvas;
this.context = null;
// clearing
this.autoClear = true;
this.autoClearColor = true;
this.autoClearDepth = true;
this.autoClearStencil = true;
// scene graph
this.sortObjects = true;
this.autoUpdateObjects = true;
this.autoUpdateScene = true;
// physically based shading
this.gammaInput = false;
this.gammaOutput = false;
this.physicallyBasedShading = false;
// shadow map
this.shadowMapEnabled = false;
this.shadowMapAutoUpdate = true;
this.shadowMapSoft = true;
this.shadowMapCullFrontFaces = true;
this.shadowMapDebug = false;
this.shadowMapCascade = false;
// morphs
this.maxMorphTargets = 8;
this.maxMorphNormals = 4;
// flags
this.autoScaleCubemaps = true;
// custom render plugins
this.renderPluginsPre = [];
this.renderPluginsPost = [];
// info
this.info = {
memory: {
programs: 0,
geometries: 0,
textures: 0
},
render: {
calls: 0,
vertices: 0,
faces: 0,
points: 0
}
};
// internal properties
var _this = this,
_gl,
_programs = [],
// internal state cache
_currentProgram = null,
_currentFramebuffer = null,
_currentMaterialId = -1,
_currentGeometryGroupHash = null,
_currentCamera = null,
_geometryGroupCounter = 0,
// GL state cache
_oldDoubleSided = -1,
_oldFlipSided = -1,
_oldBlending = -1,
_oldBlendEquation = -1,
_oldBlendSrc = -1,
_oldBlendDst = -1,
_oldDepthTest = -1,
_oldDepthWrite = -1,
_oldPolygonOffset = null,
_oldPolygonOffsetFactor = null,
_oldPolygonOffsetUnits = null,
_oldLineWidth = null,
_viewportX = 0,
_viewportY = 0,
_viewportWidth = 0,
_viewportHeight = 0,
_currentWidth = 0,
_currentHeight = 0,
// frustum
_frustum = new THREE.Frustum(),
// camera matrices cache
_projScreenMatrix = new THREE.Matrix4(),
_projScreenMatrixPS = new THREE.Matrix4(),
_vector3 = new THREE.Vector4(),
// light arrays cache
_direction = new THREE.Vector3(),
_lightsNeedUpdate = true,
_lights = {
ambient: [ 0, 0, 0 ],
directional: { length: 0, colors: new Array(), positions: new Array() },
point: { length: 0, colors: new Array(), positions: new Array(), distances: new Array() },
spot: { length: 0, colors: new Array(), positions: new Array(), distances: new Array(), directions: new Array(), angles: new Array(), exponents: new Array() }
};
// initialize
_gl = initGL();
setDefaultGLState();
this.context = _gl;
// GPU capabilities
var _maxVertexTextures = _gl.getParameter( _gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ),
_maxTextureSize = _gl.getParameter( _gl.MAX_TEXTURE_SIZE ),
_maxCubemapSize = _gl.getParameter( _gl.MAX_CUBE_MAP_TEXTURE_SIZE );
// API
this.getContext = function () {
return _gl;
};
this.supportsVertexTextures = function () {
return _maxVertexTextures > 0;
};
this.setSize = function ( width, height ) {
_canvas.width = width;
_canvas.height = height;
this.setViewport( 0, 0, _canvas.width, _canvas.height );
};
this.setViewport = function ( x, y, width, height ) {
_viewportX = x;
_viewportY = y;
_viewportWidth = width;
_viewportHeight = height;
_gl.viewport( _viewportX, _viewportY, _viewportWidth, _viewportHeight );
};
this.setScissor = function ( x, y, width, height ) {
_gl.scissor( x, y, width, height );
};
this.enableScissorTest = function ( enable ) {
enable ? _gl.enable( _gl.SCISSOR_TEST ) : _gl.disable( _gl.SCISSOR_TEST );
};
// Clearing
this.setClearColorHex = function ( hex, alpha ) {
_clearColor.setHex( hex );
_clearAlpha = alpha;
_gl.clearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha );
};
this.setClearColor = function ( color, alpha ) {
_clearColor.copy( color );
_clearAlpha = alpha;
_gl.clearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha );
};
this.getClearColor = function () {
return _clearColor;
};
this.getClearAlpha = function () {
return _clearAlpha;
};
this.clear = function ( color, depth, stencil ) {
var bits = 0;
if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT;
if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT;
if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT;
_gl.clear( bits );
};
this.clearTarget = function ( renderTarget, color, depth, stencil ) {
this.setRenderTarget( renderTarget );
this.clear( color, depth, stencil );
};
// Plugins
this.addPostPlugin = function ( plugin ) {
plugin.init( this );
this.renderPluginsPost.push( plugin );
};
this.addPrePlugin = function ( plugin ) {
plugin.init( this );
this.renderPluginsPre.push( plugin );
};
// Deallocation
this.deallocateObject = function ( object ) {
if ( ! object.__webglInit ) return;
object.__webglInit = false;
delete object._modelViewMatrix;
delete object._normalMatrix;
delete object._normalMatrixArray;
delete object._modelViewMatrixArray;
delete object._objectMatrixArray;
if ( object instanceof THREE.Mesh ) {
for ( var g in object.geometry.geometryGroups ) {
deleteMeshBuffers( object.geometry.geometryGroups[ g ] );
}
} else if ( object instanceof THREE.Ribbon ) {
deleteRibbonBuffers( object.geometry );
} else if ( object instanceof THREE.Line ) {
deleteLineBuffers( object.geometry );
} else if ( object instanceof THREE.ParticleSystem ) {
deleteParticleBuffers( object.geometry );
}
};
this.deallocateTexture = function ( texture ) {
if ( ! texture.__webglInit ) return;
texture.__webglInit = false;
_gl.deleteTexture( texture.__webglTexture );
_this.info.memory.textures --;
};
this.deallocateRenderTarget = function ( renderTarget ) {
if ( !renderTarget || ! renderTarget.__webglTexture ) return;
_gl.deleteTexture( renderTarget.__webglTexture );
if ( renderTarget instanceof THREE.WebGLRenderTargetCube ) {
for ( var i = 0; i < 6; i ++ ) {
_gl.deleteFramebuffer( renderTarget.__webglFramebuffer[ i ] );
_gl.deleteRenderbuffer( renderTarget.__webglRenderbuffer[ i ] );
}
} else {
_gl.deleteFramebuffer( renderTarget.__webglFramebuffer );
_gl.deleteRenderbuffer( renderTarget.__webglRenderbuffer );
}
};
// Rendering
this.updateShadowMap = function ( scene, camera ) {
_currentProgram = null;
_oldBlending = -1;
_oldDepthTest = -1;
_oldDepthWrite = -1;
_currentGeometryGroupHash = -1;
_currentMaterialId = -1;
_lightsNeedUpdate = true;
_oldDoubleSided = -1;
_oldFlipSided = -1;
this.shadowMapPlugin.update( scene, camera );
};
// Internal functions
// Buffer allocation
function createParticleBuffers ( geometry ) {
geometry.__webglVertexBuffer = _gl.createBuffer();
geometry.__webglColorBuffer = _gl.createBuffer();
_this.info.geometries ++;
};
function createLineBuffers ( geometry ) {
geometry.__webglVertexBuffer = _gl.createBuffer();
geometry.__webglColorBuffer = _gl.createBuffer();
_this.info.memory.geometries ++;
};
function createRibbonBuffers ( geometry ) {
geometry.__webglVertexBuffer = _gl.createBuffer();
geometry.__webglColorBuffer = _gl.createBuffer();
_this.info.memory.geometries ++;
};
function createMeshBuffers ( geometryGroup ) {
geometryGroup.__webglVertexBuffer = _gl.createBuffer();
geometryGroup.__webglNormalBuffer = _gl.createBuffer();
geometryGroup.__webglTangentBuffer = _gl.createBuffer();
geometryGroup.__webglColorBuffer = _gl.createBuffer();
geometryGroup.__webglUVBuffer = _gl.createBuffer();
geometryGroup.__webglUV2Buffer = _gl.createBuffer();
geometryGroup.__webglSkinVertexABuffer = _gl.createBuffer();
geometryGroup.__webglSkinVertexBBuffer = _gl.createBuffer();
geometryGroup.__webglSkinIndicesBuffer = _gl.createBuffer();
geometryGroup.__webglSkinWeightsBuffer = _gl.createBuffer();
geometryGroup.__webglFaceBuffer = _gl.createBuffer();
geometryGroup.__webglLineBuffer = _gl.createBuffer();
var m, ml;
if ( geometryGroup.numMorphTargets ) {
geometryGroup.__webglMorphTargetsBuffers = [];
for ( m = 0, ml = geometryGroup.numMorphTargets; m < ml; m ++ ) {
geometryGroup.__webglMorphTargetsBuffers.push( _gl.createBuffer() );
}
}
if ( geometryGroup.numMorphNormals ) {
geometryGroup.__webglMorphNormalsBuffers = [];
for ( m = 0, ml = geometryGroup.numMorphNormals; m < ml; m ++ ) {
geometryGroup.__webglMorphNormalsBuffers.push( _gl.createBuffer() );
}
}
_this.info.memory.geometries ++;
};
// Buffer deallocation
function deleteParticleBuffers ( geometry ) {
_gl.deleteBuffer( geometry.__webglVertexBuffer );
_gl.deleteBuffer( geometry.__webglColorBuffer );
_this.info.memory.geometries --;
};
function deleteLineBuffers ( geometry ) {
_gl.deleteBuffer( geometry.__webglVertexBuffer );
_gl.deleteBuffer( geometry.__webglColorBuffer );
_this.info.memory.geometries --;
};
function deleteRibbonBuffers ( geometry ) {
_gl.deleteBuffer( geometry.__webglVertexBuffer );
_gl.deleteBuffer( geometry.__webglColorBuffer );
_this.info.memory.geometries --;
};
function deleteMeshBuffers ( geometryGroup ) {
_gl.deleteBuffer( geometryGroup.__webglVertexBuffer );
_gl.deleteBuffer( geometryGroup.__webglNormalBuffer );
_gl.deleteBuffer( geometryGroup.__webglTangentBuffer );
_gl.deleteBuffer( geometryGroup.__webglColorBuffer );
_gl.deleteBuffer( geometryGroup.__webglUVBuffer );
_gl.deleteBuffer( geometryGroup.__webglUV2Buffer );
_gl.deleteBuffer( geometryGroup.__webglSkinVertexABuffer );
_gl.deleteBuffer( geometryGroup.__webglSkinVertexBBuffer );
_gl.deleteBuffer( geometryGroup.__webglSkinIndicesBuffer );
_gl.deleteBuffer( geometryGroup.__webglSkinWeightsBuffer );
_gl.deleteBuffer( geometryGroup.__webglFaceBuffer );
_gl.deleteBuffer( geometryGroup.__webglLineBuffer );
var m, ml;
if ( geometryGroup.numMorphTargets ) {
for ( m = 0, ml = geometryGroup.numMorphTargets; m < ml; m ++ ) {
_gl.deleteBuffer( geometryGroup.__webglMorphTargetsBuffers[ m ] );
}
}
if ( geometryGroup.numMorphNormals ) {
for ( m = 0, ml = geometryGroup.numMorphNormals; m < ml; m ++ ) {
_gl.deleteBuffer( geometryGroup.__webglMorphNormalsBuffers[ m ] );
}
}
if ( geometryGroup.__webglCustomAttributesList ) {
for ( var id in geometryGroup.__webglCustomAttributesList ) {
_gl.deleteBuffer( geometryGroup.__webglCustomAttributesList[ id ].buffer );
}
}
_this.info.memory.geometries --;
};
// Buffer initialization
function initCustomAttributes ( geometry, object ) {
var nvertices = geometry.vertices.length;
var material = object.material;
if ( material.attributes ) {
if ( geometry.__webglCustomAttributesList === undefined ) {
geometry.__webglCustomAttributesList = [];
}
for ( var a in material.attributes ) {
var attribute = material.attributes[ a ];
if( !attribute.__webglInitialized || attribute.createUniqueBuffers ) {
attribute.__webglInitialized = true;
var size = 1; // "f" and "i"
if ( attribute.type === "v2" ) size = 2;
else if ( attribute.type === "v3" ) size = 3;
else if ( attribute.type === "v4" ) size = 4;
else if ( attribute.type === "c" ) size = 3;
attribute.size = size;
attribute.array = new Float32Array( nvertices * size );
attribute.buffer = _gl.createBuffer();
attribute.buffer.belongsToAttribute = a;
attribute.needsUpdate = true;
}
geometry.__webglCustomAttributesList.push( attribute );
}
}
};
function initParticleBuffers ( geometry, object ) {
var nvertices = geometry.vertices.length;
geometry.__vertexArray = new Float32Array( nvertices * 3 );
geometry.__colorArray = new Float32Array( nvertices * 3 );
geometry.__sortArray = [];
geometry.__webglParticleCount = nvertices;
initCustomAttributes ( geometry, object );
};
function initLineBuffers ( geometry, object ) {
var nvertices = geometry.vertices.length;
geometry.__vertexArray = new Float32Array( nvertices * 3 );
geometry.__colorArray = new Float32Array( nvertices * 3 );
geometry.__webglLineCount = nvertices;
initCustomAttributes ( geometry, object );
};
function initRibbonBuffers ( geometry ) {
var nvertices = geometry.vertices.length;
geometry.__vertexArray = new Float32Array( nvertices * 3 );
geometry.__colorArray = new Float32Array( nvertices * 3 );
geometry.__webglVertexCount = nvertices;
};
function initMeshBuffers ( geometryGroup, object ) {
var geometry = object.geometry,
faces3 = geometryGroup.faces3,
faces4 = geometryGroup.faces4,
nvertices = faces3.length * 3 + faces4.length * 4,
ntris = faces3.length * 1 + faces4.length * 2,
nlines = faces3.length * 3 + faces4.length * 4,
material = getBufferMaterial( object, geometryGroup ),
uvType = bufferGuessUVType( material ),
normalType = bufferGuessNormalType( material ),
vertexColorType = bufferGuessVertexColorType( material );
//console.log( "uvType", uvType, "normalType", normalType, "vertexColorType", vertexColorType, object, geometryGroup, material );
geometryGroup.__vertexArray = new Float32Array( nvertices * 3 );
if ( normalType ) {
geometryGroup.__normalArray = new Float32Array( nvertices * 3 );
}
if ( geometry.hasTangents ) {
geometryGroup.__tangentArray = new Float32Array( nvertices * 4 );
}
if ( vertexColorType ) {
geometryGroup.__colorArray = new Float32Array( nvertices * 3 );
}
if ( uvType ) {
if ( geometry.faceUvs.length > 0 || geometry.faceVertexUvs.length > 0 ) {
geometryGroup.__uvArray = new Float32Array( nvertices * 2 );
}
if ( geometry.faceUvs.length > 1 || geometry.faceVertexUvs.length > 1 ) {
geometryGroup.__uv2Array = new Float32Array( nvertices * 2 );
}
}
if ( object.geometry.skinWeights.length && object.geometry.skinIndices.length ) {
geometryGroup.__skinVertexAArray = new Float32Array( nvertices * 4 );
geometryGroup.__skinVertexBArray = new Float32Array( nvertices * 4 );
geometryGroup.__skinIndexArray = new Float32Array( nvertices * 4 );
geometryGroup.__skinWeightArray = new Float32Array( nvertices * 4 );
}
geometryGroup.__faceArray = new Uint16Array( ntris * 3 );
geometryGroup.__lineArray = new Uint16Array( nlines * 2 );
var m, ml;
if ( geometryGroup.numMorphTargets ) {
geometryGroup.__morphTargetsArrays = [];
for ( m = 0, ml = geometryGroup.numMorphTargets; m < ml; m ++ ) {
geometryGroup.__morphTargetsArrays.push( new Float32Array( nvertices * 3 ) );
}
}
if ( geometryGroup.numMorphNormals ) {
geometryGroup.__morphNormalsArrays = [];
for ( m = 0, ml = geometryGroup.numMorphNormals; m < ml; m ++ ) {
geometryGroup.__morphNormalsArrays.push( new Float32Array( nvertices * 3 ) );
}
}
geometryGroup.__webglFaceCount = ntris * 3;
geometryGroup.__webglLineCount = nlines * 2;
// custom attributes
if ( material.attributes ) {
if ( geometryGroup.__webglCustomAttributesList === undefined ) {
geometryGroup.__webglCustomAttributesList = [];
}
for ( var a in material.attributes ) {
// Do a shallow copy of the attribute object so different geometryGroup chunks use different
// attribute buffers which are correctly indexed in the setMeshBuffers function
var originalAttribute = material.attributes[ a ];
var attribute = {};
for ( var property in originalAttribute ) {
attribute[ property ] = originalAttribute[ property ];
}
if( !attribute.__webglInitialized || attribute.createUniqueBuffers ) {
attribute.__webglInitialized = true;
var size = 1; // "f" and "i"
if( attribute.type === "v2" ) size = 2;
else if( attribute.type === "v3" ) size = 3;
else if( attribute.type === "v4" ) size = 4;
else if( attribute.type === "c" ) size = 3;
attribute.size = size;
attribute.array = new Float32Array( nvertices * size );
attribute.buffer = _gl.createBuffer();
attribute.buffer.belongsToAttribute = a;
originalAttribute.needsUpdate = true;
attribute.__original = originalAttribute;
}
geometryGroup.__webglCustomAttributesList.push( attribute );
}
}
geometryGroup.__inittedArrays = true;
};
function getBufferMaterial( object, geometryGroup ) {
if ( object.material && ! ( object.material instanceof THREE.MeshFaceMaterial ) ) {
return object.material;
} else if ( geometryGroup.materialIndex >= 0 ) {
return object.geometry.materials[ geometryGroup.materialIndex ];
}
};
function materialNeedsSmoothNormals ( material ) {
return material && material.shading !== undefined && material.shading === THREE.SmoothShading;
};
function bufferGuessNormalType ( material ) {
// only MeshBasicMaterial and MeshDepthMaterial don't need normals
if ( ( material instanceof THREE.MeshBasicMaterial && !material.envMap ) || material instanceof THREE.MeshDepthMaterial ) {
return false;
}
if ( materialNeedsSmoothNormals( material ) ) {
return THREE.SmoothShading;
} else {
return THREE.FlatShading;
}
};
function bufferGuessVertexColorType ( material ) {
if ( material.vertexColors ) {
return material.vertexColors;
}
return false;
};
function bufferGuessUVType ( material ) {
// material must use some texture to require uvs
if ( material.map || material.lightMap || material instanceof THREE.ShaderMaterial ) {
return true;
}
return false;
};
// Buffer setting
function setParticleBuffers ( geometry, hint, object ) {
var v, c, vertex, offset, index, color,
vertices = geometry.vertices,
vl = vertices.length,
colors = geometry.colors,
cl = colors.length,
vertexArray = geometry.__vertexArray,
colorArray = geometry.__colorArray,
sortArray = geometry.__sortArray,
dirtyVertices = geometry.verticesNeedUpdate,
dirtyElements = geometry.elementsNeedUpdate,
dirtyColors = geometry.colorsNeedUpdate,
customAttributes = geometry.__webglCustomAttributesList,
i, il,
a, ca, cal, value,
customAttribute;
if ( object.sortParticles ) {
_projScreenMatrixPS.copy( _projScreenMatrix );
_projScreenMatrixPS.multiplySelf( object.matrixWorld );
for ( v = 0; v < vl; v ++ ) {
vertex = vertices[ v ];
_vector3.copy( vertex );
_projScreenMatrixPS.multiplyVector3( _vector3 );
sortArray[ v ] = [ _vector3.z, v ];
}
sortArray.sort( function( a, b ) { return b[ 0 ] - a[ 0 ]; } );
for ( v = 0; v < vl; v ++ ) {
vertex = vertices[ sortArray[v][1] ];
offset = v * 3;
vertexArray[ offset ] = vertex.x;
vertexArray[ offset + 1 ] = vertex.y;
vertexArray[ offset + 2 ] = vertex.z;
}
for ( c = 0; c < cl; c ++ ) {
offset = c * 3;
color = colors[ sortArray[c][1] ];
colorArray[ offset ] = color.r;
colorArray[ offset + 1 ] = color.g;
colorArray[ offset + 2 ] = color.b;
}
if ( customAttributes ) {
for ( i = 0, il = customAttributes.length; i < il; i ++ ) {
customAttribute = customAttributes[ i ];
if ( ! ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) ) continue;
offset = 0;
cal = customAttribute.value.length;
if ( customAttribute.size === 1 ) {
for ( ca = 0; ca < cal; ca ++ ) {
index = sortArray[ ca ][ 1 ];
customAttribute.array[ ca ] = customAttribute.value[ index ];
}
} else if ( customAttribute.size === 2 ) {
for ( ca = 0; ca < cal; ca ++ ) {
index = sortArray[ ca ][ 1 ];
value = customAttribute.value[ index ];
customAttribute.array[ offset ] = value.x;
customAttribute.array[ offset + 1 ] = value.y;
offset += 2;
}
} else if ( customAttribute.size === 3 ) {
if ( customAttribute.type === "c" ) {
for ( ca = 0; ca < cal; ca ++ ) {
index = sortArray[ ca ][ 1 ];
value = customAttribute.value[ index ];
customAttribute.array[ offset ] = value.r;
customAttribute.array[ offset + 1 ] = value.g;
customAttribute.array[ offset + 2 ] = value.b;
offset += 3;
}
} else {
for ( ca = 0; ca < cal; ca ++ ) {
index = sortArray[ ca ][ 1 ];
value = customAttribute.value[ index ];
customAttribute.array[ offset ] = value.x;
customAttribute.array[ offset + 1 ] = value.y;
customAttribute.array[ offset + 2 ] = value.z;
offset += 3;
}
}
} else if ( customAttribute.size === 4 ) {
for ( ca = 0; ca < cal; ca ++ ) {
index = sortArray[ ca ][ 1 ];
value = customAttribute.value[ index ];
customAttribute.array[ offset ] = value.x;
customAttribute.array[ offset + 1 ] = value.y;
customAttribute.array[ offset + 2 ] = value.z;
customAttribute.array[ offset + 3 ] = value.w;
offset += 4;
}
}
}
}
} else {
if ( dirtyVertices ) {
for ( v = 0; v < vl; v ++ ) {
vertex = vertices[ v ];
offset = v * 3;
vertexArray[ offset ] = vertex.x;
vertexArray[ offset + 1 ] = vertex.y;
vertexArray[ offset + 2 ] = vertex.z;
}
}
if ( dirtyColors ) {
for ( c = 0; c < cl; c ++ ) {
color = colors[ c ];
offset = c * 3;
colorArray[ offset ] = color.r;
colorArray[ offset + 1 ] = color.g;
colorArray[ offset + 2 ] = color.b;
}
}
if ( customAttributes ) {
for ( i = 0, il = customAttributes.length; i < il; i ++ ) {
customAttribute = customAttributes[ i ];
if ( customAttribute.needsUpdate &&
( customAttribute.boundTo === undefined ||
customAttribute.boundTo === "vertices") ) {
cal = customAttribute.value.length;
offset = 0;
if ( customAttribute.size === 1 ) {
for ( ca = 0; ca < cal; ca ++ ) {
customAttribute.array[ ca ] = customAttribute.value[ ca ];
}
} else if ( customAttribute.size === 2 ) {
for ( ca = 0; ca < cal; ca ++ ) {
value = customAttribute.value[ ca ];
customAttribute.array[ offset ] = value.x;
customAttribute.array[ offset + 1 ] = value.y;
offset += 2;
}
} else if ( customAttribute.size === 3 ) {
if ( customAttribute.type === "c" ) {
for ( ca = 0; ca < cal; ca ++ ) {
value = customAttribute.value[ ca ];
customAttribute.array[ offset ] = value.r;
customAttribute.array[ offset + 1 ] = value.g;
customAttribute.array[ offset + 2 ] = value.b;
offset += 3;
}
} else {
for ( ca = 0; ca < cal; ca ++ ) {
value = customAttribute.value[ ca ];
customAttribute.array[ offset ] = value.x;
customAttribute.array[ offset + 1 ] = value.y;
customAttribute.array[ offset + 2 ] = value.z;
offset += 3;
}
}
} else if ( customAttribute.size === 4 ) {
for ( ca = 0; ca < cal; ca ++ ) {
value = customAttribute.value[ ca ];
customAttribute.array[ offset ] = value.x;
customAttribute.array[ offset + 1 ] = value.y;
customAttribute.array[ offset + 2 ] = value.z;
customAttribute.array[ offset + 3 ] = value.w;
offset += 4;
}
}
}
}
}
}
if ( dirtyVertices || object.sortParticles ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglVertexBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint );
}
if ( dirtyColors || object.sortParticles ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglColorBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint );
}
if ( customAttributes ) {
for ( i = 0, il = customAttributes.length; i < il; i ++ ) {
customAttribute = customAttributes[ i ];
if ( customAttribute.needsUpdate || object.sortParticles ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, customAttribute.buffer );
_gl.bufferData( _gl.ARRAY_BUFFER, customAttribute.array, hint );
}
}
}
};
function setLineBuffers ( geometry, hint ) {
var v, c, vertex, offset, color,
vertices = geometry.vertices,
colors = geometry.colors,
vl = vertices.length,
cl = colors.length,
vertexArray = geometry.__vertexArray,
colorArray = geometry.__colorArray,
dirtyVertices = geometry.verticesNeedUpdate,
dirtyColors = geometry.colorsNeedUpdate,
customAttributes = geometry.__webglCustomAttributesList,
i, il,
a, ca, cal, value,
customAttribute;
if ( dirtyVertices ) {
for ( v = 0; v < vl; v ++ ) {
vertex = vertices[ v ];
offset = v * 3;
vertexArray[ offset ] = vertex.x;
vertexArray[ offset + 1 ] = vertex.y;
vertexArray[ offset + 2 ] = vertex.z;
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglVertexBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint );
}
if ( dirtyColors ) {
for ( c = 0; c < cl; c ++ ) {
color = colors[ c ];
offset = c * 3;
colorArray[ offset ] = color.r;
colorArray[ offset + 1 ] = color.g;
colorArray[ offset + 2 ] = color.b;
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglColorBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint );
}
if ( customAttributes ) {
for ( i = 0, il = customAttributes.length; i < il; i ++ ) {
customAttribute = customAttributes[ i ];
if ( customAttribute.needsUpdate &&
( customAttribute.boundTo === undefined ||
customAttribute.boundTo === "vertices" ) ) {
offset = 0;
cal = customAttribute.value.length;
if ( customAttribute.size === 1 ) {
for ( ca = 0; ca < cal; ca ++ ) {
customAttribute.array[ ca ] = customAttribute.value[ ca ];
}
} else if ( customAttribute.size === 2 ) {
for ( ca = 0; ca < cal; ca ++ ) {
value = customAttribute.value[ ca ];
customAttribute.array[ offset ] = value.x;
customAttribute.array[ offset + 1 ] = value.y;
offset += 2;
}
} else if ( customAttribute.size === 3 ) {
if ( customAttribute.type === "c" ) {
for ( ca = 0; ca < cal; ca ++ ) {
value = customAttribute.value[ ca ];
customAttribute.array[ offset ] = value.r;
customAttribute.array[ offset + 1 ] = value.g;
customAttribute.array[ offset + 2 ] = value.b;
offset += 3;
}
} else {
for ( ca = 0; ca < cal; ca ++ ) {
value = customAttribute.value[ ca ];
customAttribute.array[ offset ] = value.x;
customAttribute.array[ offset + 1 ] = value.y;
customAttribute.array[ offset + 2 ] = value.z;
offset += 3;
}
}
} else if ( customAttribute.size === 4 ) {
for ( ca = 0; ca < cal; ca ++ ) {
value = customAttribute.value[ ca ];
customAttribute.array[ offset ] = value.x;
customAttribute.array[ offset + 1 ] = value.y;
customAttribute.array[ offset + 2 ] = value.z;
customAttribute.array[ offset + 3 ] = value.w;
offset += 4;
}
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, customAttribute.buffer );
_gl.bufferData( _gl.ARRAY_BUFFER, customAttribute.array, hint );
}
}
}
};
function setRibbonBuffers ( geometry, hint ) {
var v, c, vertex, offset, color,
vertices = geometry.vertices,
colors = geometry.colors,
vl = vertices.length,
cl = colors.length,
vertexArray = geometry.__vertexArray,
colorArray = geometry.__colorArray,
dirtyVertices = geometry.verticesNeedUpdate,
dirtyColors = geometry.colorsNeedUpdate;
if ( dirtyVertices ) {
for ( v = 0; v < vl; v ++ ) {
vertex = vertices[ v ];
offset = v * 3;
vertexArray[ offset ] = vertex.x;
vertexArray[ offset + 1 ] = vertex.y;
vertexArray[ offset + 2 ] = vertex.z;
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglVertexBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint );
}
if ( dirtyColors ) {
for ( c = 0; c < cl; c ++ ) {
color = colors[ c ];
offset = c * 3;
colorArray[ offset ] = color.r;
colorArray[ offset + 1 ] = color.g;
colorArray[ offset + 2 ] = color.b;
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglColorBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint );
}
};
function setMeshBuffers( geometryGroup, object, hint, dispose, material ) {
if ( ! geometryGroup.__inittedArrays ) {
// console.log( object );
return;
}
var normalType = bufferGuessNormalType( material ),
vertexColorType = bufferGuessVertexColorType( material ),
uvType = bufferGuessUVType( material ),
needsSmoothNormals = ( normalType === THREE.SmoothShading );
var f, fl, fi, face,
vertexNormals, faceNormal, normal,
vertexColors, faceColor,
vertexTangents,
uv, uv2, v1, v2, v3, v4, t1, t2, t3, t4, n1, n2, n3, n4,
c1, c2, c3, c4,
sw1, sw2, sw3, sw4,
si1, si2, si3, si4,
sa1, sa2, sa3, sa4,
sb1, sb2, sb3, sb4,
m, ml, i, il,
vn, uvi, uv2i,
vk, vkl, vka,
nka, chf, faceVertexNormals,
a,
vertexIndex = 0,
offset = 0,
offset_uv = 0,
offset_uv2 = 0,
offset_face = 0,
offset_normal = 0,
offset_tangent = 0,
offset_line = 0,
offset_color = 0,
offset_skin = 0,
offset_morphTarget = 0,
offset_custom = 0,
offset_customSrc = 0,
value,
vertexArray = geometryGroup.__vertexArray,
uvArray = geometryGroup.__uvArray,
uv2Array = geometryGroup.__uv2Array,
normalArray = geometryGroup.__normalArray,
tangentArray = geometryGroup.__tangentArray,
colorArray = geometryGroup.__colorArray,
skinVertexAArray = geometryGroup.__skinVertexAArray,
skinVertexBArray = geometryGroup.__skinVertexBArray,
skinIndexArray = geometryGroup.__skinIndexArray,
skinWeightArray = geometryGroup.__skinWeightArray,
morphTargetsArrays = geometryGroup.__morphTargetsArrays,
morphNormalsArrays = geometryGroup.__morphNormalsArrays,
customAttributes = geometryGroup.__webglCustomAttributesList,
customAttribute,
faceArray = geometryGroup.__faceArray,
lineArray = geometryGroup.__lineArray,
geometry = object.geometry, // this is shared for all chunks
dirtyVertices = geometry.verticesNeedUpdate,
dirtyElements = geometry.elementsNeedUpdate,
dirtyUvs = geometry.uvsNeedUpdate,
dirtyNormals = geometry.normalsNeedUpdate,
dirtyTangents = geometry.tangetsNeedUpdate,
dirtyColors = geometry.colorsNeedUpdate,
dirtyMorphTargets = geometry.morphTargetsNeedUpdate,
vertices = geometry.vertices,
chunk_faces3 = geometryGroup.faces3,
chunk_faces4 = geometryGroup.faces4,
obj_faces = geometry.faces,
obj_uvs = geometry.faceVertexUvs[ 0 ],
obj_uvs2 = geometry.faceVertexUvs[ 1 ],
obj_colors = geometry.colors,
obj_skinVerticesA = geometry.skinVerticesA,
obj_skinVerticesB = geometry.skinVerticesB,
obj_skinIndices = geometry.skinIndices,
obj_skinWeights = geometry.skinWeights,
morphTargets = geometry.morphTargets,
morphNormals = geometry.morphNormals;
if ( dirtyVertices ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces3[ f ] ];
v1 = vertices[ face.a ];
v2 = vertices[ face.b ];
v3 = vertices[ face.c ];
vertexArray[ offset ] = v1.x;
vertexArray[ offset + 1 ] = v1.y;
vertexArray[ offset + 2 ] = v1.z;
vertexArray[ offset + 3 ] = v2.x;
vertexArray[ offset + 4 ] = v2.y;
vertexArray[ offset + 5 ] = v2.z;
vertexArray[ offset + 6 ] = v3.x;
vertexArray[ offset + 7 ] = v3.y;
vertexArray[ offset + 8 ] = v3.z;
offset += 9;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces4[ f ] ];
v1 = vertices[ face.a ];
v2 = vertices[ face.b ];
v3 = vertices[ face.c ];
v4 = vertices[ face.d ];
vertexArray[ offset ] = v1.x;
vertexArray[ offset + 1 ] = v1.y;
vertexArray[ offset + 2 ] = v1.z;
vertexArray[ offset + 3 ] = v2.x;
vertexArray[ offset + 4 ] = v2.y;
vertexArray[ offset + 5 ] = v2.z;
vertexArray[ offset + 6 ] = v3.x;
vertexArray[ offset + 7 ] = v3.y;
vertexArray[ offset + 8 ] = v3.z;
vertexArray[ offset + 9 ] = v4.x;
vertexArray[ offset + 10 ] = v4.y;
vertexArray[ offset + 11 ] = v4.z;
offset += 12;
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglVertexBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint );
}
if ( dirtyMorphTargets ) {
for ( vk = 0, vkl = morphTargets.length; vk < vkl; vk ++ ) {
offset_morphTarget = 0;
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
chf = chunk_faces3[ f ];
face = obj_faces[ chf ];
// morph positions
v1 = morphTargets[ vk ].vertices[ face.a ];
v2 = morphTargets[ vk ].vertices[ face.b ];
v3 = morphTargets[ vk ].vertices[ face.c ];
vka = morphTargetsArrays[ vk ];
vka[ offset_morphTarget ] = v1.x;
vka[ offset_morphTarget + 1 ] = v1.y;
vka[ offset_morphTarget + 2 ] = v1.z;
vka[ offset_morphTarget + 3 ] = v2.x;
vka[ offset_morphTarget + 4 ] = v2.y;
vka[ offset_morphTarget + 5 ] = v2.z;
vka[ offset_morphTarget + 6 ] = v3.x;
vka[ offset_morphTarget + 7 ] = v3.y;
vka[ offset_morphTarget + 8 ] = v3.z;
// morph normals
if ( material.morphNormals ) {
if ( needsSmoothNormals ) {
faceVertexNormals = morphNormals[ vk ].vertexNormals[ chf ];
n1 = faceVertexNormals.a;
n2 = faceVertexNormals.b;
n3 = faceVertexNormals.c;
} else {
n1 = morphNormals[ vk ].faceNormals[ chf ];
n2 = n1;
n3 = n1;
}
nka = morphNormalsArrays[ vk ];
nka[ offset_morphTarget ] = n1.x;
nka[ offset_morphTarget + 1 ] = n1.y;
nka[ offset_morphTarget + 2 ] = n1.z;
nka[ offset_morphTarget + 3 ] = n2.x;
nka[ offset_morphTarget + 4 ] = n2.y;
nka[ offset_morphTarget + 5 ] = n2.z;
nka[ offset_morphTarget + 6 ] = n3.x;
nka[ offset_morphTarget + 7 ] = n3.y;
nka[ offset_morphTarget + 8 ] = n3.z;
}
//
offset_morphTarget += 9;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
chf = chunk_faces4[ f ];
face = obj_faces[ chf ];
// morph positions
v1 = morphTargets[ vk ].vertices[ face.a ];
v2 = morphTargets[ vk ].vertices[ face.b ];
v3 = morphTargets[ vk ].vertices[ face.c ];
v4 = morphTargets[ vk ].vertices[ face.d ];
vka = morphTargetsArrays[ vk ];
vka[ offset_morphTarget ] = v1.x;
vka[ offset_morphTarget + 1 ] = v1.y;
vka[ offset_morphTarget + 2 ] = v1.z;
vka[ offset_morphTarget + 3 ] = v2.x;
vka[ offset_morphTarget + 4 ] = v2.y;
vka[ offset_morphTarget + 5 ] = v2.z;
vka[ offset_morphTarget + 6 ] = v3.x;
vka[ offset_morphTarget + 7 ] = v3.y;
vka[ offset_morphTarget + 8 ] = v3.z;
vka[ offset_morphTarget + 9 ] = v4.x;
vka[ offset_morphTarget + 10 ] = v4.y;
vka[ offset_morphTarget + 11 ] = v4.z;
// morph normals
if ( material.morphNormals ) {
if ( needsSmoothNormals ) {
faceVertexNormals = morphNormals[ vk ].vertexNormals[ chf ];
n1 = faceVertexNormals.a;
n2 = faceVertexNormals.b;
n3 = faceVertexNormals.c;
n4 = faceVertexNormals.d;
} else {
n1 = morphNormals[ vk ].faceNormals[ chf ];
n2 = n1;
n3 = n1;
n4 = n1;
}
nka = morphNormalsArrays[ vk ];
nka[ offset_morphTarget ] = n1.x;
nka[ offset_morphTarget + 1 ] = n1.y;
nka[ offset_morphTarget + 2 ] = n1.z;
nka[ offset_morphTarget + 3 ] = n2.x;
nka[ offset_morphTarget + 4 ] = n2.y;
nka[ offset_morphTarget + 5 ] = n2.z;
nka[ offset_morphTarget + 6 ] = n3.x;
nka[ offset_morphTarget + 7 ] = n3.y;
nka[ offset_morphTarget + 8 ] = n3.z;
nka[ offset_morphTarget + 9 ] = n4.x;
nka[ offset_morphTarget + 10 ] = n4.y;
nka[ offset_morphTarget + 11 ] = n4.z;
}
//
offset_morphTarget += 12;
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ vk ] );
_gl.bufferData( _gl.ARRAY_BUFFER, morphTargetsArrays[ vk ], hint );
if ( material.morphNormals ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphNormalsBuffers[ vk ] );
_gl.bufferData( _gl.ARRAY_BUFFER, morphNormalsArrays[ vk ], hint );
}
}
}
if ( obj_skinWeights.length ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces3[ f ] ];
// weights
sw1 = obj_skinWeights[ face.a ];
sw2 = obj_skinWeights[ face.b ];
sw3 = obj_skinWeights[ face.c ];
skinWeightArray[ offset_skin ] = sw1.x;
skinWeightArray[ offset_skin + 1 ] = sw1.y;
skinWeightArray[ offset_skin + 2 ] = sw1.z;
skinWeightArray[ offset_skin + 3 ] = sw1.w;
skinWeightArray[ offset_skin + 4 ] = sw2.x;
skinWeightArray[ offset_skin + 5 ] = sw2.y;
skinWeightArray[ offset_skin + 6 ] = sw2.z;
skinWeightArray[ offset_skin + 7 ] = sw2.w;
skinWeightArray[ offset_skin + 8 ] = sw3.x;
skinWeightArray[ offset_skin + 9 ] = sw3.y;
skinWeightArray[ offset_skin + 10 ] = sw3.z;
skinWeightArray[ offset_skin + 11 ] = sw3.w;
// indices
si1 = obj_skinIndices[ face.a ];
si2 = obj_skinIndices[ face.b ];
si3 = obj_skinIndices[ face.c ];
skinIndexArray[ offset_skin ] = si1.x;
skinIndexArray[ offset_skin + 1 ] = si1.y;
skinIndexArray[ offset_skin + 2 ] = si1.z;
skinIndexArray[ offset_skin + 3 ] = si1.w;
skinIndexArray[ offset_skin + 4 ] = si2.x;
skinIndexArray[ offset_skin + 5 ] = si2.y;
skinIndexArray[ offset_skin + 6 ] = si2.z;
skinIndexArray[ offset_skin + 7 ] = si2.w;
skinIndexArray[ offset_skin + 8 ] = si3.x;
skinIndexArray[ offset_skin + 9 ] = si3.y;
skinIndexArray[ offset_skin + 10 ] = si3.z;
skinIndexArray[ offset_skin + 11 ] = si3.w;
// vertices A
sa1 = obj_skinVerticesA[ face.a ];
sa2 = obj_skinVerticesA[ face.b ];
sa3 = obj_skinVerticesA[ face.c ];
skinVertexAArray[ offset_skin ] = sa1.x;
skinVertexAArray[ offset_skin + 1 ] = sa1.y;
skinVertexAArray[ offset_skin + 2 ] = sa1.z;
skinVertexAArray[ offset_skin + 3 ] = 1; // pad for faster vertex shader
skinVertexAArray[ offset_skin + 4 ] = sa2.x;
skinVertexAArray[ offset_skin + 5 ] = sa2.y;
skinVertexAArray[ offset_skin + 6 ] = sa2.z;
skinVertexAArray[ offset_skin + 7 ] = 1;
skinVertexAArray[ offset_skin + 8 ] = sa3.x;
skinVertexAArray[ offset_skin + 9 ] = sa3.y;
skinVertexAArray[ offset_skin + 10 ] = sa3.z;
skinVertexAArray[ offset_skin + 11 ] = 1;
// vertices B
sb1 = obj_skinVerticesB[ face.a ];
sb2 = obj_skinVerticesB[ face.b ];
sb3 = obj_skinVerticesB[ face.c ];
skinVertexBArray[ offset_skin ] = sb1.x;
skinVertexBArray[ offset_skin + 1 ] = sb1.y;
skinVertexBArray[ offset_skin + 2 ] = sb1.z;
skinVertexBArray[ offset_skin + 3 ] = 1; // pad for faster vertex shader
skinVertexBArray[ offset_skin + 4 ] = sb2.x;
skinVertexBArray[ offset_skin + 5 ] = sb2.y;
skinVertexBArray[ offset_skin + 6 ] = sb2.z;
skinVertexBArray[ offset_skin + 7 ] = 1;
skinVertexBArray[ offset_skin + 8 ] = sb3.x;
skinVertexBArray[ offset_skin + 9 ] = sb3.y;
skinVertexBArray[ offset_skin + 10 ] = sb3.z;
skinVertexBArray[ offset_skin + 11 ] = 1;
offset_skin += 12;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces4[ f ] ];
// weights
sw1 = obj_skinWeights[ face.a ];
sw2 = obj_skinWeights[ face.b ];
sw3 = obj_skinWeights[ face.c ];
sw4 = obj_skinWeights[ face.d ];
skinWeightArray[ offset_skin ] = sw1.x;
skinWeightArray[ offset_skin + 1 ] = sw1.y;
skinWeightArray[ offset_skin + 2 ] = sw1.z;
skinWeightArray[ offset_skin + 3 ] = sw1.w;
skinWeightArray[ offset_skin + 4 ] = sw2.x;
skinWeightArray[ offset_skin + 5 ] = sw2.y;
skinWeightArray[ offset_skin + 6 ] = sw2.z;
skinWeightArray[ offset_skin + 7 ] = sw2.w;
skinWeightArray[ offset_skin + 8 ] = sw3.x;
skinWeightArray[ offset_skin + 9 ] = sw3.y;
skinWeightArray[ offset_skin + 10 ] = sw3.z;
skinWeightArray[ offset_skin + 11 ] = sw3.w;
skinWeightArray[ offset_skin + 12 ] = sw4.x;
skinWeightArray[ offset_skin + 13 ] = sw4.y;
skinWeightArray[ offset_skin + 14 ] = sw4.z;
skinWeightArray[ offset_skin + 15 ] = sw4.w;
// indices
si1 = obj_skinIndices[ face.a ];
si2 = obj_skinIndices[ face.b ];
si3 = obj_skinIndices[ face.c ];
si4 = obj_skinIndices[ face.d ];
skinIndexArray[ offset_skin ] = si1.x;
skinIndexArray[ offset_skin + 1 ] = si1.y;
skinIndexArray[ offset_skin + 2 ] = si1.z;
skinIndexArray[ offset_skin + 3 ] = si1.w;
skinIndexArray[ offset_skin + 4 ] = si2.x;
skinIndexArray[ offset_skin + 5 ] = si2.y;
skinIndexArray[ offset_skin + 6 ] = si2.z;
skinIndexArray[ offset_skin + 7 ] = si2.w;
skinIndexArray[ offset_skin + 8 ] = si3.x;
skinIndexArray[ offset_skin + 9 ] = si3.y;
skinIndexArray[ offset_skin + 10 ] = si3.z;
skinIndexArray[ offset_skin + 11 ] = si3.w;
skinIndexArray[ offset_skin + 12 ] = si4.x;
skinIndexArray[ offset_skin + 13 ] = si4.y;
skinIndexArray[ offset_skin + 14 ] = si4.z;
skinIndexArray[ offset_skin + 15 ] = si4.w;
// vertices A
sa1 = obj_skinVerticesA[ face.a ];
sa2 = obj_skinVerticesA[ face.b ];
sa3 = obj_skinVerticesA[ face.c ];
sa4 = obj_skinVerticesA[ face.d ];
skinVertexAArray[ offset_skin ] = sa1.x;
skinVertexAArray[ offset_skin + 1 ] = sa1.y;
skinVertexAArray[ offset_skin + 2 ] = sa1.z;
skinVertexAArray[ offset_skin + 3 ] = 1; // pad for faster vertex shader
skinVertexAArray[ offset_skin + 4 ] = sa2.x;
skinVertexAArray[ offset_skin + 5 ] = sa2.y;
skinVertexAArray[ offset_skin + 6 ] = sa2.z;
skinVertexAArray[ offset_skin + 7 ] = 1;
skinVertexAArray[ offset_skin + 8 ] = sa3.x;
skinVertexAArray[ offset_skin + 9 ] = sa3.y;
skinVertexAArray[ offset_skin + 10 ] = sa3.z;
skinVertexAArray[ offset_skin + 11 ] = 1;
skinVertexAArray[ offset_skin + 12 ] = sa4.x;
skinVertexAArray[ offset_skin + 13 ] = sa4.y;
skinVertexAArray[ offset_skin + 14 ] = sa4.z;
skinVertexAArray[ offset_skin + 15 ] = 1;
// vertices B
sb1 = obj_skinVerticesB[ face.a ];
sb2 = obj_skinVerticesB[ face.b ];
sb3 = obj_skinVerticesB[ face.c ];
sb4 = obj_skinVerticesB[ face.d ];
skinVertexBArray[ offset_skin ] = sb1.x;
skinVertexBArray[ offset_skin + 1 ] = sb1.y;
skinVertexBArray[ offset_skin + 2 ] = sb1.z;
skinVertexBArray[ offset_skin + 3 ] = 1; // pad for faster vertex shader
skinVertexBArray[ offset_skin + 4 ] = sb2.x;
skinVertexBArray[ offset_skin + 5 ] = sb2.y;
skinVertexBArray[ offset_skin + 6 ] = sb2.z;
skinVertexBArray[ offset_skin + 7 ] = 1;
skinVertexBArray[ offset_skin + 8 ] = sb3.x;
skinVertexBArray[ offset_skin + 9 ] = sb3.y;
skinVertexBArray[ offset_skin + 10 ] = sb3.z;
skinVertexBArray[ offset_skin + 11 ] = 1;
skinVertexBArray[ offset_skin + 12 ] = sb4.x;
skinVertexBArray[ offset_skin + 13 ] = sb4.y;
skinVertexBArray[ offset_skin + 14 ] = sb4.z;
skinVertexBArray[ offset_skin + 15 ] = 1;
offset_skin += 16;
}
if ( offset_skin > 0 ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinVertexABuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, skinVertexAArray, hint );
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinVertexBBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, skinVertexBArray, hint );
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinIndicesBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, skinIndexArray, hint );
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinWeightsBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, skinWeightArray, hint );
}
}
if ( dirtyColors && vertexColorType ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces3[ f ] ];
vertexColors = face.vertexColors;
faceColor = face.color;
if ( vertexColors.length === 3 && vertexColorType === THREE.VertexColors ) {
c1 = vertexColors[ 0 ];
c2 = vertexColors[ 1 ];
c3 = vertexColors[ 2 ];
} else {
c1 = faceColor;
c2 = faceColor;
c3 = faceColor;
}
colorArray[ offset_color ] = c1.r;
colorArray[ offset_color + 1 ] = c1.g;
colorArray[ offset_color + 2 ] = c1.b;
colorArray[ offset_color + 3 ] = c2.r;
colorArray[ offset_color + 4 ] = c2.g;
colorArray[ offset_color + 5 ] = c2.b;
colorArray[ offset_color + 6 ] = c3.r;
colorArray[ offset_color + 7 ] = c3.g;
colorArray[ offset_color + 8 ] = c3.b;
offset_color += 9;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces4[ f ] ];
vertexColors = face.vertexColors;
faceColor = face.color;
if ( vertexColors.length === 4 && vertexColorType === THREE.VertexColors ) {
c1 = vertexColors[ 0 ];
c2 = vertexColors[ 1 ];
c3 = vertexColors[ 2 ];
c4 = vertexColors[ 3 ];
} else {
c1 = faceColor;
c2 = faceColor;
c3 = faceColor;
c4 = faceColor;
}
colorArray[ offset_color ] = c1.r;
colorArray[ offset_color + 1 ] = c1.g;
colorArray[ offset_color + 2 ] = c1.b;
colorArray[ offset_color + 3 ] = c2.r;
colorArray[ offset_color + 4 ] = c2.g;
colorArray[ offset_color + 5 ] = c2.b;
colorArray[ offset_color + 6 ] = c3.r;
colorArray[ offset_color + 7 ] = c3.g;
colorArray[ offset_color + 8 ] = c3.b;
colorArray[ offset_color + 9 ] = c4.r;
colorArray[ offset_color + 10 ] = c4.g;
colorArray[ offset_color + 11 ] = c4.b;
offset_color += 12;
}
if ( offset_color > 0 ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglColorBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint );
}
}
if ( dirtyTangents && geometry.hasTangents ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces3[ f ] ];
vertexTangents = face.vertexTangents;
t1 = vertexTangents[ 0 ];
t2 = vertexTangents[ 1 ];
t3 = vertexTangents[ 2 ];
tangentArray[ offset_tangent ] = t1.x;
tangentArray[ offset_tangent + 1 ] = t1.y;
tangentArray[ offset_tangent + 2 ] = t1.z;
tangentArray[ offset_tangent + 3 ] = t1.w;
tangentArray[ offset_tangent + 4 ] = t2.x;
tangentArray[ offset_tangent + 5 ] = t2.y;
tangentArray[ offset_tangent + 6 ] = t2.z;
tangentArray[ offset_tangent + 7 ] = t2.w;
tangentArray[ offset_tangent + 8 ] = t3.x;
tangentArray[ offset_tangent + 9 ] = t3.y;
tangentArray[ offset_tangent + 10 ] = t3.z;
tangentArray[ offset_tangent + 11 ] = t3.w;
offset_tangent += 12;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces4[ f ] ];
vertexTangents = face.vertexTangents;
t1 = vertexTangents[ 0 ];
t2 = vertexTangents[ 1 ];
t3 = vertexTangents[ 2 ];
t4 = vertexTangents[ 3 ];
tangentArray[ offset_tangent ] = t1.x;
tangentArray[ offset_tangent + 1 ] = t1.y;
tangentArray[ offset_tangent + 2 ] = t1.z;
tangentArray[ offset_tangent + 3 ] = t1.w;
tangentArray[ offset_tangent + 4 ] = t2.x;
tangentArray[ offset_tangent + 5 ] = t2.y;
tangentArray[ offset_tangent + 6 ] = t2.z;
tangentArray[ offset_tangent + 7 ] = t2.w;
tangentArray[ offset_tangent + 8 ] = t3.x;
tangentArray[ offset_tangent + 9 ] = t3.y;
tangentArray[ offset_tangent + 10 ] = t3.z;
tangentArray[ offset_tangent + 11 ] = t3.w;
tangentArray[ offset_tangent + 12 ] = t4.x;
tangentArray[ offset_tangent + 13 ] = t4.y;
tangentArray[ offset_tangent + 14 ] = t4.z;
tangentArray[ offset_tangent + 15 ] = t4.w;
offset_tangent += 16;
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglTangentBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, tangentArray, hint );
}
if ( dirtyNormals && normalType ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces3[ f ] ];
vertexNormals = face.vertexNormals;
faceNormal = face.normal;
if ( vertexNormals.length === 3 && needsSmoothNormals ) {
for ( i = 0; i < 3; i ++ ) {
vn = vertexNormals[ i ];
normalArray[ offset_normal ] = vn.x;
normalArray[ offset_normal + 1 ] = vn.y;
normalArray[ offset_normal + 2 ] = vn.z;
offset_normal += 3;
}
} else {
for ( i = 0; i < 3; i ++ ) {
normalArray[ offset_normal ] = faceNormal.x;
normalArray[ offset_normal + 1 ] = faceNormal.y;
normalArray[ offset_normal + 2 ] = faceNormal.z;
offset_normal += 3;
}
}
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces4[ f ] ];
vertexNormals = face.vertexNormals;
faceNormal = face.normal;
if ( vertexNormals.length === 4 && needsSmoothNormals ) {
for ( i = 0; i < 4; i ++ ) {
vn = vertexNormals[ i ];
normalArray[ offset_normal ] = vn.x;
normalArray[ offset_normal + 1 ] = vn.y;
normalArray[ offset_normal + 2 ] = vn.z;
offset_normal += 3;
}
} else {
for ( i = 0; i < 4; i ++ ) {
normalArray[ offset_normal ] = faceNormal.x;
normalArray[ offset_normal + 1 ] = faceNormal.y;
normalArray[ offset_normal + 2 ] = faceNormal.z;
offset_normal += 3;
}
}
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglNormalBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, normalArray, hint );
}
if ( dirtyUvs && obj_uvs && uvType ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
fi = chunk_faces3[ f ];
face = obj_faces[ fi ];
uv = obj_uvs[ fi ];
if ( uv === undefined ) continue;
for ( i = 0; i < 3; i ++ ) {
uvi = uv[ i ];
uvArray[ offset_uv ] = uvi.u;
uvArray[ offset_uv + 1 ] = uvi.v;
offset_uv += 2;
}
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
fi = chunk_faces4[ f ];
face = obj_faces[ fi ];
uv = obj_uvs[ fi ];
if ( uv === undefined ) continue;
for ( i = 0; i < 4; i ++ ) {
uvi = uv[ i ];
uvArray[ offset_uv ] = uvi.u;
uvArray[ offset_uv + 1 ] = uvi.v;
offset_uv += 2;
}
}
if ( offset_uv > 0 ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUVBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, uvArray, hint );
}
}
if ( dirtyUvs && obj_uvs2 && uvType ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
fi = chunk_faces3[ f ];
face = obj_faces[ fi ];
uv2 = obj_uvs2[ fi ];
if ( uv2 === undefined ) continue;
for ( i = 0; i < 3; i ++ ) {
uv2i = uv2[ i ];
uv2Array[ offset_uv2 ] = uv2i.u;
uv2Array[ offset_uv2 + 1 ] = uv2i.v;
offset_uv2 += 2;
}
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
fi = chunk_faces4[ f ];
face = obj_faces[ fi ];
uv2 = obj_uvs2[ fi ];
if ( uv2 === undefined ) continue;
for ( i = 0; i < 4; i ++ ) {
uv2i = uv2[ i ];
uv2Array[ offset_uv2 ] = uv2i.u;
uv2Array[ offset_uv2 + 1 ] = uv2i.v;
offset_uv2 += 2;
}
}
if ( offset_uv2 > 0 ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUV2Buffer );
_gl.bufferData( _gl.ARRAY_BUFFER, uv2Array, hint );
}
}
if ( dirtyElements ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces3[ f ] ];
faceArray[ offset_face ] = vertexIndex;
faceArray[ offset_face + 1 ] = vertexIndex + 1;
faceArray[ offset_face + 2 ] = vertexIndex + 2;
offset_face += 3;
lineArray[ offset_line ] = vertexIndex;
lineArray[ offset_line + 1 ] = vertexIndex + 1;
lineArray[ offset_line + 2 ] = vertexIndex;
lineArray[ offset_line + 3 ] = vertexIndex + 2;
lineArray[ offset_line + 4 ] = vertexIndex + 1;
lineArray[ offset_line + 5 ] = vertexIndex + 2;
offset_line += 6;
vertexIndex += 3;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces4[ f ] ];
faceArray[ offset_face ] = vertexIndex;
faceArray[ offset_face + 1 ] = vertexIndex + 1;
faceArray[ offset_face + 2 ] = vertexIndex + 3;
faceArray[ offset_face + 3 ] = vertexIndex + 1;
faceArray[ offset_face + 4 ] = vertexIndex + 2;
faceArray[ offset_face + 5 ] = vertexIndex + 3;
offset_face += 6;
lineArray[ offset_line ] = vertexIndex;
lineArray[ offset_line + 1 ] = vertexIndex + 1;
lineArray[ offset_line + 2 ] = vertexIndex;
lineArray[ offset_line + 3 ] = vertexIndex + 3;
lineArray[ offset_line + 4 ] = vertexIndex + 1;
lineArray[ offset_line + 5 ] = vertexIndex + 2;
lineArray[ offset_line + 6 ] = vertexIndex + 2;
lineArray[ offset_line + 7 ] = vertexIndex + 3;
offset_line += 8;
vertexIndex += 4;
}
_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglFaceBuffer );
_gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, faceArray, hint );
_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglLineBuffer );
_gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, lineArray, hint );
}
if ( customAttributes ) {
for ( i = 0, il = customAttributes.length; i < il; i ++ ) {
customAttribute = customAttributes[ i ];
if ( ! customAttribute.__original.needsUpdate ) continue;
offset_custom = 0;
offset_customSrc = 0;
if ( customAttribute.size === 1 ) {
if ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces3[ f ] ];
customAttribute.array[ offset_custom ] = customAttribute.value[ face.a ];
customAttribute.array[ offset_custom + 1 ] = customAttribute.value[ face.b ];
customAttribute.array[ offset_custom + 2 ] = customAttribute.value[ face.c ];
offset_custom += 3;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces4[ f ] ];
customAttribute.array[ offset_custom ] = customAttribute.value[ face.a ];
customAttribute.array[ offset_custom + 1 ] = customAttribute.value[ face.b ];
customAttribute.array[ offset_custom + 2 ] = customAttribute.value[ face.c ];
customAttribute.array[ offset_custom + 3 ] = customAttribute.value[ face.d ];
offset_custom += 4;
}
} else if ( customAttribute.boundTo === "faces" ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
value = customAttribute.value[ chunk_faces3[ f ] ];
customAttribute.array[ offset_custom ] = value;
customAttribute.array[ offset_custom + 1 ] = value;
customAttribute.array[ offset_custom + 2 ] = value;
offset_custom += 3;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
value = customAttribute.value[ chunk_faces4[ f ] ];
customAttribute.array[ offset_custom ] = value;
customAttribute.array[ offset_custom + 1 ] = value;
customAttribute.array[ offset_custom + 2 ] = value;
customAttribute.array[ offset_custom + 3 ] = value;
offset_custom += 4;
}
}
} else if ( customAttribute.size === 2 ) {
if ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces3[ f ] ];
v1 = customAttribute.value[ face.a ];
v2 = customAttribute.value[ face.b ];
v3 = customAttribute.value[ face.c ];
customAttribute.array[ offset_custom ] = v1.x;
customAttribute.array[ offset_custom + 1 ] = v1.y;
customAttribute.array[ offset_custom + 2 ] = v2.x;
customAttribute.array[ offset_custom + 3 ] = v2.y;
customAttribute.array[ offset_custom + 4 ] = v3.x;
customAttribute.array[ offset_custom + 5 ] = v3.y;
offset_custom += 6;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces4[ f ] ];
v1 = customAttribute.value[ face.a ];
v2 = customAttribute.value[ face.b ];
v3 = customAttribute.value[ face.c ];
v4 = customAttribute.value[ face.d ];
customAttribute.array[ offset_custom ] = v1.x;
customAttribute.array[ offset_custom + 1 ] = v1.y;
customAttribute.array[ offset_custom + 2 ] = v2.x;
customAttribute.array[ offset_custom + 3 ] = v2.y;
customAttribute.array[ offset_custom + 4 ] = v3.x;
customAttribute.array[ offset_custom + 5 ] = v3.y;
customAttribute.array[ offset_custom + 6 ] = v4.x;
customAttribute.array[ offset_custom + 7 ] = v4.y;
offset_custom += 8;
}
} else if ( customAttribute.boundTo === "faces" ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
value = customAttribute.value[ chunk_faces3[ f ] ];
v1 = value;
v2 = value;
v3 = value;
customAttribute.array[ offset_custom ] = v1.x;
customAttribute.array[ offset_custom + 1 ] = v1.y;
customAttribute.array[ offset_custom + 2 ] = v2.x;
customAttribute.array[ offset_custom + 3 ] = v2.y;
customAttribute.array[ offset_custom + 4 ] = v3.x;
customAttribute.array[ offset_custom + 5 ] = v3.y;
offset_custom += 6;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
value = customAttribute.value[ chunk_faces4[ f ] ];
v1 = value;
v2 = value;
v3 = value;
v4 = value;
customAttribute.array[ offset_custom ] = v1.x;
customAttribute.array[ offset_custom + 1 ] = v1.y;
customAttribute.array[ offset_custom + 2 ] = v2.x;
customAttribute.array[ offset_custom + 3 ] = v2.y;
customAttribute.array[ offset_custom + 4 ] = v3.x;
customAttribute.array[ offset_custom + 5 ] = v3.y;
customAttribute.array[ offset_custom + 6 ] = v4.x;
customAttribute.array[ offset_custom + 7 ] = v4.y;
offset_custom += 8;
}
}
} else if ( customAttribute.size === 3 ) {
var pp;
if ( customAttribute.type === "c" ) {
pp = [ "r", "g", "b" ];
} else {
pp = [ "x", "y", "z" ];
}
if ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces3[ f ] ];
v1 = customAttribute.value[ face.a ];
v2 = customAttribute.value[ face.b ];
v3 = customAttribute.value[ face.c ];
customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ];
customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ];
customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ];
offset_custom += 9;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces4[ f ] ];
v1 = customAttribute.value[ face.a ];
v2 = customAttribute.value[ face.b ];
v3 = customAttribute.value[ face.c ];
v4 = customAttribute.value[ face.d ];
customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ];
customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ];
customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ];
customAttribute.array[ offset_custom + 9 ] = v4[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 10 ] = v4[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 11 ] = v4[ pp[ 2 ] ];
offset_custom += 12;
}
} else if ( customAttribute.boundTo === "faces" ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
value = customAttribute.value[ chunk_faces3[ f ] ];
v1 = value;
v2 = value;
v3 = value;
customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ];
customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ];
customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ];
offset_custom += 9;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
value = customAttribute.value[ chunk_faces4[ f ] ];
v1 = value;
v2 = value;
v3 = value;
v4 = value;
customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ];
customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ];
customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ];
customAttribute.array[ offset_custom + 9 ] = v4[ pp[ 0 ] ];
customAttribute.array[ offset_custom + 10 ] = v4[ pp[ 1 ] ];
customAttribute.array[ offset_custom + 11 ] = v4[ pp[ 2 ] ];
offset_custom += 12;
}
}
} else if ( customAttribute.size === 4 ) {
if ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces3[ f ] ];
v1 = customAttribute.value[ face.a ];
v2 = customAttribute.value[ face.b ];
v3 = customAttribute.value[ face.c ];
customAttribute.array[ offset_custom ] = v1.x;
customAttribute.array[ offset_custom + 1 ] = v1.y;
customAttribute.array[ offset_custom + 2 ] = v1.z;
customAttribute.array[ offset_custom + 3 ] = v1.w;
customAttribute.array[ offset_custom + 4 ] = v2.x;
customAttribute.array[ offset_custom + 5 ] = v2.y;
customAttribute.array[ offset_custom + 6 ] = v2.z;
customAttribute.array[ offset_custom + 7 ] = v2.w;
customAttribute.array[ offset_custom + 8 ] = v3.x;
customAttribute.array[ offset_custom + 9 ] = v3.y;
customAttribute.array[ offset_custom + 10 ] = v3.z;
customAttribute.array[ offset_custom + 11 ] = v3.w;
offset_custom += 12;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
face = obj_faces[ chunk_faces4[ f ] ];
v1 = customAttribute.value[ face.a ];
v2 = customAttribute.value[ face.b ];
v3 = customAttribute.value[ face.c ];
v4 = customAttribute.value[ face.d ];
customAttribute.array[ offset_custom ] = v1.x;
customAttribute.array[ offset_custom + 1 ] = v1.y;
customAttribute.array[ offset_custom + 2 ] = v1.z;
customAttribute.array[ offset_custom + 3 ] = v1.w;
customAttribute.array[ offset_custom + 4 ] = v2.x;
customAttribute.array[ offset_custom + 5 ] = v2.y;
customAttribute.array[ offset_custom + 6 ] = v2.z;
customAttribute.array[ offset_custom + 7 ] = v2.w;
customAttribute.array[ offset_custom + 8 ] = v3.x;
customAttribute.array[ offset_custom + 9 ] = v3.y;
customAttribute.array[ offset_custom + 10 ] = v3.z;
customAttribute.array[ offset_custom + 11 ] = v3.w;
customAttribute.array[ offset_custom + 12 ] = v4.x;
customAttribute.array[ offset_custom + 13 ] = v4.y;
customAttribute.array[ offset_custom + 14 ] = v4.z;
customAttribute.array[ offset_custom + 15 ] = v4.w;
offset_custom += 16;
}
} else if ( customAttribute.boundTo === "faces" ) {
for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) {
value = customAttribute.value[ chunk_faces3[ f ] ];
v1 = value;
v2 = value;
v3 = value;
customAttribute.array[ offset_custom ] = v1.x;
customAttribute.array[ offset_custom + 1 ] = v1.y;
customAttribute.array[ offset_custom + 2 ] = v1.z;
customAttribute.array[ offset_custom + 3 ] = v1.w;
customAttribute.array[ offset_custom + 4 ] = v2.x;
customAttribute.array[ offset_custom + 5 ] = v2.y;
customAttribute.array[ offset_custom + 6 ] = v2.z;
customAttribute.array[ offset_custom + 7 ] = v2.w;
customAttribute.array[ offset_custom + 8 ] = v3.x;
customAttribute.array[ offset_custom + 9 ] = v3.y;
customAttribute.array[ offset_custom + 10 ] = v3.z;
customAttribute.array[ offset_custom + 11 ] = v3.w;
offset_custom += 12;
}
for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) {
value = customAttribute.value[ chunk_faces4[ f ] ];
v1 = value;
v2 = value;
v3 = value;
v4 = value;
customAttribute.array[ offset_custom ] = v1.x;
customAttribute.array[ offset_custom + 1 ] = v1.y;
customAttribute.array[ offset_custom + 2 ] = v1.z;
customAttribute.array[ offset_custom + 3 ] = v1.w;
customAttribute.array[ offset_custom + 4 ] = v2.x;
customAttribute.array[ offset_custom + 5 ] = v2.y;
customAttribute.array[ offset_custom + 6 ] = v2.z;
customAttribute.array[ offset_custom + 7 ] = v2.w;
customAttribute.array[ offset_custom + 8 ] = v3.x;
customAttribute.array[ offset_custom + 9 ] = v3.y;
customAttribute.array[ offset_custom + 10 ] = v3.z;
customAttribute.array[ offset_custom + 11 ] = v3.w;
customAttribute.array[ offset_custom + 12 ] = v4.x;
customAttribute.array[ offset_custom + 13 ] = v4.y;
customAttribute.array[ offset_custom + 14 ] = v4.z;
customAttribute.array[ offset_custom + 15 ] = v4.w;
offset_custom += 16;
}
}
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, customAttribute.buffer );
_gl.bufferData( _gl.ARRAY_BUFFER, customAttribute.array, hint );
}
}
if ( dispose ) {
delete geometryGroup.__inittedArrays;
delete geometryGroup.__colorArray;
delete geometryGroup.__normalArray;
delete geometryGroup.__tangentArray;
delete geometryGroup.__uvArray;
delete geometryGroup.__uv2Array;
delete geometryGroup.__faceArray;
delete geometryGroup.__vertexArray;
delete geometryGroup.__lineArray;
delete geometryGroup.__skinVertexAArray;
delete geometryGroup.__skinVertexBArray;
delete geometryGroup.__skinIndexArray;
delete geometryGroup.__skinWeightArray;
}
};
// Buffer rendering
this.renderBufferImmediate = function ( object, program, shading ) {
if ( ! object.__webglVertexBuffer ) object.__webglVertexBuffer = _gl.createBuffer();
if ( ! object.__webglNormalBuffer ) object.__webglNormalBuffer = _gl.createBuffer();
if ( object.hasPos ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, object.__webglVertexBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW );
_gl.enableVertexAttribArray( program.attributes.position );
_gl.vertexAttribPointer( program.attributes.position, 3, _gl.FLOAT, false, 0, 0 );
}
if ( object.hasNormal ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, object.__webglNormalBuffer );
if ( shading === THREE.FlatShading ) {
var nx, ny, nz,
nax, nbx, ncx, nay, nby, ncy, naz, nbz, ncz,
normalArray,
i, il = object.count * 3;
for( i = 0; i < il; i += 9 ) {
normalArray = object.normalArray;
nax = normalArray[ i ];
nay = normalArray[ i + 1 ];
naz = normalArray[ i + 2 ];
nbx = normalArray[ i + 3 ];
nby = normalArray[ i + 4 ];
nbz = normalArray[ i + 5 ];
ncx = normalArray[ i + 6 ];
ncy = normalArray[ i + 7 ];
ncz = normalArray[ i + 8 ];
nx = ( nax + nbx + ncx ) / 3;
ny = ( nay + nby + ncy ) / 3;
nz = ( naz + nbz + ncz ) / 3;
normalArray[ i ] = nx;
normalArray[ i + 1 ] = ny;
normalArray[ i + 2 ] = nz;
normalArray[ i + 3 ] = nx;
normalArray[ i + 4 ] = ny;
normalArray[ i + 5 ] = nz;
normalArray[ i + 6 ] = nx;
normalArray[ i + 7 ] = ny;
normalArray[ i + 8 ] = nz;
}
}
_gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW );
_gl.enableVertexAttribArray( program.attributes.normal );
_gl.vertexAttribPointer( program.attributes.normal, 3, _gl.FLOAT, false, 0, 0 );
}
_gl.drawArrays( _gl.TRIANGLES, 0, object.count );
object.count = 0;
};
this.renderBufferDirect = function ( camera, lights, fog, material, geometryGroup, object ) {
if ( material.visible === false ) return;
var program, attributes, linewidth, primitives, a, attribute;
program = setProgram( camera, lights, fog, material, object );
attributes = program.attributes;
var updateBuffers = false,
wireframeBit = material.wireframe ? 1 : 0,
geometryGroupHash = ( geometryGroup.id * 0xffffff ) + ( program.id * 2 ) + wireframeBit;
if ( geometryGroupHash !== _currentGeometryGroupHash ) {
_currentGeometryGroupHash = geometryGroupHash;
updateBuffers = true;
}
// render mesh
if ( object instanceof THREE.Mesh ) {
var offsets = geometryGroup.offsets;
for ( var i = 0, il = offsets.length; i < il; ++ i ) {
if ( updateBuffers ) {
// vertices
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.vertexPositionBuffer );
_gl.vertexAttribPointer( attributes.position, geometryGroup.vertexPositionBuffer.itemSize, _gl.FLOAT, false, 0, offsets[ i ].index * 4 * 3 );
// normals
if ( attributes.normal >= 0 && geometryGroup.vertexNormalBuffer ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.vertexNormalBuffer );
_gl.vertexAttribPointer( attributes.normal, geometryGroup.vertexNormalBuffer.itemSize, _gl.FLOAT, false, 0, offsets[ i ].index * 4 * 3 );
}
// uvs
if ( attributes.uv >= 0 && geometryGroup.vertexUvBuffer ) {
if ( geometryGroup.vertexUvBuffer ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.vertexUvBuffer );
_gl.vertexAttribPointer( attributes.uv, geometryGroup.vertexUvBuffer.itemSize, _gl.FLOAT, false, 0, offsets[ i ].index * 4 * 2 );
_gl.enableVertexAttribArray( attributes.uv );
} else {
_gl.disableVertexAttribArray( attributes.uv );
}
}
// colors
if ( attributes.color >= 0 && geometryGroup.vertexColorBuffer ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.vertexColorBuffer );
_gl.vertexAttribPointer( attributes.color, geometryGroup.vertexColorBuffer.itemSize, _gl.FLOAT, false, 0, offsets[ i ].index * 4 * 4 );
}
_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.vertexIndexBuffer );
}
// render indexed triangles
_gl.drawElements( _gl.TRIANGLES, offsets[ i ].count, _gl.UNSIGNED_SHORT, offsets[ i ].start * 2 ); // 2 = Uint16
_this.info.render.calls ++;
_this.info.render.vertices += offsets[ i ].count; // not really true, here vertices can be shared
_this.info.render.faces += offsets[ i ].count / 3;
}
}
};
this.renderBuffer = function ( camera, lights, fog, material, geometryGroup, object ) {
if ( material.visible === false ) return;
var program, attributes, linewidth, primitives, a, attribute, i, il;
program = setProgram( camera, lights, fog, material, object );
attributes = program.attributes;
var updateBuffers = false,
wireframeBit = material.wireframe ? 1 : 0,
geometryGroupHash = ( geometryGroup.id * 0xffffff ) + ( program.id * 2 ) + wireframeBit;
if ( geometryGroupHash !== _currentGeometryGroupHash ) {
_currentGeometryGroupHash = geometryGroupHash;
updateBuffers = true;
}
// vertices
if ( !material.morphTargets && attributes.position >= 0 ) {
if ( updateBuffers ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglVertexBuffer );
_gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 );
}
} else {
if ( object.morphTargetBase ) {
setupMorphTargets( material, geometryGroup, object );
}
}
if ( updateBuffers ) {
// custom attributes
// Use the per-geometryGroup custom attribute arrays which are setup in initMeshBuffers
if ( geometryGroup.__webglCustomAttributesList ) {
for ( i = 0, il = geometryGroup.__webglCustomAttributesList.length; i < il; i ++ ) {
attribute = geometryGroup.__webglCustomAttributesList[ i ];
if( attributes[ attribute.buffer.belongsToAttribute ] >= 0 ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, attribute.buffer );
_gl.vertexAttribPointer( attributes[ attribute.buffer.belongsToAttribute ], attribute.size, _gl.FLOAT, false, 0, 0 );
}
}
}
// colors
if ( attributes.color >= 0 ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglColorBuffer );
_gl.vertexAttribPointer( attributes.color, 3, _gl.FLOAT, false, 0, 0 );
}
// normals
if ( attributes.normal >= 0 ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglNormalBuffer );
_gl.vertexAttribPointer( attributes.normal, 3, _gl.FLOAT, false, 0, 0 );
}
// tangents
if ( attributes.tangent >= 0 ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglTangentBuffer );
_gl.vertexAttribPointer( attributes.tangent, 4, _gl.FLOAT, false, 0, 0 );
}
// uvs
if ( attributes.uv >= 0 ) {
if ( geometryGroup.__webglUVBuffer ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUVBuffer );
_gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 0, 0 );
_gl.enableVertexAttribArray( attributes.uv );
} else {
_gl.disableVertexAttribArray( attributes.uv );
}
}
if ( attributes.uv2 >= 0 ) {
if ( geometryGroup.__webglUV2Buffer ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUV2Buffer );
_gl.vertexAttribPointer( attributes.uv2, 2, _gl.FLOAT, false, 0, 0 );
_gl.enableVertexAttribArray( attributes.uv2 );
} else {
_gl.disableVertexAttribArray( attributes.uv2 );
}
}
if ( material.skinning &&
attributes.skinVertexA >= 0 && attributes.skinVertexB >= 0 &&
attributes.skinIndex >= 0 && attributes.skinWeight >= 0 ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinVertexABuffer );
_gl.vertexAttribPointer( attributes.skinVertexA, 4, _gl.FLOAT, false, 0, 0 );
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinVertexBBuffer );
_gl.vertexAttribPointer( attributes.skinVertexB, 4, _gl.FLOAT, false, 0, 0 );
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinIndicesBuffer );
_gl.vertexAttribPointer( attributes.skinIndex, 4, _gl.FLOAT, false, 0, 0 );
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinWeightsBuffer );
_gl.vertexAttribPointer( attributes.skinWeight, 4, _gl.FLOAT, false, 0, 0 );
}
}
// render mesh
if ( object instanceof THREE.Mesh ) {
// wireframe
if ( material.wireframe ) {
setLineWidth( material.wireframeLinewidth );
if ( updateBuffers ) _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglLineBuffer );
_gl.drawElements( _gl.LINES, geometryGroup.__webglLineCount, _gl.UNSIGNED_SHORT, 0 );
// triangles
} else {
if ( updateBuffers ) _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglFaceBuffer );
_gl.drawElements( _gl.TRIANGLES, geometryGroup.__webglFaceCount, _gl.UNSIGNED_SHORT, 0 );
}
_this.info.render.calls ++;
_this.info.render.vertices += geometryGroup.__webglFaceCount;
_this.info.render.faces += geometryGroup.__webglFaceCount / 3;
// render lines
} else if ( object instanceof THREE.Line ) {
primitives = ( object.type === THREE.LineStrip ) ? _gl.LINE_STRIP : _gl.LINES;
setLineWidth( material.linewidth );
_gl.drawArrays( primitives, 0, geometryGroup.__webglLineCount );
_this.info.render.calls ++;
// render particles
} else if ( object instanceof THREE.ParticleSystem ) {
_gl.drawArrays( _gl.POINTS, 0, geometryGroup.__webglParticleCount );
_this.info.render.calls ++;
_this.info.render.points += geometryGroup.__webglParticleCount;
// render ribbon
} else if ( object instanceof THREE.Ribbon ) {
_gl.drawArrays( _gl.TRIANGLE_STRIP, 0, geometryGroup.__webglVertexCount );
_this.info.render.calls ++;
}
};
function setupMorphTargets ( material, geometryGroup, object ) {
// set base
var attributes = material.program.attributes;
if ( object.morphTargetBase !== - 1 ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ object.morphTargetBase ] );
_gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 );
} else if ( attributes.position >= 0 ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglVertexBuffer );
_gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 );
}
if ( object.morphTargetForcedOrder.length ) {
// set forced order
var m = 0;
var order = object.morphTargetForcedOrder;
var influences = object.morphTargetInfluences;
while ( m < material.numSupportedMorphTargets && m < order.length ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ order[ m ] ] );
_gl.vertexAttribPointer( attributes[ "morphTarget" + m ], 3, _gl.FLOAT, false, 0, 0 );
if ( material.morphNormals ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphNormalsBuffers[ order[ m ] ] );
_gl.vertexAttribPointer( attributes[ "morphNormal" + m ], 3, _gl.FLOAT, false, 0, 0 );
}
object.__webglMorphTargetInfluences[ m ] = influences[ order[ m ] ];
m ++;
}
} else {
// find most influencing
var used = [];
var candidateInfluence = - 1;
var candidate = 0;
var influences = object.morphTargetInfluences;
var i, il = influences.length;
var m = 0;
if ( object.morphTargetBase !== - 1 ) {
used[ object.morphTargetBase ] = true;
}
while ( m < material.numSupportedMorphTargets ) {
for ( i = 0; i < il; i ++ ) {
if ( !used[ i ] && influences[ i ] > candidateInfluence ) {
candidate = i;
candidateInfluence = influences[ candidate ];
}
}
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ candidate ] );
_gl.vertexAttribPointer( attributes[ "morphTarget" + m ], 3, _gl.FLOAT, false, 0, 0 );
if ( material.morphNormals ) {
_gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphNormalsBuffers[ candidate ] );
_gl.vertexAttribPointer( attributes[ "morphNormal" + m ], 3, _gl.FLOAT, false, 0, 0 );
}
object.__webglMorphTargetInfluences[ m ] = candidateInfluence;
used[ candidate ] = 1;
candidateInfluence = -1;
m ++;
}
}
// load updated influences uniform
if( material.program.uniforms.morphTargetInfluences !== null ) {
_gl.uniform1fv( material.program.uniforms.morphTargetInfluences, object.__webglMorphTargetInfluences );
}
};
function painterSort ( a, b ) {
return b.z - a.z;
};
// Rendering
this.render = function ( scene, camera, renderTarget, forceClear ) {
var i, il,
webglObject, object,
renderList,
lights = scene.__lights,
fog = scene.fog;
// reset caching for this frame
_currentMaterialId = -1;
_lightsNeedUpdate = true;
// update scene graph
if ( camera.parent === undefined ) {
console.warn( 'DEPRECATED: Camera hasn\'t been added to a Scene. Adding it...' );
scene.add( camera );
}
if ( this.autoUpdateScene ) scene.updateMatrixWorld();
// update camera matrices and frustum
if ( ! camera._viewMatrixArray ) camera._viewMatrixArray = new Float32Array( 16 );
if ( ! camera._projectionMatrixArray ) camera._projectionMatrixArray = new Float32Array( 16 );
camera.matrixWorldInverse.getInverse( camera.matrixWorld );
camera.matrixWorldInverse.flattenToArray( camera._viewMatrixArray );
camera.projectionMatrix.flattenToArray( camera._projectionMatrixArray );
_projScreenMatrix.multiply( camera.projectionMatrix, camera.matrixWorldInverse );
_frustum.setFromMatrix( _projScreenMatrix );
// update WebGL objects
if ( this.autoUpdateObjects ) this.initWebGLObjects( scene );
// custom render plugins (pre pass)
renderPlugins( this.renderPluginsPre, scene, camera );
//
_this.info.render.calls = 0;
_this.info.render.vertices = 0;
_this.info.render.faces = 0;
_this.info.render.points = 0;
this.setRenderTarget( renderTarget );
if ( this.autoClear || forceClear ) {
this.clear( this.autoClearColor, this.autoClearDepth, this.autoClearStencil );
}
// set matrices for regular objects (frustum culled)
renderList = scene.__webglObjects;
for ( i = 0, il = renderList.length; i < il; i ++ ) {
webglObject = renderList[ i ];
object = webglObject.object;
webglObject.render = false;
if ( object.visible ) {
if ( ! ( object instanceof THREE.Mesh || object instanceof THREE.ParticleSystem ) || ! ( object.frustumCulled ) || _frustum.contains( object ) ) {
//object.matrixWorld.flattenToArray( object._objectMatrixArray );
setupMatrices( object, camera );
unrollBufferMaterial( webglObject );
webglObject.render = true;
if ( this.sortObjects ) {
if ( object.renderDepth ) {
webglObject.z = object.renderDepth;
} else {
_vector3.copy( object.matrixWorld.getPosition() );
_projScreenMatrix.multiplyVector3( _vector3 );
webglObject.z = _vector3.z;
}
}
}
}
}
if ( this.sortObjects ) {
renderList.sort( painterSort );
}
// set matrices for immediate objects
renderList = scene.__webglObjectsImmediate;
for ( i = 0, il = renderList.length; i < il; i ++ ) {
webglObject = renderList[ i ];
object = webglObject.object;
if ( object.visible ) {
/*
if ( object.matrixAutoUpdate ) {
object.matrixWorld.flattenToArray( object._objectMatrixArray );
}
*/
setupMatrices( object, camera );
unrollImmediateBufferMaterial( webglObject );
}
}
if ( scene.overrideMaterial ) {
var material = scene.overrideMaterial;
this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst );
this.setDepthTest( material.depthTest );
this.setDepthWrite( material.depthWrite );
setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );
renderObjects( scene.__webglObjects, false, "", camera, lights, fog, true, material );
renderObjectsImmediate( scene.__webglObjectsImmediate, "", camera, lights, fog, false, material );
} else {
// opaque pass (front-to-back order)
this.setBlending( THREE.NormalBlending );
renderObjects( scene.__webglObjects, true, "opaque", camera, lights, fog, false );
renderObjectsImmediate( scene.__webglObjectsImmediate, "opaque", camera, lights, fog, false );
// transparent pass (back-to-front order)
renderObjects( scene.__webglObjects, false, "transparent", camera, lights, fog, true );
renderObjectsImmediate( scene.__webglObjectsImmediate, "transparent", camera, lights, fog, true );
}
// custom render plugins (post pass)
renderPlugins( this.renderPluginsPost, scene, camera );
// Generate mipmap if we're using any kind of mipmap filtering
if ( renderTarget && renderTarget.generateMipmaps && renderTarget.minFilter !== THREE.NearestFilter && renderTarget.minFilter !== THREE.LinearFilter ) {
updateRenderTargetMipmap( renderTarget );
}
// Ensure depth buffer writing is enabled so it can be cleared on next render
this.setDepthTest( true );
this.setDepthWrite( true );
// _gl.finish();
};
function renderPlugins( plugins, scene, camera ) {
if ( ! plugins.length ) return;
for ( var i = 0, il = plugins.length; i < il; i ++ ) {
// reset state for plugin (to start from clean slate)
_currentProgram = null;
_currentCamera = null;
_oldBlending = -1;
_oldDepthTest = -1;
_oldDepthWrite = -1;
_oldDoubleSided = -1;
_oldFlipSided = -1;
_currentGeometryGroupHash = -1;
_currentMaterialId = -1;
_lightsNeedUpdate = true;
plugins[ i ].render( scene, camera, _currentWidth, _currentHeight );
// reset state after plugin (anything could have changed)
_currentProgram = null;
_currentCamera = null;
_oldBlending = -1;
_oldDepthTest = -1;
_oldDepthWrite = -1;
_oldDoubleSided = -1;
_oldFlipSided = -1;
_currentGeometryGroupHash = -1;
_currentMaterialId = -1;
_lightsNeedUpdate = true;
}
};
function renderObjects ( renderList, reverse, materialType, camera, lights, fog, useBlending, overrideMaterial ) {
var webglObject, object, buffer, material, start, end, delta;
if ( reverse ) {
start = renderList.length - 1;
end = -1;
delta = -1;
} else {
start = 0;
end = renderList.length;
delta = 1;
}
for ( var i = start; i !== end; i += delta ) {
webglObject = renderList[ i ];
if ( webglObject.render ) {
object = webglObject.object;
buffer = webglObject.buffer;
if ( overrideMaterial ) {
material = overrideMaterial;
} else {
material = webglObject[ materialType ];
if ( ! material ) continue;
if ( useBlending ) _this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst );
_this.setDepthTest( material.depthTest );
_this.setDepthWrite( material.depthWrite );
setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );
}
_this.setObjectFaces( object );
if ( buffer instanceof THREE.BufferGeometry ) {
_this.renderBufferDirect( camera, lights, fog, material, buffer, object );
} else {
_this.renderBuffer( camera, lights, fog, material, buffer, object );
}
}
}
};
function renderObjectsImmediate ( renderList, materialType, camera, lights, fog, useBlending, overrideMaterial ) {
var webglObject, object, material, program;
for ( var i = 0, il = renderList.length; i < il; i ++ ) {
webglObject = renderList[ i ];
object = webglObject.object;
if ( object.visible ) {
if ( overrideMaterial ) {
material = overrideMaterial;
} else {
material = webglObject[ materialType ];
if ( ! material ) continue;
if ( useBlending ) _this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst );
_this.setDepthTest( material.depthTest );
_this.setDepthWrite( material.depthWrite );
setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );
}
_this.renderImmediateObject( camera, lights, fog, material, object );
}
}
};
this.renderImmediateObject = function ( camera, lights, fog, material, object ) {
var program = setProgram( camera, lights, fog, material, object );
_currentGeometryGroupHash = -1;
_this.setObjectFaces( object );
if ( object.immediateRenderCallback ) {
object.immediateRenderCallback( program, _gl, _frustum );
} else {
object.render( function( object ) { _this.renderBufferImmediate( object, program, material.shading ); } );
}
};
function unrollImmediateBufferMaterial ( globject ) {
var object = globject.object,
material = object.material;
if ( material.transparent ) {
globject.transparent = material;
globject.opaque = null;
} else {
globject.opaque = material;
globject.transparent = null;
}
};
function unrollBufferMaterial ( globject ) {
var object = globject.object,
buffer = globject.buffer,
material, materialIndex, meshMaterial;
meshMaterial = object.material;
if ( meshMaterial instanceof THREE.MeshFaceMaterial ) {
materialIndex = buffer.materialIndex;
if ( materialIndex >= 0 ) {
material = object.geometry.materials[ materialIndex ];
if ( material.transparent ) {
globject.transparent = material;
globject.opaque = null;
} else {
globject.opaque = material;
globject.transparent = null;
}
}
} else {
material = meshMaterial;
if ( material ) {
if ( material.transparent ) {
globject.transparent = material;
globject.opaque = null;
} else {
globject.opaque = material;
globject.transparent = null;
}
}
}
};
// Geometry splitting
function sortFacesByMaterial ( geometry ) {
var f, fl, face, materialIndex, vertices,
materialHash, groupHash,
hash_map = {};
var numMorphTargets = geometry.morphTargets.length;
var numMorphNormals = geometry.morphNormals.length;
geometry.geometryGroups = {};
for ( f = 0, fl = geometry.faces.length; f < fl; f ++ ) {
face = geometry.faces[ f ];
materialIndex = face.materialIndex;
materialHash = ( materialIndex !== undefined ) ? materialIndex : -1;
if ( hash_map[ materialHash ] === undefined ) {
hash_map[ materialHash ] = { 'hash': materialHash, 'counter': 0 };
}
groupHash = hash_map[ materialHash ].hash + '_' + hash_map[ materialHash ].counter;
if ( geometry.geometryGroups[ groupHash ] === undefined ) {
geometry.geometryGroups[ groupHash ] = { 'faces3': [], 'faces4': [], 'materialIndex': materialIndex, 'vertices': 0, 'numMorphTargets': numMorphTargets, 'numMorphNormals': numMorphNormals };
}
vertices = face instanceof THREE.Face3 ? 3 : 4;
if ( geometry.geometryGroups[ groupHash ].vertices + vertices > 65535 ) {
hash_map[ materialHash ].counter += 1;
groupHash = hash_map[ materialHash ].hash + '_' + hash_map[ materialHash ].counter;
if ( geometry.geometryGroups[ groupHash ] === undefined ) {
geometry.geometryGroups[ groupHash ] = { 'faces3': [], 'faces4': [], 'materialIndex': materialIndex, 'vertices': 0, 'numMorphTargets': numMorphTargets, 'numMorphNormals': numMorphNormals };
}
}
if ( face instanceof THREE.Face3 ) {
geometry.geometryGroups[ groupHash ].faces3.push( f );
} else {
geometry.geometryGroups[ groupHash ].faces4.push( f );
}
geometry.geometryGroups[ groupHash ].vertices += vertices;
}
geometry.geometryGroupsList = [];
for ( var g in geometry.geometryGroups ) {
geometry.geometryGroups[ g ].id = _geometryGroupCounter ++;
geometry.geometryGroupsList.push( geometry.geometryGroups[ g ] );
}
};
// Objects refresh
this.initWebGLObjects = function ( scene ) {
if ( !scene.__webglObjects ) {
scene.__webglObjects = [];
scene.__webglObjectsImmediate = [];
scene.__webglSprites = [];
scene.__webglFlares = [];
}
while ( scene.__objectsAdded.length ) {
addObject( scene.__objectsAdded[ 0 ], scene );
scene.__objectsAdded.splice( 0, 1 );
}
while ( scene.__objectsRemoved.length ) {
removeObject( scene.__objectsRemoved[ 0 ], scene );
scene.__objectsRemoved.splice( 0, 1 );
}
// update must be called after objects adding / removal
for ( var o = 0, ol = scene.__webglObjects.length; o < ol; o ++ ) {
updateObject( scene.__webglObjects[ o ].object );
}
};
// Objects adding
function addObject ( object, scene ) {
var g, geometry, geometryGroup;
if ( ! object.__webglInit ) {
object.__webglInit = true;
object._modelViewMatrix = new THREE.Matrix4();
object._normalMatrix = new THREE.Matrix3();
//object._normalMatrixArray = new Float32Array( 9 );
//object._modelViewMatrixArray = new Float32Array( 16 );
//object._objectMatrixArray = new Float32Array( 16 );
//object.matrixWorld.flattenToArray( object._objectMatrixArray );
if ( object instanceof THREE.Mesh ) {
geometry = object.geometry;
if ( geometry instanceof THREE.Geometry ) {
if ( geometry.geometryGroups === undefined ) {
sortFacesByMaterial( geometry );
}
// create separate VBOs per geometry chunk
for ( g in geometry.geometryGroups ) {
geometryGroup = geometry.geometryGroups[ g ];
// initialise VBO on the first access
if ( ! geometryGroup.__webglVertexBuffer ) {
createMeshBuffers( geometryGroup );
initMeshBuffers( geometryGroup, object );
geometry.verticesNeedUpdate = true;
geometry.morphTargetsNeedUpdate = true;
geometry.elementsNeedUpdate = true;
geometry.uvsNeedUpdate = true;
geometry.normalsNeedUpdate = true;
geometry.tangetsNeedUpdate = true;
geometry.colorsNeedUpdate = true;
}
}
}
} else if ( object instanceof THREE.Ribbon ) {
geometry = object.geometry;
if( ! geometry.__webglVertexBuffer ) {
createRibbonBuffers( geometry );
initRibbonBuffers( geometry );
geometry.verticesNeedUpdate = true;
geometry.colorsNeedUpdate = true;
}
} else if ( object instanceof THREE.Line ) {
geometry = object.geometry;
if( ! geometry.__webglVertexBuffer ) {
createLineBuffers( geometry );
initLineBuffers( geometry, object );
geometry.verticesNeedUpdate = true;
geometry.colorsNeedUpdate = true;
}
} else if ( object instanceof THREE.ParticleSystem ) {
geometry = object.geometry;
if ( ! geometry.__webglVertexBuffer ) {
createParticleBuffers( geometry );
initParticleBuffers( geometry, object );
geometry.verticesNeedUpdate = true;
geometry.colorsNeedUpdate = true;
}
}
}
if ( ! object.__webglActive ) {
if ( object instanceof THREE.Mesh ) {
geometry = object.geometry;
if ( geometry instanceof THREE.BufferGeometry ) {
addBuffer( scene.__webglObjects, geometry, object );
} else {
for ( g in geometry.geometryGroups ) {
geometryGroup = geometry.geometryGroups[ g ];
addBuffer( scene.__webglObjects, geometryGroup, object );
}
}
} else if ( object instanceof THREE.Ribbon ||
object instanceof THREE.Line ||
object instanceof THREE.ParticleSystem ) {
geometry = object.geometry;
addBuffer( scene.__webglObjects, geometry, object );
} else if ( object instanceof THREE.ImmediateRenderObject || object.immediateRenderCallback ) {
addBufferImmediate( scene.__webglObjectsImmediate, object );
} else if ( object instanceof THREE.Sprite ) {
scene.__webglSprites.push( object );
} else if ( object instanceof THREE.LensFlare ) {
scene.__webglFlares.push( object );
}
object.__webglActive = true;
}
};
function addBuffer ( objlist, buffer, object ) {
objlist.push(
{
buffer: buffer,
object: object,
opaque: null,
transparent: null
}
);
};
function addBufferImmediate ( objlist, object ) {
objlist.push(
{
object: object,
opaque: null,
transparent: null
}
);
};
// Objects updates
function updateObject ( object ) {
var geometry = object.geometry,
geometryGroup, customAttributesDirty, material;
if ( object instanceof THREE.Mesh ) {
if ( geometry instanceof THREE.BufferGeometry ) {
/*
if ( geometry.verticesNeedUpdate || geometry.elementsNeedUpdate ||
geometry.uvsNeedUpdate || geometry.normalsNeedUpdate ||
geometry.colorsNeedUpdate ) {
// TODO
// set buffers from typed arrays
}
*/
geometry.verticesNeedUpdate = false;
geometry.elementsNeedUpdate = false;
geometry.uvsNeedUpdate = false;
geometry.normalsNeedUpdate = false;
geometry.colorsNeedUpdate = false;
} else {
// check all geometry groups
for( var i = 0, il = geometry.geometryGroupsList.length; i < il; i ++ ) {
geometryGroup = geometry.geometryGroupsList[ i ];
material = getBufferMaterial( object, geometryGroup );
customAttributesDirty = material.attributes && areCustomAttributesDirty( material );
if ( geometry.verticesNeedUpdate || geometry.morphTargetsNeedUpdate || geometry.elementsNeedUpdate ||
geometry.uvsNeedUpdate || geometry.normalsNeedUpdate ||
geometry.colorsNeedUpdate || geometry.tangetsNeedUpdate || customAttributesDirty ) {
setMeshBuffers( geometryGroup, object, _gl.DYNAMIC_DRAW, !geometry.dynamic, material );
}
}
geometry.verticesNeedUpdate = false;
geometry.morphTargetsNeedUpdate = false;
geometry.elementsNeedUpdate = false;
geometry.uvsNeedUpdate = false;
geometry.normalsNeedUpdate = false;
geometry.colorsNeedUpdate = false;
geometry.tangetsNeedUpdate = false;
material.attributes && clearCustomAttributes( material );
}
} else if ( object instanceof THREE.Ribbon ) {
if ( geometry.verticesNeedUpdate || geometry.colorsNeedUpdate ) {
setRibbonBuffers( geometry, _gl.DYNAMIC_DRAW );
}
geometry.verticesNeedUpdate = false;
geometry.colorsNeedUpdate = false;
} else if ( object instanceof THREE.Line ) {
material = getBufferMaterial( object, geometryGroup );
customAttributesDirty = material.attributes && areCustomAttributesDirty( material );
if ( geometry.verticesNeedUpdate || geometry.colorsNeedUpdate || customAttributesDirty ) {
setLineBuffers( geometry, _gl.DYNAMIC_DRAW );
}
geometry.verticesNeedUpdate = false;
geometry.colorsNeedUpdate = false;
material.attributes && clearCustomAttributes( material );
} else if ( object instanceof THREE.ParticleSystem ) {
material = getBufferMaterial( object, geometryGroup );
customAttributesDirty = material.attributes && areCustomAttributesDirty( material );
if ( geometry.verticesNeedUpdate || geometry.colorsNeedUpdate || object.sortParticles || customAttributesDirty ) {
setParticleBuffers( geometry, _gl.DYNAMIC_DRAW, object );
}
geometry.verticesNeedUpdate = false;
geometry.colorsNeedUpdate = false;
material.attributes && clearCustomAttributes( material );
}
};
// Objects updates - custom attributes check
function areCustomAttributesDirty ( material ) {
for ( var a in material.attributes ) {
if ( material.attributes[ a ].needsUpdate ) return true;
}
return false;
};
function clearCustomAttributes ( material ) {
for ( var a in material.attributes ) {
material.attributes[ a ].needsUpdate = false;
}
};
// Objects removal
function removeObject ( object, scene ) {
if ( object instanceof THREE.Mesh ||
object instanceof THREE.ParticleSystem ||
object instanceof THREE.Ribbon ||
object instanceof THREE.Line ) {
removeInstances( scene.__webglObjects, object );
} else if ( object instanceof THREE.Sprite ) {
removeInstancesDirect( scene.__webglSprites, object );
} else if ( object instanceof THREE.LensFlare ) {
removeInstancesDirect( scene.__webglFlares, object );
} else if ( object instanceof THREE.ImmediateRenderObject || object.immediateRenderCallback ) {
removeInstances( scene.__webglObjectsImmediate, object );
}
object.__webglActive = false;
};
function removeInstances ( objlist, object ) {
for ( var o = objlist.length - 1; o >= 0; o -- ) {
if ( objlist[ o ].object === object ) {
objlist.splice( o, 1 );
}
}
};
function removeInstancesDirect ( objlist, object ) {
for ( var o = objlist.length - 1; o >= 0; o -- ) {
if ( objlist[ o ] === object ) {
objlist.splice( o, 1 );
}
}
};
// Materials
this.initMaterial = function ( material, lights, fog, object ) {
var u, a, identifiers, i, parameters, maxLightCount, maxBones, maxShadows, shaderID;
if ( material instanceof THREE.MeshDepthMaterial ) {
shaderID = 'depth';
} else if ( material instanceof THREE.MeshNormalMaterial ) {
shaderID = 'normal';
} else if ( material instanceof THREE.MeshBasicMaterial ) {
shaderID = 'basic';
} else if ( material instanceof THREE.MeshLambertMaterial ) {
shaderID = 'lambert';
} else if ( material instanceof THREE.MeshPhongMaterial ) {
shaderID = 'phong';
} else if ( material instanceof THREE.LineBasicMaterial ) {
shaderID = 'basic';
} else if ( material instanceof THREE.ParticleBasicMaterial ) {
shaderID = 'particle_basic';
}
if ( shaderID ) {
setMaterialShaders( material, THREE.ShaderLib[ shaderID ] );
}
// heuristics to create shader parameters according to lights in the scene
// (not to blow over maxLights budget)
maxLightCount = allocateLights( lights );
maxShadows = allocateShadows( lights );
maxBones = allocateBones( object );
parameters = {
map: !!material.map,
envMap: !!material.envMap,
lightMap: !!material.lightMap,
vertexColors: material.vertexColors,
fog: fog,
useFog: material.fog,
sizeAttenuation: material.sizeAttenuation,
skinning: material.skinning,
maxBones: maxBones,
morphTargets: material.morphTargets,
morphNormals: material.morphNormals,
maxMorphTargets: this.maxMorphTargets,
maxMorphNormals: this.maxMorphNormals,
maxDirLights: maxLightCount.directional,
maxPointLights: maxLightCount.point,
maxSpotLights: maxLightCount.spot,
maxShadows: maxShadows,
shadowMapEnabled: this.shadowMapEnabled && object.receiveShadow,
shadowMapSoft: this.shadowMapSoft,
shadowMapDebug: this.shadowMapDebug,
shadowMapCascade: this.shadowMapCascade,
alphaTest: material.alphaTest,
metal: material.metal,
perPixel: material.perPixel,
wrapAround: material.wrapAround,
doubleSided: object && object.doubleSided
};
material.program = buildProgram( shaderID, material.fragmentShader, material.vertexShader, material.uniforms, material.attributes, parameters );
var attributes = material.program.attributes;
if ( attributes.position >= 0 ) _gl.enableVertexAttribArray( attributes.position );
if ( attributes.color >= 0 ) _gl.enableVertexAttribArray( attributes.color );
if ( attributes.normal >= 0 ) _gl.enableVertexAttribArray( attributes.normal );
if ( attributes.tangent >= 0 ) _gl.enableVertexAttribArray( attributes.tangent );
if ( material.skinning &&
attributes.skinVertexA >=0 && attributes.skinVertexB >= 0 &&
attributes.skinIndex >= 0 && attributes.skinWeight >= 0 ) {
_gl.enableVertexAttribArray( attributes.skinVertexA );
_gl.enableVertexAttribArray( attributes.skinVertexB );
_gl.enableVertexAttribArray( attributes.skinIndex );
_gl.enableVertexAttribArray( attributes.skinWeight );
}
if ( material.attributes ) {
for ( a in material.attributes ) {
if( attributes[ a ] !== undefined && attributes[ a ] >= 0 ) _gl.enableVertexAttribArray( attributes[ a ] );
}
}
if ( material.morphTargets ) {
material.numSupportedMorphTargets = 0;
var id, base = "morphTarget";
for ( i = 0; i < this.maxMorphTargets; i ++ ) {
id = base + i;
if ( attributes[ id ] >= 0 ) {
_gl.enableVertexAttribArray( attributes[ id ] );
material.numSupportedMorphTargets ++;
}
}
}
if ( material.morphNormals ) {
material.numSupportedMorphNormals = 0;
var id, base = "morphNormal";
for ( i = 0; i < this.maxMorphNormals; i ++ ) {
id = base + i;
if ( attributes[ id ] >= 0 ) {
_gl.enableVertexAttribArray( attributes[ id ] );
material.numSupportedMorphNormals ++;
}
}
}
material.uniformsList = [];
for ( u in material.uniforms ) {
material.uniformsList.push( [ material.uniforms[ u ], u ] );
}
};
function setMaterialShaders( material, shaders ) {
material.uniforms = THREE.UniformsUtils.clone( shaders.uniforms );
material.vertexShader = shaders.vertexShader;
material.fragmentShader = shaders.fragmentShader;
};
function setProgram( camera, lights, fog, material, object ) {
if ( ! material.program || material.needsUpdate ) {
_this.initMaterial( material, lights, fog, object );
material.needsUpdate = false;
}
if ( material.morphTargets ) {
if ( ! object.__webglMorphTargetInfluences ) {
object.__webglMorphTargetInfluences = new Float32Array( _this.maxMorphTargets );
for ( var i = 0, il = _this.maxMorphTargets; i < il; i ++ ) {
object.__webglMorphTargetInfluences[ i ] = 0;
}
}
}
var refreshMaterial = false;
var program = material.program,
p_uniforms = program.uniforms,
m_uniforms = material.uniforms;
if ( program !== _currentProgram ) {
_gl.useProgram( program );
_currentProgram = program;
refreshMaterial = true;
}
if ( material.id !== _currentMaterialId ) {
_currentMaterialId = material.id;
refreshMaterial = true;
}
if ( refreshMaterial || camera !== _currentCamera ) {
_gl.uniformMatrix4fv( p_uniforms.projectionMatrix, false, camera._projectionMatrixArray );
if ( camera !== _currentCamera ) _currentCamera = camera;
}
if ( refreshMaterial ) {
// refresh uniforms common to several materials
if ( fog && material.fog ) {
refreshUniformsFog( m_uniforms, fog );
}
if ( material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material.lights ) {
if ( _lightsNeedUpdate ) {
setupLights( program, lights );
_lightsNeedUpdate = false;
}
refreshUniformsLights( m_uniforms, _lights );
}
if ( material instanceof THREE.MeshBasicMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material instanceof THREE.MeshPhongMaterial ) {
refreshUniformsCommon( m_uniforms, material );
}
// refresh single material specific uniforms
if ( material instanceof THREE.LineBasicMaterial ) {
refreshUniformsLine( m_uniforms, material );
} else if ( material instanceof THREE.ParticleBasicMaterial ) {
refreshUniformsParticle( m_uniforms, material );
} else if ( material instanceof THREE.MeshPhongMaterial ) {
refreshUniformsPhong( m_uniforms, material );
} else if ( material instanceof THREE.MeshLambertMaterial ) {
refreshUniformsLambert( m_uniforms, material );
} else if ( material instanceof THREE.MeshDepthMaterial ) {
m_uniforms.mNear.value = camera.near;
m_uniforms.mFar.value = camera.far;
m_uniforms.opacity.value = material.opacity;
} else if ( material instanceof THREE.MeshNormalMaterial ) {
m_uniforms.opacity.value = material.opacity;
}
if ( object.receiveShadow && ! material._shadowPass ) {
refreshUniformsShadow( m_uniforms, lights );
}
// load common uniforms
loadUniformsGeneric( program, material.uniformsList );
// load material specific uniforms
// (shader material also gets them for the sake of genericity)
if ( material instanceof THREE.ShaderMaterial ||
material instanceof THREE.MeshPhongMaterial ||
material.envMap ) {
if ( p_uniforms.cameraPosition !== null ) {
var position = camera.matrixWorld.getPosition();
_gl.uniform3f( p_uniforms.cameraPosition, position.x, position.y, position.z );
}
}
if ( material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material instanceof THREE.ShaderMaterial ||
material.skinning ) {
if ( p_uniforms.viewMatrix !== null ) {
_gl.uniformMatrix4fv( p_uniforms.viewMatrix, false, camera._viewMatrixArray );
}
}
if ( material.skinning ) {
_gl.uniformMatrix4fv( p_uniforms.boneGlobalMatrices, false, object.boneMatrices );
}
}
loadUniformsMatrices( p_uniforms, object );
if ( p_uniforms.objectMatrix !== null ) {
_gl.uniformMatrix4fv( p_uniforms.objectMatrix, false, object.matrixWorld.elements );
}
return program;
};
// Uniforms (refresh uniforms objects)
function refreshUniformsCommon ( uniforms, material ) {
uniforms.opacity.value = material.opacity;
if ( _this.gammaInput ) {
uniforms.diffuse.value.copyGammaToLinear( material.color );
} else {
uniforms.diffuse.value = material.color;
}
uniforms.map.texture = material.map;
if ( material.map ) {
uniforms.offsetRepeat.value.set( material.map.offset.x, material.map.offset.y, material.map.repeat.x, material.map.repeat.y );
}
uniforms.lightMap.texture = material.lightMap;
uniforms.envMap.texture = material.envMap;
uniforms.flipEnvMap.value = ( material.envMap instanceof THREE.WebGLRenderTargetCube ) ? 1 : -1;
if ( _this.gammaInput ) {
//uniforms.reflectivity.value = material.reflectivity * material.reflectivity;
uniforms.reflectivity.value = material.reflectivity;
} else {
uniforms.reflectivity.value = material.reflectivity;
}
uniforms.refractionRatio.value = material.refractionRatio;
uniforms.combine.value = material.combine;
uniforms.useRefract.value = material.envMap && material.envMap.mapping instanceof THREE.CubeRefractionMapping;
};
function refreshUniformsLine ( uniforms, material ) {
uniforms.diffuse.value = material.color;
uniforms.opacity.value = material.opacity;
};
function refreshUniformsParticle ( uniforms, material ) {
uniforms.psColor.value = material.color;
uniforms.opacity.value = material.opacity;
uniforms.size.value = material.size;
uniforms.scale.value = _canvas.height / 2.0; // TODO: Cache this.
uniforms.map.texture = material.map;
};
function refreshUniformsFog ( uniforms, fog ) {
uniforms.fogColor.value = fog.color;
if ( fog instanceof THREE.Fog ) {
uniforms.fogNear.value = fog.near;
uniforms.fogFar.value = fog.far;
} else if ( fog instanceof THREE.FogExp2 ) {
uniforms.fogDensity.value = fog.density;
}
};
function refreshUniformsPhong ( uniforms, material ) {
uniforms.shininess.value = material.shininess;
if ( _this.gammaInput ) {
uniforms.ambient.value.copyGammaToLinear( material.ambient );
uniforms.emissive.value.copyGammaToLinear( material.emissive );
uniforms.specular.value.copyGammaToLinear( material.specular );
} else {
uniforms.ambient.value = material.ambient;
uniforms.emissive.value = material.emissive;
uniforms.specular.value = material.specular;
}
if ( material.wrapAround ) {
uniforms.wrapRGB.value.copy( material.wrapRGB );
}
};
function refreshUniformsLambert ( uniforms, material ) {
if ( _this.gammaInput ) {
uniforms.ambient.value.copyGammaToLinear( material.ambient );
uniforms.emissive.value.copyGammaToLinear( material.emissive );
} else {
uniforms.ambient.value = material.ambient;
uniforms.emissive.value = material.emissive;
}
if ( material.wrapAround ) {
uniforms.wrapRGB.value.copy( material.wrapRGB );
}
};
function refreshUniformsLights ( uniforms, lights ) {
uniforms.ambientLightColor.value = lights.ambient;
uniforms.directionalLightColor.value = lights.directional.colors;
uniforms.directionalLightDirection.value = lights.directional.positions;
uniforms.pointLightColor.value = lights.point.colors;
uniforms.pointLightPosition.value = lights.point.positions;
uniforms.pointLightDistance.value = lights.point.distances;
uniforms.spotLightColor.value = lights.spot.colors;
uniforms.spotLightPosition.value = lights.spot.positions;
uniforms.spotLightDistance.value = lights.spot.distances;
uniforms.spotLightDirection.value = lights.spot.directions;
uniforms.spotLightAngle.value = lights.spot.angles;
uniforms.spotLightExponent.value = lights.spot.exponents;
};
function refreshUniformsShadow ( uniforms, lights ) {
if ( uniforms.shadowMatrix ) {
var j = 0;
for ( var i = 0, il = lights.length; i < il; i ++ ) {
var light = lights[ i ];
if ( ! light.castShadow ) continue;
if ( light instanceof THREE.SpotLight || ( light instanceof THREE.DirectionalLight && ! light.shadowCascade ) ) {
uniforms.shadowMap.texture[ j ] = light.shadowMap;
uniforms.shadowMapSize.value[ j ] = light.shadowMapSize;
uniforms.shadowMatrix.value[ j ] = light.shadowMatrix;
uniforms.shadowDarkness.value[ j ] = light.shadowDarkness;
uniforms.shadowBias.value[ j ] = light.shadowBias;
j ++;
}
}
}
};
// Uniforms (load to GPU)
function loadUniformsMatrices ( uniforms, object ) {
_gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, object._modelViewMatrix.elements );
if ( uniforms.normalMatrix ) {
_gl.uniformMatrix3fv( uniforms.normalMatrix, false, object._normalMatrix.elements );
}
};
function loadUniformsGeneric ( program, uniforms ) {
var uniform, value, type, location, texture, i, il, j, jl, offset;
for ( j = 0, jl = uniforms.length; j < jl; j ++ ) {
location = program.uniforms[ uniforms[ j ][ 1 ] ];
if ( !location ) continue;
uniform = uniforms[ j ][ 0 ];
type = uniform.type;
value = uniform.value;
switch ( type ) {
case "i": // single integer
_gl.uniform1i( location, value );
break;
case "f": // single float
_gl.uniform1f( location, value );
break;
case "v2": // single THREE.Vector2
_gl.uniform2f( location, value.x, value.y );
break;
case "v3": // single THREE.Vector3
_gl.uniform3f( location, value.x, value.y, value.z );
break;
case "v4": // single THREE.Vector4
_gl.uniform4f( location, value.x, value.y, value.z, value.w );
break;
case "c": // single THREE.Color
_gl.uniform3f( location, value.r, value.g, value.b );
break;
case "fv1": // flat array of floats (JS or typed array)
_gl.uniform1fv( location, value );
break;
case "fv": // flat array of floats with 3 x N size (JS or typed array)
_gl.uniform3fv( location, value );
break;
case "v2v": // array of THREE.Vector2
if ( ! uniform._array ) {
uniform._array = new Float32Array( 2 * value.length );
}
for ( i = 0, il = value.length; i < il; i ++ ) {
offset = i * 2;
uniform._array[ offset ] = value[ i ].x;
uniform._array[ offset + 1 ] = value[ i ].y;
}
_gl.uniform2fv( location, uniform._array );
break;
case "v3v": // array of THREE.Vector3
if ( ! uniform._array ) {
uniform._array = new Float32Array( 3 * value.length );
}
for ( i = 0, il = value.length; i < il; i ++ ) {
offset = i * 3;
uniform._array[ offset ] = value[ i ].x;
uniform._array[ offset + 1 ] = value[ i ].y;
uniform._array[ offset + 2 ] = value[ i ].z;
}
_gl.uniform3fv( location, uniform._array );
break;
case "v4v": // array of THREE.Vector4
if ( ! uniform._array ) {
uniform._array = new Float32Array( 4 * value.length );
}
for ( i = 0, il = value.length; i < il; i ++ ) {
offset = i * 4;
uniform._array[ offset ] = value[ i ].x;
uniform._array[ offset + 1 ] = value[ i ].y;
uniform._array[ offset + 2 ] = value[ i ].z;
uniform._array[ offset + 3 ] = value[ i ].w;
}
_gl.uniform4fv( location, uniform._array );
break;
case "m4": // single THREE.Matrix4
if ( ! uniform._array ) {
uniform._array = new Float32Array( 16 );
}
value.flattenToArray( uniform._array );
_gl.uniformMatrix4fv( location, false, uniform._array );
break;
case "m4v": // array of THREE.Matrix4
if ( ! uniform._array ) {
uniform._array = new Float32Array( 16 * value.length );
}
for ( i = 0, il = value.length; i < il; i ++ ) {
value[ i ].flattenToArrayOffset( uniform._array, i * 16 );
}
_gl.uniformMatrix4fv( location, false, uniform._array );
break;
case "t": // single THREE.Texture (2d or cube)
_gl.uniform1i( location, value );
texture = uniform.texture;
if ( !texture ) continue;
if ( texture.image instanceof Array && texture.image.length === 6 ) {
setCubeTexture( texture, value );
} else if ( texture instanceof THREE.WebGLRenderTargetCube ) {
setCubeTextureDynamic( texture, value );
} else {
_this.setTexture( texture, value );
}
break;
case "tv": // array of THREE.Texture (2d)
if ( ! uniform._array ) {
uniform._array = [];
for( i = 0, il = uniform.texture.length; i < il; i ++ ) {
uniform._array[ i ] = value + i;
}
}
_gl.uniform1iv( location, uniform._array );
for( i = 0, il = uniform.texture.length; i < il; i ++ ) {
texture = uniform.texture[ i ];
if ( !texture ) continue;
_this.setTexture( texture, uniform._array[ i ] );
}
break;
}
}
};
function setupMatrices ( object, camera ) {
object._modelViewMatrix.multiply( camera.matrixWorldInverse, object.matrixWorld);
object._normalMatrix.getInverse( object._modelViewMatrix );
object._normalMatrix.transpose();
};
function setupLights ( program, lights ) {
var l, ll, light, n,
r = 0, g = 0, b = 0,
color, position, intensity, distance,
zlights = _lights,
dcolors = zlights.directional.colors,
dpositions = zlights.directional.positions,
pcolors = zlights.point.colors,
ppositions = zlights.point.positions,
pdistances = zlights.point.distances,
scolors = zlights.spot.colors,
spositions = zlights.spot.positions,
sdistances = zlights.spot.distances,
sdirections = zlights.spot.directions,
sangles = zlights.spot.angles,
sexponents = zlights.spot.exponents,
dlength = 0,
plength = 0,
slength = 0,
doffset = 0,
poffset = 0,
soffset = 0;
for ( l = 0, ll = lights.length; l < ll; l ++ ) {
light = lights[ l ];
if ( light.onlyShadow ) continue;
color = light.color;
intensity = light.intensity;
distance = light.distance;
if ( light instanceof THREE.AmbientLight ) {
if ( _this.gammaInput ) {
r += color.r * color.r;
g += color.g * color.g;
b += color.b * color.b;
} else {
r += color.r;
g += color.g;
b += color.b;
}
} else if ( light instanceof THREE.DirectionalLight ) {
doffset = dlength * 3;
if ( _this.gammaInput ) {
dcolors[ doffset ] = color.r * color.r * intensity * intensity;
dcolors[ doffset + 1 ] = color.g * color.g * intensity * intensity;
dcolors[ doffset + 2 ] = color.b * color.b * intensity * intensity;
} else {
dcolors[ doffset ] = color.r * intensity;
dcolors[ doffset + 1 ] = color.g * intensity;
dcolors[ doffset + 2 ] = color.b * intensity;
}
_direction.copy( light.matrixWorld.getPosition() );
_direction.subSelf( light.target.matrixWorld.getPosition() );
_direction.normalize();
dpositions[ doffset ] = _direction.x;
dpositions[ doffset + 1 ] = _direction.y;
dpositions[ doffset + 2 ] = _direction.z;
dlength += 1;
} else if( light instanceof THREE.PointLight ) {
poffset = plength * 3;
if ( _this.gammaInput ) {
pcolors[ poffset ] = color.r * color.r * intensity * intensity;
pcolors[ poffset + 1 ] = color.g * color.g * intensity * intensity;
pcolors[ poffset + 2 ] = color.b * color.b * intensity * intensity;
} else {
pcolors[ poffset ] = color.r * intensity;
pcolors[ poffset + 1 ] = color.g * intensity;
pcolors[ poffset + 2 ] = color.b * intensity;
}
position = light.matrixWorld.getPosition();
ppositions[ poffset ] = position.x;
ppositions[ poffset + 1 ] = position.y;
ppositions[ poffset + 2 ] = position.z;
pdistances[ plength ] = distance;
plength += 1;
} else if( light instanceof THREE.SpotLight ) {
soffset = slength * 3;
if ( _this.gammaInput ) {
scolors[ soffset ] = color.r * color.r * intensity * intensity;
scolors[ soffset + 1 ] = color.g * color.g * intensity * intensity;
scolors[ soffset + 2 ] = color.b * color.b * intensity * intensity;
} else {
scolors[ soffset ] = color.r * intensity;
scolors[ soffset + 1 ] = color.g * intensity;
scolors[ soffset + 2 ] = color.b * intensity;
}
position = light.matrixWorld.getPosition();
spositions[ soffset ] = position.x;
spositions[ soffset + 1 ] = position.y;
spositions[ soffset + 2 ] = position.z;
sdistances[ slength ] = distance;
_direction.copy( position );
_direction.subSelf( light.target.matrixWorld.getPosition() );
_direction.normalize();
sdirections[ soffset ] = _direction.x;
sdirections[ soffset + 1 ] = _direction.y;
sdirections[ soffset + 2 ] = _direction.z;
sangles[ slength ] = Math.cos( light.angle );
sexponents[ slength ] = light.exponent;
slength += 1;
}
}
// null eventual remains from removed lights
// (this is to avoid if in shader)
for ( l = dlength * 3, ll = dcolors.length; l < ll; l ++ ) dcolors[ l ] = 0.0;
for ( l = plength * 3, ll = pcolors.length; l < ll; l ++ ) pcolors[ l ] = 0.0;
for ( l = slength * 3, ll = scolors.length; l < ll; l ++ ) scolors[ l ] = 0.0;
zlights.directional.length = dlength;
zlights.point.length = plength;
zlights.spot.length = slength;
zlights.ambient[ 0 ] = r;
zlights.ambient[ 1 ] = g;
zlights.ambient[ 2 ] = b;
};
// GL state setting
this.setFaceCulling = function ( cullFace, frontFace ) {
if ( cullFace ) {
if ( !frontFace || frontFace === "ccw" ) {
_gl.frontFace( _gl.CCW );
} else {
_gl.frontFace( _gl.CW );
}
if( cullFace === "back" ) {
_gl.cullFace( _gl.BACK );
} else if( cullFace === "front" ) {
_gl.cullFace( _gl.FRONT );
} else {
_gl.cullFace( _gl.FRONT_AND_BACK );
}
_gl.enable( _gl.CULL_FACE );
} else {
_gl.disable( _gl.CULL_FACE );
}
};
this.setObjectFaces = function ( object ) {
if ( _oldDoubleSided !== object.doubleSided ) {
if ( object.doubleSided ) {
_gl.disable( _gl.CULL_FACE );
} else {
_gl.enable( _gl.CULL_FACE );
}
_oldDoubleSided = object.doubleSided;
}
if ( _oldFlipSided !== object.flipSided ) {
if ( object.flipSided ) {
_gl.frontFace( _gl.CW );
} else {
_gl.frontFace( _gl.CCW );
}
_oldFlipSided = object.flipSided;
}
};
this.setDepthTest = function ( depthTest ) {
if ( _oldDepthTest !== depthTest ) {
if ( depthTest ) {
_gl.enable( _gl.DEPTH_TEST );
} else {
_gl.disable( _gl.DEPTH_TEST );
}
_oldDepthTest = depthTest;
}
};
this.setDepthWrite = function ( depthWrite ) {
if ( _oldDepthWrite !== depthWrite ) {
_gl.depthMask( depthWrite );
_oldDepthWrite = depthWrite;
}
};
function setLineWidth ( width ) {
if ( width !== _oldLineWidth ) {
_gl.lineWidth( width );
_oldLineWidth = width;
}
};
function setPolygonOffset ( polygonoffset, factor, units ) {
if ( _oldPolygonOffset !== polygonoffset ) {
if ( polygonoffset ) {
_gl.enable( _gl.POLYGON_OFFSET_FILL );
} else {
_gl.disable( _gl.POLYGON_OFFSET_FILL );
}
_oldPolygonOffset = polygonoffset;
}
if ( polygonoffset && ( _oldPolygonOffsetFactor !== factor || _oldPolygonOffsetUnits !== units ) ) {
_gl.polygonOffset( factor, units );
_oldPolygonOffsetFactor = factor;
_oldPolygonOffsetUnits = units;
}
};
this.setBlending = function ( blending, blendEquation, blendSrc, blendDst ) {
if ( blending !== _oldBlending ) {
switch ( blending ) {
case THREE.NoBlending:
_gl.disable( _gl.BLEND );
break;
case THREE.AdditiveBlending:
_gl.enable( _gl.BLEND );
_gl.blendEquation( _gl.FUNC_ADD );
_gl.blendFunc( _gl.SRC_ALPHA, _gl.ONE );
break;
case THREE.SubtractiveBlending:
// TODO: Find blendFuncSeparate() combination
_gl.enable( _gl.BLEND );
_gl.blendEquation( _gl.FUNC_ADD );
_gl.blendFunc( _gl.ZERO, _gl.ONE_MINUS_SRC_COLOR );
break;
case THREE.MultiplyBlending:
// TODO: Find blendFuncSeparate() combination
_gl.enable( _gl.BLEND );
_gl.blendEquation( _gl.FUNC_ADD );
_gl.blendFunc( _gl.ZERO, _gl.SRC_COLOR );
break;
case THREE.CustomBlending:
_gl.enable( _gl.BLEND );
break;
default:
_gl.enable( _gl.BLEND );
_gl.blendEquationSeparate( _gl.FUNC_ADD, _gl.FUNC_ADD );
_gl.blendFuncSeparate( _gl.SRC_ALPHA, _gl.ONE_MINUS_SRC_ALPHA, _gl.ONE, _gl.ONE_MINUS_SRC_ALPHA );
break;
}
_oldBlending = blending;
}
if ( blending === THREE.CustomBlending ) {
if ( blendEquation !== _oldBlendEquation ) {
_gl.blendEquation( paramThreeToGL( blendEquation ) );
_oldBlendEquation = blendEquation;
}
if ( blendSrc !== _oldBlendSrc || blendDst !== _oldBlendDst ) {
_gl.blendFunc( paramThreeToGL( blendSrc ), paramThreeToGL( blendDst ) );
_oldBlendSrc = blendSrc;
_oldBlendDst = blendDst;
}
} else {
_oldBlendEquation = null;
_oldBlendSrc = null;
_oldBlendDst = null;
}
};
// Shaders
function buildProgram ( shaderID, fragmentShader, vertexShader, uniforms, attributes, parameters ) {
var p, pl, program, code;
var chunks = [];
// Generate code
if ( shaderID ) {
chunks.push( shaderID );
} else {
chunks.push( fragmentShader );
chunks.push( vertexShader );
}
for ( p in parameters ) {
chunks.push( p );
chunks.push( parameters[ p ] );
}
code = chunks.join();
// Check if code has been already compiled
for ( p = 0, pl = _programs.length; p < pl; p ++ ) {
if ( _programs[ p ].code === code ) {
// console.log( "Code already compiled." /*: \n\n" + code*/ );
return _programs[ p ].program;
}
}
//console.log( "building new program " );
//
program = _gl.createProgram();
var prefix_vertex = [
"precision " + _precision + " float;",
( _maxVertexTextures > 0 ) ? "#define VERTEX_TEXTURES" : "",
_this.gammaInput ? "#define GAMMA_INPUT" : "",
_this.gammaOutput ? "#define GAMMA_OUTPUT" : "",
_this.physicallyBasedShading ? "#define PHYSICALLY_BASED_SHADING" : "",
"#define MAX_DIR_LIGHTS " + parameters.maxDirLights,
"#define MAX_POINT_LIGHTS " + parameters.maxPointLights,
"#define MAX_SPOT_LIGHTS " + parameters.maxSpotLights,
"#define MAX_SHADOWS " + parameters.maxShadows,
"#define MAX_BONES " + parameters.maxBones,
parameters.map ? "#define USE_MAP" : "",
parameters.envMap ? "#define USE_ENVMAP" : "",
parameters.lightMap ? "#define USE_LIGHTMAP" : "",
parameters.vertexColors ? "#define USE_COLOR" : "",
parameters.skinning ? "#define USE_SKINNING" : "",
parameters.morphTargets ? "#define USE_MORPHTARGETS" : "",
parameters.morphNormals ? "#define USE_MORPHNORMALS" : "",
parameters.perPixel ? "#define PHONG_PER_PIXEL" : "",
parameters.wrapAround ? "#define WRAP_AROUND" : "",
parameters.doubleSided ? "#define DOUBLE_SIDED" : "",
parameters.shadowMapEnabled ? "#define USE_SHADOWMAP" : "",
parameters.shadowMapSoft ? "#define SHADOWMAP_SOFT" : "",
parameters.shadowMapDebug ? "#define SHADOWMAP_DEBUG" : "",
parameters.shadowMapCascade ? "#define SHADOWMAP_CASCADE" : "",
parameters.sizeAttenuation ? "#define USE_SIZEATTENUATION" : "",
"uniform mat4 objectMatrix;",
"uniform mat4 modelViewMatrix;",
"uniform mat4 projectionMatrix;",
"uniform mat4 viewMatrix;",
"uniform mat3 normalMatrix;",
"uniform vec3 cameraPosition;",
"attribute vec3 position;",
"attribute vec3 normal;",
"attribute vec2 uv;",
"attribute vec2 uv2;",
"#ifdef USE_COLOR",
"attribute vec3 color;",
"#endif",
"#ifdef USE_MORPHTARGETS",
"attribute vec3 morphTarget0;",
"attribute vec3 morphTarget1;",
"attribute vec3 morphTarget2;",
"attribute vec3 morphTarget3;",
"#ifdef USE_MORPHNORMALS",
"attribute vec3 morphNormal0;",
"attribute vec3 morphNormal1;",
"attribute vec3 morphNormal2;",
"attribute vec3 morphNormal3;",
"#else",
"attribute vec3 morphTarget4;",
"attribute vec3 morphTarget5;",
"attribute vec3 morphTarget6;",
"attribute vec3 morphTarget7;",
"#endif",
"#endif",
"#ifdef USE_SKINNING",
"attribute vec4 skinVertexA;",
"attribute vec4 skinVertexB;",
"attribute vec4 skinIndex;",
"attribute vec4 skinWeight;",
"#endif",
""
].join("\n");
var prefix_fragment = [
"precision " + _precision + " float;",
"#define MAX_DIR_LIGHTS " + parameters.maxDirLights,
"#define MAX_POINT_LIGHTS " + parameters.maxPointLights,
"#define MAX_SPOT_LIGHTS " + parameters.maxSpotLights,
"#define MAX_SHADOWS " + parameters.maxShadows,
parameters.alphaTest ? "#define ALPHATEST " + parameters.alphaTest: "",
_this.gammaInput ? "#define GAMMA_INPUT" : "",
_this.gammaOutput ? "#define GAMMA_OUTPUT" : "",
_this.physicallyBasedShading ? "#define PHYSICALLY_BASED_SHADING" : "",
( parameters.useFog && parameters.fog ) ? "#define USE_FOG" : "",
( parameters.useFog && parameters.fog instanceof THREE.FogExp2 ) ? "#define FOG_EXP2" : "",
parameters.map ? "#define USE_MAP" : "",
parameters.envMap ? "#define USE_ENVMAP" : "",
parameters.lightMap ? "#define USE_LIGHTMAP" : "",
parameters.vertexColors ? "#define USE_COLOR" : "",
parameters.metal ? "#define METAL" : "",
parameters.perPixel ? "#define PHONG_PER_PIXEL" : "",
parameters.wrapAround ? "#define WRAP_AROUND" : "",
parameters.doubleSided ? "#define DOUBLE_SIDED" : "",
parameters.shadowMapEnabled ? "#define USE_SHADOWMAP" : "",
parameters.shadowMapSoft ? "#define SHADOWMAP_SOFT" : "",
parameters.shadowMapDebug ? "#define SHADOWMAP_DEBUG" : "",
parameters.shadowMapCascade ? "#define SHADOWMAP_CASCADE" : "",
"uniform mat4 viewMatrix;",
"uniform vec3 cameraPosition;",
""
].join("\n");
_gl.attachShader( program, getShader( "fragment", prefix_fragment + fragmentShader ) );
_gl.attachShader( program, getShader( "vertex", prefix_vertex + vertexShader ) );
_gl.linkProgram( program );
if ( !_gl.getProgramParameter( program, _gl.LINK_STATUS ) ) {
console.error( "Could not initialise shader\n" + "VALIDATE_STATUS: " + _gl.getProgramParameter( program, _gl.VALIDATE_STATUS ) + ", gl error [" + _gl.getError() + "]" );
}
//console.log( prefix_fragment + fragmentShader );
//console.log( prefix_vertex + vertexShader );
program.uniforms = {};
program.attributes = {};
var identifiers, u, a, i;
// cache uniform locations
identifiers = [
'viewMatrix', 'modelViewMatrix', 'projectionMatrix', 'normalMatrix', 'objectMatrix', 'cameraPosition',
'boneGlobalMatrices', 'morphTargetInfluences'
];
for ( u in uniforms ) {
identifiers.push( u );
}
cacheUniformLocations( program, identifiers );
// cache attributes locations
identifiers = [
"position", "normal", "uv", "uv2", "tangent", "color",
"skinVertexA", "skinVertexB", "skinIndex", "skinWeight"
];
for ( i = 0; i < parameters.maxMorphTargets; i ++ ) {
identifiers.push( "morphTarget" + i );
}
for ( i = 0; i < parameters.maxMorphNormals; i ++ ) {
identifiers.push( "morphNormal" + i );
}
for ( a in attributes ) {
identifiers.push( a );
}
cacheAttributeLocations( program, identifiers );
program.id = _programs.length;
_programs.push( { program: program, code: code } );
_this.info.memory.programs = _programs.length;
return program;
};
// Shader parameters cache
function cacheUniformLocations ( program, identifiers ) {
var i, l, id;
for( i = 0, l = identifiers.length; i < l; i ++ ) {
id = identifiers[ i ];
program.uniforms[ id ] = _gl.getUniformLocation( program, id );
}
};
function cacheAttributeLocations ( program, identifiers ) {
var i, l, id;
for( i = 0, l = identifiers.length; i < l; i ++ ) {
id = identifiers[ i ];
program.attributes[ id ] = _gl.getAttribLocation( program, id );
}
};
function getShader ( type, string ) {
var shader;
if ( type === "fragment" ) {
shader = _gl.createShader( _gl.FRAGMENT_SHADER );
} else if ( type === "vertex" ) {
shader = _gl.createShader( _gl.VERTEX_SHADER );
}
_gl.shaderSource( shader, string );
_gl.compileShader( shader );
if ( !_gl.getShaderParameter( shader, _gl.COMPILE_STATUS ) ) {
console.error( _gl.getShaderInfoLog( shader ) );
console.error( string );
return null;
}
return shader;
};
// Textures
function isPowerOfTwo ( value ) {
return ( value & ( value - 1 ) ) === 0;
};
function setTextureParameters ( textureType, texture, isImagePowerOfTwo ) {
if ( isImagePowerOfTwo ) {
_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) );
_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) );
_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, paramThreeToGL( texture.magFilter ) );
_gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, paramThreeToGL( texture.minFilter ) );
} else {
_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE );
_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE );
_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) );
_gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) );
}
};
this.setTexture = function ( texture, slot ) {
if ( texture.needsUpdate ) {
if ( ! texture.__webglInit ) {
texture.__webglInit = true;
texture.__webglTexture = _gl.createTexture();
_this.info.memory.textures ++;
}
_gl.activeTexture( _gl.TEXTURE0 + slot );
_gl.bindTexture( _gl.TEXTURE_2D, texture.__webglTexture );
_gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha );
var image = texture.image,
isImagePowerOfTwo = isPowerOfTwo( image.width ) && isPowerOfTwo( image.height ),
glFormat = paramThreeToGL( texture.format ),
glType = paramThreeToGL( texture.type );
setTextureParameters( _gl.TEXTURE_2D, texture, isImagePowerOfTwo );
if ( texture instanceof THREE.DataTexture ) {
_gl.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data );
} else {
_gl.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, texture.image );
}
if ( texture.generateMipmaps && isImagePowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D );
texture.needsUpdate = false;
if ( texture.onUpdate ) texture.onUpdate();
} else {
_gl.activeTexture( _gl.TEXTURE0 + slot );
_gl.bindTexture( _gl.TEXTURE_2D, texture.__webglTexture );
}
};
function clampToMaxSize ( image, maxSize ) {
if ( image.width <= maxSize && image.height <= maxSize ) {
return image;
}
// Warning: Scaling through the canvas will only work with images that use
// premultiplied alpha.
var maxDimension = Math.max( image.width, image.height );
var newWidth = Math.floor( image.width * maxSize / maxDimension );
var newHeight = Math.floor( image.height * maxSize / maxDimension );
var canvas = document.createElement( 'canvas' );
canvas.width = newWidth;
canvas.height = newHeight;
var ctx = canvas.getContext( "2d" );
ctx.drawImage( image, 0, 0, image.width, image.height, 0, 0, newWidth, newHeight );
return canvas;
}
function setCubeTexture ( texture, slot ) {
if ( texture.image.length === 6 ) {
if ( texture.needsUpdate ) {
if ( ! texture.image.__webglTextureCube ) {
texture.image.__webglTextureCube = _gl.createTexture();
}
_gl.activeTexture( _gl.TEXTURE0 + slot );
_gl.bindTexture( _gl.TEXTURE_CUBE_MAP, texture.image.__webglTextureCube );
var cubeImage = [];
for ( var i = 0; i < 6; i ++ ) {
if ( _this.autoScaleCubemaps ) {
cubeImage[ i ] = clampToMaxSize( texture.image[ i ], _maxCubemapSize );
} else {
cubeImage[ i ] = texture.image[ i ];
}
}
var image = cubeImage[ 0 ],
isImagePowerOfTwo = isPowerOfTwo( image.width ) && isPowerOfTwo( image.height ),
glFormat = paramThreeToGL( texture.format ),
glType = paramThreeToGL( texture.type );
setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isImagePowerOfTwo );
for ( var i = 0; i < 6; i ++ ) {
_gl.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ] );
}
if ( texture.generateMipmaps && isImagePowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP );
texture.needsUpdate = false;
if ( texture.onUpdate ) texture.onUpdate();
} else {
_gl.activeTexture( _gl.TEXTURE0 + slot );
_gl.bindTexture( _gl.TEXTURE_CUBE_MAP, texture.image.__webglTextureCube );
}
}
};
function setCubeTextureDynamic ( texture, slot ) {
_gl.activeTexture( _gl.TEXTURE0 + slot );
_gl.bindTexture( _gl.TEXTURE_CUBE_MAP, texture.__webglTexture );
};
// Render targets
function setupFrameBuffer ( framebuffer, renderTarget, textureTarget ) {
_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureTarget, renderTarget.__webglTexture, 0 );
};
function setupRenderBuffer ( renderbuffer, renderTarget ) {
_gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer );
if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) {
_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height );
_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );
/* For some reason this is not working. Defaulting to RGBA4.
} else if( ! renderTarget.depthBuffer && renderTarget.stencilBuffer ) {
_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.STENCIL_INDEX8, renderTarget.width, renderTarget.height );
_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );
*/
} else if( renderTarget.depthBuffer && renderTarget.stencilBuffer ) {
_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height );
_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );
} else {
_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height );
}
};
this.setRenderTarget = function ( renderTarget ) {
var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube );
if ( renderTarget && ! renderTarget.__webglFramebuffer ) {
if( renderTarget.depthBuffer === undefined ) renderTarget.depthBuffer = true;
if( renderTarget.stencilBuffer === undefined ) renderTarget.stencilBuffer = true;
renderTarget.__webglTexture = _gl.createTexture();
// Setup texture, create render and frame buffers
var isTargetPowerOfTwo = isPowerOfTwo( renderTarget.width ) && isPowerOfTwo( renderTarget.height ),
glFormat = paramThreeToGL( renderTarget.format ),
glType = paramThreeToGL( renderTarget.type );
if ( isCube ) {
renderTarget.__webglFramebuffer = [];
renderTarget.__webglRenderbuffer = [];
_gl.bindTexture( _gl.TEXTURE_CUBE_MAP, renderTarget.__webglTexture );
setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget, isTargetPowerOfTwo );
for ( var i = 0; i < 6; i ++ ) {
renderTarget.__webglFramebuffer[ i ] = _gl.createFramebuffer();
renderTarget.__webglRenderbuffer[ i ] = _gl.createRenderbuffer();
_gl.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null );
setupFrameBuffer( renderTarget.__webglFramebuffer[ i ], renderTarget, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i );
setupRenderBuffer( renderTarget.__webglRenderbuffer[ i ], renderTarget );
}
if ( isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP );
} else {
renderTarget.__webglFramebuffer = _gl.createFramebuffer();
renderTarget.__webglRenderbuffer = _gl.createRenderbuffer();
_gl.bindTexture( _gl.TEXTURE_2D, renderTarget.__webglTexture );
setTextureParameters( _gl.TEXTURE_2D, renderTarget, isTargetPowerOfTwo );
_gl.texImage2D( _gl.TEXTURE_2D, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null );
setupFrameBuffer( renderTarget.__webglFramebuffer, renderTarget, _gl.TEXTURE_2D );
setupRenderBuffer( renderTarget.__webglRenderbuffer, renderTarget );
if ( isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D );
}
// Release everything
if ( isCube ) {
_gl.bindTexture( _gl.TEXTURE_CUBE_MAP, null );
} else {
_gl.bindTexture( _gl.TEXTURE_2D, null );
}
_gl.bindRenderbuffer( _gl.RENDERBUFFER, null );
_gl.bindFramebuffer( _gl.FRAMEBUFFER, null);
}
var framebuffer, width, height, vx, vy;
if ( renderTarget ) {
if ( isCube ) {
framebuffer = renderTarget.__webglFramebuffer[ renderTarget.activeCubeFace ];
} else {
framebuffer = renderTarget.__webglFramebuffer;
}
width = renderTarget.width;
height = renderTarget.height;
vx = 0;
vy = 0;
} else {
framebuffer = null;
width = _viewportWidth;
height = _viewportHeight;
vx = _viewportX;
vy = _viewportY;
}
if ( framebuffer !== _currentFramebuffer ) {
_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
_gl.viewport( vx, vy, width, height );
_currentFramebuffer = framebuffer;
}
_currentWidth = width;
_currentHeight = height;
};
function updateRenderTargetMipmap ( renderTarget ) {
if ( renderTarget instanceof THREE.WebGLRenderTargetCube ) {
_gl.bindTexture( _gl.TEXTURE_CUBE_MAP, renderTarget.__webglTexture );
_gl.generateMipmap( _gl.TEXTURE_CUBE_MAP );
_gl.bindTexture( _gl.TEXTURE_CUBE_MAP, null );
} else {
_gl.bindTexture( _gl.TEXTURE_2D, renderTarget.__webglTexture );
_gl.generateMipmap( _gl.TEXTURE_2D );
_gl.bindTexture( _gl.TEXTURE_2D, null );
}
};
// Fallback filters for non-power-of-2 textures
function filterFallback ( f ) {
switch ( f ) {
case THREE.NearestFilter:
case THREE.NearestMipMapNearestFilter:
case THREE.NearestMipMapLinearFilter: return _gl.NEAREST; break;
case THREE.LinearFilter:
case THREE.LinearMipMapNearestFilter:
case THREE.LinearMipMapLinearFilter:
default:
return _gl.LINEAR; break;
}
};
// Map three.js constants to WebGL constants
function paramThreeToGL ( p ) {
switch ( p ) {
case THREE.RepeatWrapping: return _gl.REPEAT; break;
case THREE.ClampToEdgeWrapping: return _gl.CLAMP_TO_EDGE; break;
case THREE.MirroredRepeatWrapping: return _gl.MIRRORED_REPEAT; break;
case THREE.NearestFilter: return _gl.NEAREST; break;
case THREE.NearestMipMapNearestFilter: return _gl.NEAREST_MIPMAP_NEAREST; break;
case THREE.NearestMipMapLinearFilter: return _gl.NEAREST_MIPMAP_LINEAR; break;
case THREE.LinearFilter: return _gl.LINEAR; break;
case THREE.LinearMipMapNearestFilter: return _gl.LINEAR_MIPMAP_NEAREST; break;
case THREE.LinearMipMapLinearFilter: return _gl.LINEAR_MIPMAP_LINEAR; break;
case THREE.ByteType: return _gl.BYTE; break;
case THREE.UnsignedByteType: return _gl.UNSIGNED_BYTE; break;
case THREE.ShortType: return _gl.SHORT; break;
case THREE.UnsignedShortType: return _gl.UNSIGNED_SHORT; break;
case THREE.IntType: return _gl.INT; break;
case THREE.UnsignedIntType: return _gl.UNSIGNED_INT; break;
case THREE.FloatType: return _gl.FLOAT; break;
case THREE.AlphaFormat: return _gl.ALPHA; break;
case THREE.RGBFormat: return _gl.RGB; break;
case THREE.RGBAFormat: return _gl.RGBA; break;
case THREE.LuminanceFormat: return _gl.LUMINANCE; break;
case THREE.LuminanceAlphaFormat: return _gl.LUMINANCE_ALPHA; break;
case THREE.AddEquation: return _gl.FUNC_ADD; break;
case THREE.SubtractEquation: return _gl.FUNC_SUBTRACT; break;
case THREE.ReverseSubtractEquation: return _gl.FUNC_REVERSE_SUBTRACT; break;
case THREE.ZeroFactor: return _gl.ZERO; break;
case THREE.OneFactor: return _gl.ONE; break;
case THREE.SrcColorFactor: return _gl.SRC_COLOR; break;
case THREE.OneMinusSrcColorFactor: return _gl.ONE_MINUS_SRC_COLOR; break;
case THREE.SrcAlphaFactor: return _gl.SRC_ALPHA; break;
case THREE.OneMinusSrcAlphaFactor: return _gl.ONE_MINUS_SRC_ALPHA; break;
case THREE.DstAlphaFactor: return _gl.DST_ALPHA; break;
case THREE.OneMinusDstAlphaFactor: return _gl.ONE_MINUS_DST_ALPHA; break;
case THREE.DstColorFactor: return _gl.DST_COLOR; break;
case THREE.OneMinusDstColorFactor: return _gl.ONE_MINUS_DST_COLOR; break;
case THREE.SrcAlphaSaturateFactor: return _gl.SRC_ALPHA_SATURATE; break;
}
return 0;
};
// Allocations
function allocateBones ( object ) {
// default for when object is not specified
// ( for example when prebuilding shader
// to be used with multiple objects )
//
// - leave some extra space for other uniforms
// - limit here is ANGLE's 254 max uniform vectors
// (up to 54 should be safe)
var maxBones = 50;
if ( object !== undefined && object instanceof THREE.SkinnedMesh ) {
maxBones = object.bones.length;
}
return maxBones;
};
function allocateLights ( lights ) {
var l, ll, light, dirLights, pointLights, spotLights, maxDirLights, maxPointLights, maxSpotLights;
dirLights = pointLights = spotLights = maxDirLights = maxPointLights = maxSpotLights = 0;
for ( l = 0, ll = lights.length; l < ll; l ++ ) {
light = lights[ l ];
if ( light.onlyShadow ) continue;
if ( light instanceof THREE.DirectionalLight ) dirLights ++;
if ( light instanceof THREE.PointLight ) pointLights ++;
if ( light instanceof THREE.SpotLight ) spotLights ++;
}
if ( ( pointLights + spotLights + dirLights ) <= _maxLights ) {
maxDirLights = dirLights;
maxPointLights = pointLights;
maxSpotLights = spotLights;
} else {
maxDirLights = Math.ceil( _maxLights * dirLights / ( pointLights + dirLights ) );
maxPointLights = _maxLights - maxDirLights;
maxSpotLights = maxPointLights; // this is not really correct
}
return { 'directional' : maxDirLights, 'point' : maxPointLights, 'spot': maxSpotLights };
};
function allocateShadows ( lights ) {
var l, ll, light, maxShadows = 0;
for ( l = 0, ll = lights.length; l < ll; l++ ) {
light = lights[ l ];
if ( ! light.castShadow ) continue;
if ( light instanceof THREE.SpotLight ) maxShadows ++;
if ( light instanceof THREE.DirectionalLight && ! light.shadowCascade ) maxShadows ++;
}
return maxShadows;
};
// Initialization
function initGL () {
var gl;
try {
if ( ! ( gl = _canvas.getContext( 'experimental-webgl', { alpha: _alpha, premultipliedAlpha: _premultipliedAlpha, antialias: _antialias, stencil: _stencil, preserveDrawingBuffer: _preserveDrawingBuffer } ) ) ) {
throw 'Error creating WebGL context.';
}
} catch ( error ) {
console.error( error );
}
if ( ! gl.getExtension( 'OES_texture_float' ) ) {
console.log( 'THREE.WebGLRenderer: Float textures not supported.' );
}
return gl;
};
function setDefaultGLState () {
_gl.clearColor( 0, 0, 0, 1 );
_gl.clearDepth( 1 );
_gl.clearStencil( 0 );
_gl.enable( _gl.DEPTH_TEST );
_gl.depthFunc( _gl.LEQUAL );
_gl.frontFace( _gl.CCW );
_gl.cullFace( _gl.BACK );
_gl.enable( _gl.CULL_FACE );
_gl.enable( _gl.BLEND );
_gl.blendEquation( _gl.FUNC_ADD );
_gl.blendFunc( _gl.SRC_ALPHA, _gl.ONE_MINUS_SRC_ALPHA );
_gl.clearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha );
};
// default plugins (order is important)
this.shadowMapPlugin = new THREE.ShadowMapPlugin();
this.addPrePlugin( this.shadowMapPlugin );
this.addPostPlugin( new THREE.SpritePlugin() );
this.addPostPlugin( new THREE.LensFlarePlugin() );
};
/**
* @author szimek / https://github.com/szimek/
*/
THREE.WebGLRenderTarget = function ( width, height, options ) {
this.width = width;
this.height = height;
options = options || {};
this.wrapS = options.wrapS !== undefined ? options.wrapS : THREE.ClampToEdgeWrapping;
this.wrapT = options.wrapT !== undefined ? options.wrapT : THREE.ClampToEdgeWrapping;
this.magFilter = options.magFilter !== undefined ? options.magFilter : THREE.LinearFilter;
this.minFilter = options.minFilter !== undefined ? options.minFilter : THREE.LinearMipMapLinearFilter;
this.offset = new THREE.Vector2( 0, 0 );
this.repeat = new THREE.Vector2( 1, 1 );
this.format = options.format !== undefined ? options.format : THREE.RGBAFormat;
this.type = options.type !== undefined ? options.type : THREE.UnsignedByteType;
this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;
this.generateMipmaps = true;
};
THREE.WebGLRenderTarget.prototype.clone = function() {
var tmp = new THREE.WebGLRenderTarget( this.width, this.height );
tmp.wrapS = this.wrapS;
tmp.wrapT = this.wrapT;
tmp.magFilter = this.magFilter;
tmp.minFilter = this.minFilter;
tmp.offset.copy( this.offset );
tmp.repeat.copy( this.repeat );
tmp.format = this.format;
tmp.type = this.type;
tmp.depthBuffer = this.depthBuffer;
tmp.stencilBuffer = this.stencilBuffer;
return tmp;
};
/**
* @author alteredq / http://alteredqualia.com
*/
THREE.WebGLRenderTargetCube = function ( width, height, options ) {
THREE.WebGLRenderTarget.call( this, width, height, options );
this.activeCubeFace = 0; // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5
};
THREE.WebGLRenderTargetCube.prototype = new THREE.WebGLRenderTarget();
THREE.WebGLRenderTargetCube.prototype.constructor = THREE.WebGLRenderTargetCube;
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.RenderableVertex = function () {
this.positionWorld = new THREE.Vector3();
this.positionScreen = new THREE.Vector4();
this.visible = true;
};
THREE.RenderableVertex.prototype.copy = function ( vertex ) {
this.positionWorld.copy( vertex.positionWorld );
this.positionScreen.copy( vertex.positionScreen );
}
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.RenderableFace3 = function () {
this.v1 = new THREE.RenderableVertex();
this.v2 = new THREE.RenderableVertex();
this.v3 = new THREE.RenderableVertex();
this.centroidWorld = new THREE.Vector3();
this.centroidScreen = new THREE.Vector3();
this.normalWorld = new THREE.Vector3();
this.vertexNormalsWorld = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ];
this.material = null;
this.faceMaterial = null;
this.uvs = [[]];
this.z = null;
};
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.RenderableFace4 = function () {
this.v1 = new THREE.RenderableVertex();
this.v2 = new THREE.RenderableVertex();
this.v3 = new THREE.RenderableVertex();
this.v4 = new THREE.RenderableVertex();
this.centroidWorld = new THREE.Vector3();
this.centroidScreen = new THREE.Vector3();
this.normalWorld = new THREE.Vector3();
this.vertexNormalsWorld = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ];
this.material = null;
this.faceMaterial = null;
this.uvs = [[]];
this.z = null;
};
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.RenderableObject = function () {
this.object = null;
this.z = null;
};
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.RenderableParticle = function () {
this.x = null;
this.y = null;
this.z = null;
this.rotation = null;
this.scale = new THREE.Vector2();
this.material = null;
};
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.RenderableLine = function () {
this.z = null;
this.v1 = new THREE.RenderableVertex();
this.v2 = new THREE.RenderableVertex();
this.material = null;
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.ColorUtils = {
adjustHSV : function ( color, h, s, v ) {
var hsv = THREE.ColorUtils.__hsv;
THREE.ColorUtils.rgbToHsv( color, hsv );
hsv.h = THREE.Math.clamp( hsv.h + h, 0, 1 );
hsv.s = THREE.Math.clamp( hsv.s + s, 0, 1 );
hsv.v = THREE.Math.clamp( hsv.v + v, 0, 1 );
color.setHSV( hsv.h, hsv.s, hsv.v );
},
// based on MochiKit implementation by Bob Ippolito
rgbToHsv : function ( color, hsv ) {
var r = color.r;
var g = color.g;
var b = color.b;
var max = Math.max( Math.max( r, g ), b );
var min = Math.min( Math.min( r, g ), b );
var hue;
var saturation;
var value = max;
if ( min === max ) {
hue = 0;
saturation = 0;
} else {
var delta = ( max - min );
saturation = delta / max;
if ( r === max ) {
hue = ( g - b ) / delta;
} else if ( g === max ) {
hue = 2 + ( ( b - r ) / delta );
} else {
hue = 4 + ( ( r - g ) / delta );
}
hue /= 6;
if ( hue < 0 ) {
hue += 1;
}
if ( hue > 1 ) {
hue -= 1;
}
}
if ( hsv === undefined ) {
hsv = { h: 0, s: 0, v: 0 };
}
hsv.h = hue;
hsv.s = saturation;
hsv.v = value;
return hsv;
}
};
THREE.ColorUtils.__hsv = { h: 0, s: 0, v: 0 };/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.GeometryUtils = {
// Merge two geometries or geometry and geometry from object (using object's transform)
merge: function ( geometry1, object2 /* mesh | geometry */ ) {
var matrix, matrixRotation,
vertexOffset = geometry1.vertices.length,
uvPosition = geometry1.faceVertexUvs[ 0 ].length,
geometry2 = object2 instanceof THREE.Mesh ? object2.geometry : object2,
vertices1 = geometry1.vertices,
vertices2 = geometry2.vertices,
faces1 = geometry1.faces,
faces2 = geometry2.faces,
uvs1 = geometry1.faceVertexUvs[ 0 ],
uvs2 = geometry2.faceVertexUvs[ 0 ];
var geo1MaterialsMap = {};
for ( var i = 0; i < geometry1.materials.length; i ++ ) {
var id = geometry1.materials[ i ].id;
geo1MaterialsMap[ id ] = i;
}
if ( object2 instanceof THREE.Mesh ) {
object2.matrixAutoUpdate && object2.updateMatrix();
matrix = object2.matrix;
matrixRotation = new THREE.Matrix4();
matrixRotation.extractRotation( matrix, object2.scale );
}
// vertices
for ( var i = 0, il = vertices2.length; i < il; i ++ ) {
var vertex = vertices2[ i ];
var vertexCopy = vertex.clone();
if ( matrix ) matrix.multiplyVector3( vertexCopy );
vertices1.push( vertexCopy );
}
// faces
for ( i = 0, il = faces2.length; i < il; i ++ ) {
var face = faces2[ i ], faceCopy, normal, color,
faceVertexNormals = face.vertexNormals,
faceVertexColors = face.vertexColors;
if ( face instanceof THREE.Face3 ) {
faceCopy = new THREE.Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
} else if ( face instanceof THREE.Face4 ) {
faceCopy = new THREE.Face4( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset, face.d + vertexOffset );
}
faceCopy.normal.copy( face.normal );
if ( matrixRotation ) matrixRotation.multiplyVector3( faceCopy.normal );
for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {
normal = faceVertexNormals[ j ].clone();
if ( matrixRotation ) matrixRotation.multiplyVector3( normal );
faceCopy.vertexNormals.push( normal );
}
faceCopy.color.copy( face.color );
for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {
color = faceVertexColors[ j ];
faceCopy.vertexColors.push( color.clone() );
}
if ( face.materialIndex !== undefined ) {
var material2 = geometry2.materials[ face.materialIndex ];
var materialId2 = material2.id;
var materialIndex = geo1MaterialsMap[ materialId2 ];
if ( materialIndex === undefined ) {
materialIndex = geometry1.materials.length;
geo1MaterialsMap[ materialId2 ] = materialIndex;
geometry1.materials.push( material2 );
}
faceCopy.materialIndex = materialIndex;
}
faceCopy.centroid.copy( face.centroid );
if ( matrix ) matrix.multiplyVector3( faceCopy.centroid );
faces1.push( faceCopy );
}
// uvs
for ( i = 0, il = uvs2.length; i < il; i ++ ) {
var uv = uvs2[ i ], uvCopy = [];
for ( var j = 0, jl = uv.length; j < jl; j ++ ) {
uvCopy.push( new THREE.UV( uv[ j ].u, uv[ j ].v ) );
}
uvs1.push( uvCopy );
}
},
clone: function ( geometry ) {
var cloneGeo = new THREE.Geometry();
var i, il;
var vertices = geometry.vertices,
faces = geometry.faces,
uvs = geometry.faceVertexUvs[ 0 ];
// materials
if ( geometry.materials ) {
cloneGeo.materials = geometry.materials.slice();
}
// vertices
for ( i = 0, il = vertices.length; i < il; i ++ ) {
var vertex = vertices[ i ];
cloneGeo.vertices.push( vertex.clone() );
}
// faces
for ( i = 0, il = faces.length; i < il; i ++ ) {
var face = faces[ i ];
cloneGeo.faces.push( face.clone() );
}
// uvs
for ( i = 0, il = uvs.length; i < il; i ++ ) {
var uv = uvs[ i ], uvCopy = [];
for ( var j = 0, jl = uv.length; j < jl; j ++ ) {
uvCopy.push( new THREE.UV( uv[ j ].u, uv[ j ].v ) );
}
cloneGeo.faceVertexUvs[ 0 ].push( uvCopy );
}
return cloneGeo;
},
// Get random point in triangle (via barycentric coordinates)
// (uniform distribution)
// http://www.cgafaq.info/wiki/Random_Point_In_Triangle
randomPointInTriangle: function ( vectorA, vectorB, vectorC ) {
var a, b, c,
point = new THREE.Vector3(),
tmp = THREE.GeometryUtils.__v1;
a = THREE.GeometryUtils.random();
b = THREE.GeometryUtils.random();
if ( ( a + b ) > 1 ) {
a = 1 - a;
b = 1 - b;
}
c = 1 - a - b;
point.copy( vectorA );
point.multiplyScalar( a );
tmp.copy( vectorB );
tmp.multiplyScalar( b );
point.addSelf( tmp );
tmp.copy( vectorC );
tmp.multiplyScalar( c );
point.addSelf( tmp );
return point;
},
// Get random point in face (triangle / quad)
// (uniform distribution)
randomPointInFace: function ( face, geometry, useCachedAreas ) {
var vA, vB, vC, vD;
if ( face instanceof THREE.Face3 ) {
vA = geometry.vertices[ face.a ];
vB = geometry.vertices[ face.b ];
vC = geometry.vertices[ face.c ];
return THREE.GeometryUtils.randomPointInTriangle( vA, vB, vC );
} else if ( face instanceof THREE.Face4 ) {
vA = geometry.vertices[ face.a ];
vB = geometry.vertices[ face.b ];
vC = geometry.vertices[ face.c ];
vD = geometry.vertices[ face.d ];
var area1, area2;
if ( useCachedAreas ) {
if ( face._area1 && face._area2 ) {
area1 = face._area1;
area2 = face._area2;
} else {
area1 = THREE.GeometryUtils.triangleArea( vA, vB, vD );
area2 = THREE.GeometryUtils.triangleArea( vB, vC, vD );
face._area1 = area1;
face._area2 = area2;
}
} else {
area1 = THREE.GeometryUtils.triangleArea( vA, vB, vD ),
area2 = THREE.GeometryUtils.triangleArea( vB, vC, vD );
}
var r = THREE.GeometryUtils.random() * ( area1 + area2 );
if ( r < area1 ) {
return THREE.GeometryUtils.randomPointInTriangle( vA, vB, vD );
} else {
return THREE.GeometryUtils.randomPointInTriangle( vB, vC, vD );
}
}
},
// Get uniformly distributed random points in mesh
// - create array with cumulative sums of face areas
// - pick random number from 0 to total area
// - find corresponding place in area array by binary search
// - get random point in face
randomPointsInGeometry: function ( geometry, n ) {
var face, i,
faces = geometry.faces,
vertices = geometry.vertices,
il = faces.length,
totalArea = 0,
cumulativeAreas = [],
vA, vB, vC, vD;
// precompute face areas
for ( i = 0; i < il; i ++ ) {
face = faces[ i ];
if ( face instanceof THREE.Face3 ) {
vA = vertices[ face.a ];
vB = vertices[ face.b ];
vC = vertices[ face.c ];
face._area = THREE.GeometryUtils.triangleArea( vA, vB, vC );
} else if ( face instanceof THREE.Face4 ) {
vA = vertices[ face.a ];
vB = vertices[ face.b ];
vC = vertices[ face.c ];
vD = vertices[ face.d ];
face._area1 = THREE.GeometryUtils.triangleArea( vA, vB, vD );
face._area2 = THREE.GeometryUtils.triangleArea( vB, vC, vD );
face._area = face._area1 + face._area2;
}
totalArea += face._area;
cumulativeAreas[ i ] = totalArea;
}
// binary search cumulative areas array
function binarySearchIndices( value ) {
function binarySearch( start, end ) {
// return closest larger index
// if exact number is not found
if ( end < start )
return start;
var mid = start + Math.floor( ( end - start ) / 2 );
if ( cumulativeAreas[ mid ] > value ) {
return binarySearch( start, mid - 1 );
} else if ( cumulativeAreas[ mid ] < value ) {
return binarySearch( mid + 1, end );
} else {
return mid;
}
}
var result = binarySearch( 0, cumulativeAreas.length - 1 )
return result;
}
// pick random face weighted by face area
var r, index,
result = [];
var stats = {};
for ( i = 0; i < n; i ++ ) {
r = THREE.GeometryUtils.random() * totalArea;
index = binarySearchIndices( r );
result[ i ] = THREE.GeometryUtils.randomPointInFace( faces[ index ], geometry, true );
if ( ! stats[ index ] ) {
stats[ index ] = 1;
} else {
stats[ index ] += 1;
}
}
return result;
},
// Get triangle area (by Heron's formula)
// http://en.wikipedia.org/wiki/Heron%27s_formula
triangleArea: function ( vectorA, vectorB, vectorC ) {
var s, a, b, c,
tmp = THREE.GeometryUtils.__v1;
tmp.sub( vectorA, vectorB );
a = tmp.length();
tmp.sub( vectorA, vectorC );
b = tmp.length();
tmp.sub( vectorB, vectorC );
c = tmp.length();
s = 0.5 * ( a + b + c );
return Math.sqrt( s * ( s - a ) * ( s - b ) * ( s - c ) );
},
// Center geometry so that 0,0,0 is in center of bounding box
center: function ( geometry ) {
geometry.computeBoundingBox();
var bb = geometry.boundingBox;
var offset = new THREE.Vector3();
offset.add( bb.min, bb.max );
offset.multiplyScalar( -0.5 );
geometry.applyMatrix( new THREE.Matrix4().makeTranslation( offset.x, offset.y, offset.z ) );
geometry.computeBoundingBox();
return offset;
},
// Normalize UVs to be from <0,1>
// (for now just the first set of UVs)
normalizeUVs: function ( geometry ) {
var uvSet = geometry.faceVertexUvs[ 0 ];
for ( var i = 0, il = uvSet.length; i < il; i ++ ) {
var uvs = uvSet[ i ];
for ( var j = 0, jl = uvs.length; j < jl; j ++ ) {
// texture repeat
if( uvs[ j ].u !== 1.0 ) uvs[ j ].u = uvs[ j ].u - Math.floor( uvs[ j ].u );
if( uvs[ j ].v !== 1.0 ) uvs[ j ].v = uvs[ j ].v - Math.floor( uvs[ j ].v );
}
}
},
triangulateQuads: function ( geometry ) {
var i, il, j, jl;
var faces = [];
var faceUvs = [];
var faceVertexUvs = [];
for ( i = 0, il = geometry.faceUvs.length; i < il; i ++ ) {
faceUvs[ i ] = [];
}
for ( i = 0, il = geometry.faceVertexUvs.length; i < il; i ++ ) {
faceVertexUvs[ i ] = [];
}
for ( i = 0, il = geometry.faces.length; i < il; i ++ ) {
var face = geometry.faces[ i ];
if ( face instanceof THREE.Face4 ) {
var a = face.a;
var b = face.b;
var c = face.c;
var d = face.d;
var triA = new THREE.Face3();
var triB = new THREE.Face3();
triA.color.copy( face.color );
triB.color.copy( face.color );
triA.materialIndex = face.materialIndex;
triB.materialIndex = face.materialIndex;
triA.a = a;
triA.b = b;
triA.c = d;
triB.a = b;
triB.b = c;
triB.c = d;
if ( face.vertexColors.length === 4 ) {
triA.vertexColors[ 0 ] = face.vertexColors[ 0 ].clone();
triA.vertexColors[ 1 ] = face.vertexColors[ 1 ].clone();
triA.vertexColors[ 2 ] = face.vertexColors[ 3 ].clone();
triB.vertexColors[ 0 ] = face.vertexColors[ 1 ].clone();
triB.vertexColors[ 1 ] = face.vertexColors[ 2 ].clone();
triB.vertexColors[ 2 ] = face.vertexColors[ 3 ].clone();
}
faces.push( triA, triB );
for ( j = 0, jl = geometry.faceVertexUvs.length; j < jl; j ++ ) {
if ( geometry.faceVertexUvs[ j ].length ) {
var uvs = geometry.faceVertexUvs[ j ][ i ];
var uvA = uvs[ 0 ];
var uvB = uvs[ 1 ];
var uvC = uvs[ 2 ];
var uvD = uvs[ 3 ];
var uvsTriA = [ uvA.clone(), uvB.clone(), uvD.clone() ];
var uvsTriB = [ uvB.clone(), uvC.clone(), uvD.clone() ];
faceVertexUvs[ j ].push( uvsTriA, uvsTriB );
}
}
for ( j = 0, jl = geometry.faceUvs.length; j < jl; j ++ ) {
if ( geometry.faceUvs[ j ].length ) {
var faceUv = geometry.faceUvs[ j ][ i ];
faceUvs[ j ].push( faceUv, faceUv );
}
}
} else {
faces.push( face );
for ( j = 0, jl = geometry.faceUvs.length; j < jl; j ++ ) {
faceUvs[ j ].push( geometry.faceUvs[ j ] );
}
for ( j = 0, jl = geometry.faceVertexUvs.length; j < jl; j ++ ) {
faceVertexUvs[ j ].push( geometry.faceVertexUvs[ j ] );
}
}
}
geometry.faces = faces;
geometry.faceUvs = faceUvs;
geometry.faceVertexUvs = faceVertexUvs;
geometry.computeCentroids();
geometry.computeFaceNormals();
geometry.computeVertexNormals();
if ( geometry.hasTangents ) geometry.computeTangents();
},
// Make all faces use unique vertices
// so that each face can be separated from others
explode: function( geometry ) {
var vertices = [];
for ( var i = 0, il = geometry.faces.length; i < il; i ++ ) {
var n = vertices.length;
var face = geometry.faces[ i ];
if ( face instanceof THREE.Face4 ) {
var a = face.a;
var b = face.b;
var c = face.c;
var d = face.d;
var va = geometry.vertices[ a ];
var vb = geometry.vertices[ b ];
var vc = geometry.vertices[ c ];
var vd = geometry.vertices[ d ];
vertices.push( va.clone() );
vertices.push( vb.clone() );
vertices.push( vc.clone() );
vertices.push( vd.clone() );
face.a = n;
face.b = n + 1;
face.c = n + 2;
face.d = n + 3;
} else {
var a = face.a;
var b = face.b;
var c = face.c;
var va = geometry.vertices[ a ];
var vb = geometry.vertices[ b ];
var vc = geometry.vertices[ c ];
vertices.push( va.clone() );
vertices.push( vb.clone() );
vertices.push( vc.clone() );
face.a = n;
face.b = n + 1;
face.c = n + 2;
}
}
geometry.vertices = vertices;
delete geometry.__tmpVertices;
},
// Break faces with edges longer than maxEdgeLength
// - not recursive
tessellate: function ( geometry, maxEdgeLength ) {
var i, il, face,
a, b, c, d,
va, vb, vc, vd,
dab, dbc, dac, dcd, dad,
m, m1, m2,
vm, vm1, vm2,
vnm, vnm1, vnm2,
vcm, vcm1, vcm2,
triA, triB,
quadA, quadB,
edge;
var faces = [];
var faceVertexUvs = [];
for ( i = 0, il = geometry.faceVertexUvs.length; i < il; i ++ ) {
faceVertexUvs[ i ] = [];
}
for ( i = 0, il = geometry.faces.length; i < il; i ++ ) {
face = geometry.faces[ i ];
if ( face instanceof THREE.Face3 ) {
a = face.a;
b = face.b;
c = face.c;
va = geometry.vertices[ a ];
vb = geometry.vertices[ b ];
vc = geometry.vertices[ c ];
dab = va.distanceTo( vb );
dbc = vb.distanceTo( vc );
dac = va.distanceTo( vc );
if ( dab > maxEdgeLength || dbc > maxEdgeLength || dac > maxEdgeLength ) {
m = geometry.vertices.length;
triA = face.clone();
triB = face.clone();
if ( dab >= dbc && dab >= dac ) {
vm = va.clone();
vm.lerpSelf( vb, 0.5 );
triA.a = a;
triA.b = m;
triA.c = c;
triB.a = m;
triB.b = b;
triB.c = c;
if ( face.vertexNormals.length === 3 ) {
vnm = face.vertexNormals[ 0 ].clone();
vnm.lerpSelf( face.vertexNormals[ 1 ], 0.5 );
triA.vertexNormals[ 1 ].copy( vnm );
triB.vertexNormals[ 0 ].copy( vnm );
}
if ( face.vertexColors.length === 3 ) {
vcm = face.vertexColors[ 0 ].clone();
vcm.lerpSelf( face.vertexColors[ 1 ], 0.5 );
triA.vertexColors[ 1 ].copy( vcm );
triB.vertexColors[ 0 ].copy( vcm );
}
edge = 0;
} else if ( dbc >= dab && dbc >= dac ) {
vm = vb.clone();
vm.lerpSelf( vc, 0.5 );
triA.a = a;
triA.b = b;
triA.c = m;
triB.a = m;
triB.b = c;
triB.c = a;
if ( face.vertexNormals.length === 3 ) {
vnm = face.vertexNormals[ 1 ].clone();
vnm.lerpSelf( face.vertexNormals[ 2 ], 0.5 );
triA.vertexNormals[ 2 ].copy( vnm );
triB.vertexNormals[ 0 ].copy( vnm );
triB.vertexNormals[ 1 ].copy( face.vertexNormals[ 2 ] );
triB.vertexNormals[ 2 ].copy( face.vertexNormals[ 0 ] );
}
if ( face.vertexColors.length === 3 ) {
vcm = face.vertexColors[ 1 ].clone();
vcm.lerpSelf( face.vertexColors[ 2 ], 0.5 );
triA.vertexColors[ 2 ].copy( vcm );
triB.vertexColors[ 0 ].copy( vcm );
triB.vertexColors[ 1 ].copy( face.vertexColors[ 2 ] );
triB.vertexColors[ 2 ].copy( face.vertexColors[ 0 ] );
}
edge = 1;
} else {
vm = va.clone();
vm.lerpSelf( vc, 0.5 );
triA.a = a;
triA.b = b;
triA.c = m;
triB.a = m;
triB.b = b;
triB.c = c;
if ( face.vertexNormals.length === 3 ) {
vnm = face.vertexNormals[ 0 ].clone();
vnm.lerpSelf( face.vertexNormals[ 2 ], 0.5 );
triA.vertexNormals[ 2 ].copy( vnm );
triB.vertexNormals[ 0 ].copy( vnm );
}
if ( face.vertexColors.length === 3 ) {
vcm = face.vertexColors[ 0 ].clone();
vcm.lerpSelf( face.vertexColors[ 2 ], 0.5 );
triA.vertexColors[ 2 ].copy( vcm );
triB.vertexColors[ 0 ].copy( vcm );
}
edge = 2;
}
faces.push( triA, triB );
geometry.vertices.push( vm );
var j, jl, uvs, uvA, uvB, uvC, uvM, uvsTriA, uvsTriB;
for ( j = 0, jl = geometry.faceVertexUvs.length; j < jl; j ++ ) {
if ( geometry.faceVertexUvs[ j ].length ) {
uvs = geometry.faceVertexUvs[ j ][ i ];
uvA = uvs[ 0 ];
uvB = uvs[ 1 ];
uvC = uvs[ 2 ];
// AB
if ( edge === 0 ) {
uvM = uvA.clone();
uvM.lerpSelf( uvB, 0.5 );
uvsTriA = [ uvA.clone(), uvM.clone(), uvC.clone() ];
uvsTriB = [ uvM.clone(), uvB.clone(), uvC.clone() ];
// BC
} else if ( edge === 1 ) {
uvM = uvB.clone();
uvM.lerpSelf( uvC, 0.5 );
uvsTriA = [ uvA.clone(), uvB.clone(), uvM.clone() ];
uvsTriB = [ uvM.clone(), uvC.clone(), uvA.clone() ];
// AC
} else {
uvM = uvA.clone();
uvM.lerpSelf( uvC, 0.5 );
uvsTriA = [ uvA.clone(), uvB.clone(), uvM.clone() ];
uvsTriB = [ uvM.clone(), uvB.clone(), uvC.clone() ];
}
faceVertexUvs[ j ].push( uvsTriA, uvsTriB );
}
}
} else {
faces.push( face );
for ( j = 0, jl = geometry.faceVertexUvs.length; j < jl; j ++ ) {
faceVertexUvs[ j ].push( geometry.faceVertexUvs[ j ][ i ] );
}
}
} else {
a = face.a;
b = face.b;
c = face.c;
d = face.d;
va = geometry.vertices[ a ];
vb = geometry.vertices[ b ];
vc = geometry.vertices[ c ];
vd = geometry.vertices[ d ];
dab = va.distanceTo( vb );
dbc = vb.distanceTo( vc );
dcd = vc.distanceTo( vd );
dad = va.distanceTo( vd );
if ( dab > maxEdgeLength || dbc > maxEdgeLength || dcd > maxEdgeLength || dad > maxEdgeLength ) {
m1 = geometry.vertices.length;
m2 = geometry.vertices.length + 1;
quadA = face.clone();
quadB = face.clone();
if ( ( dab >= dbc && dab >= dcd && dab >= dad ) || ( dcd >= dbc && dcd >= dab && dcd >= dad ) ) {
vm1 = va.clone();
vm1.lerpSelf( vb, 0.5 );
vm2 = vc.clone();
vm2.lerpSelf( vd, 0.5 );
quadA.a = a;
quadA.b = m1;
quadA.c = m2;
quadA.d = d;
quadB.a = m1;
quadB.b = b;
quadB.c = c;
quadB.d = m2;
if ( face.vertexNormals.length === 4 ) {
vnm1 = face.vertexNormals[ 0 ].clone();
vnm1.lerpSelf( face.vertexNormals[ 1 ], 0.5 );
vnm2 = face.vertexNormals[ 2 ].clone();
vnm2.lerpSelf( face.vertexNormals[ 3 ], 0.5 );
quadA.vertexNormals[ 1 ].copy( vnm1 );
quadA.vertexNormals[ 2 ].copy( vnm2 );
quadB.vertexNormals[ 0 ].copy( vnm1 );
quadB.vertexNormals[ 3 ].copy( vnm2 );
}
if ( face.vertexColors.length === 4 ) {
vcm1 = face.vertexColors[ 0 ].clone();
vcm1.lerpSelf( face.vertexColors[ 1 ], 0.5 );
vcm2 = face.vertexColors[ 2 ].clone();
vcm2.lerpSelf( face.vertexColors[ 3 ], 0.5 );
quadA.vertexColors[ 1 ].copy( vcm1 );
quadA.vertexColors[ 2 ].copy( vcm2 );
quadB.vertexColors[ 0 ].copy( vcm1 );
quadB.vertexColors[ 3 ].copy( vcm2 );
}
edge = 0;
} else {
vm1 = vb.clone();
vm1.lerpSelf( vc, 0.5 );
vm2 = vd.clone();
vm2.lerpSelf( va, 0.5 );
quadA.a = a;
quadA.b = b;
quadA.c = m1;
quadA.d = m2;
quadB.a = m2;
quadB.b = m1;
quadB.c = c;
quadB.d = d;
if ( face.vertexNormals.length === 4 ) {
vnm1 = face.vertexNormals[ 1 ].clone();
vnm1.lerpSelf( face.vertexNormals[ 2 ], 0.5 );
vnm2 = face.vertexNormals[ 3 ].clone();
vnm2.lerpSelf( face.vertexNormals[ 0 ], 0.5 );
quadA.vertexNormals[ 2 ].copy( vnm1 );
quadA.vertexNormals[ 3 ].copy( vnm2 );
quadB.vertexNormals[ 0 ].copy( vnm2 );
quadB.vertexNormals[ 1 ].copy( vnm1 );
}
if ( face.vertexColors.length === 4 ) {
vcm1 = face.vertexColors[ 1 ].clone();
vcm1.lerpSelf( face.vertexColors[ 2 ], 0.5 );
vcm2 = face.vertexColors[ 3 ].clone();
vcm2.lerpSelf( face.vertexColors[ 0 ], 0.5 );
quadA.vertexColors[ 2 ].copy( vcm1 );
quadA.vertexColors[ 3 ].copy( vcm2 );
quadB.vertexColors[ 0 ].copy( vcm2 );
quadB.vertexColors[ 1 ].copy( vcm1 );
}
edge = 1;
}
faces.push( quadA, quadB );
geometry.vertices.push( vm1, vm2 );
var j, jl, uvs, uvA, uvB, uvC, uvD, uvM1, uvM2, uvsQuadA, uvsQuadB;
for ( j = 0, jl = geometry.faceVertexUvs.length; j < jl; j ++ ) {
if ( geometry.faceVertexUvs[ j ].length ) {
uvs = geometry.faceVertexUvs[ j ][ i ];
uvA = uvs[ 0 ];
uvB = uvs[ 1 ];
uvC = uvs[ 2 ];
uvD = uvs[ 3 ];
// AB + CD
if ( edge === 0 ) {
uvM1 = uvA.clone();
uvM1.lerpSelf( uvB, 0.5 );
uvM2 = uvC.clone();
uvM2.lerpSelf( uvD, 0.5 );
uvsQuadA = [ uvA.clone(), uvM1.clone(), uvM2.clone(), uvD.clone() ];
uvsQuadB = [ uvM1.clone(), uvB.clone(), uvC.clone(), uvM2.clone() ];
// BC + AD
} else {
uvM1 = uvB.clone();
uvM1.lerpSelf( uvC, 0.5 );
uvM2 = uvD.clone();
uvM2.lerpSelf( uvA, 0.5 );
uvsQuadA = [ uvA.clone(), uvB.clone(), uvM1.clone(), uvM2.clone() ];
uvsQuadB = [ uvM2.clone(), uvM1.clone(), uvC.clone(), uvD.clone() ];
}
faceVertexUvs[ j ].push( uvsQuadA, uvsQuadB );
}
}
} else {
faces.push( face );
for ( j = 0, jl = geometry.faceVertexUvs.length; j < jl; j ++ ) {
faceVertexUvs[ j ].push( geometry.faceVertexUvs[ j ][ i ] );
}
}
}
}
geometry.faces = faces;
geometry.faceVertexUvs = faceVertexUvs;
}
};
THREE.GeometryUtils.random = THREE.Math.random16;
THREE.GeometryUtils.__v1 = new THREE.Vector3();
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
THREE.ImageUtils = {
crossOrigin: 'anonymous',
loadTexture: function ( path, mapping, callback ) {
var image = new Image(), texture = new THREE.Texture( image, mapping );
image.onload = function () { texture.needsUpdate = true; if ( callback ) callback( this ); };
image.crossOrigin = this.crossOrigin;
image.src = path;
return texture;
},
loadTextureCube: function ( array, mapping, callback ) {
var i, l, images = [], texture = new THREE.Texture( images, mapping );
images.loadCount = 0;
for ( i = 0, l = array.length; i < l; ++ i ) {
images[ i ] = new Image();
images[ i ].onload = function () {
images.loadCount += 1;
if ( images.loadCount === 6 ) texture.needsUpdate = true;
if ( callback ) callback( this );
};
images[ i ].crossOrigin = this.crossOrigin;
images[ i ].src = array[ i ];
}
return texture;
},
getNormalMap: function ( image, depth ) {
// Adapted from http://www.paulbrunt.co.uk/lab/heightnormal/
var cross = function ( a, b ) {
return [ a[ 1 ] * b[ 2 ] - a[ 2 ] * b[ 1 ], a[ 2 ] * b[ 0 ] - a[ 0 ] * b[ 2 ], a[ 0 ] * b[ 1 ] - a[ 1 ] * b[ 0 ] ];
}
var subtract = function ( a, b ) {
return [ a[ 0 ] - b[ 0 ], a[ 1 ] - b[ 1 ], a[ 2 ] - b[ 2 ] ];
}
var normalize = function ( a ) {
var l = Math.sqrt( a[ 0 ] * a[ 0 ] + a[ 1 ] * a[ 1 ] + a[ 2 ] * a[ 2 ] );
return [ a[ 0 ] / l, a[ 1 ] / l, a[ 2 ] / l ];
}
depth = depth | 1;
var width = image.width;
var height = image.height;
var canvas = document.createElement( 'canvas' );
canvas.width = width;
canvas.height = height;
var context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0 );
var data = context.getImageData( 0, 0, width, height ).data;
var imageData = context.createImageData( width, height );
var output = imageData.data;
for ( var x = 0; x < width; x ++ ) {
for ( var y = 0; y < height; y ++ ) {
var ly = y - 1 < 0 ? 0 : y - 1;
var uy = y + 1 > height - 1 ? height - 1 : y + 1;
var lx = x - 1 < 0 ? 0 : x - 1;
var ux = x + 1 > width - 1 ? width - 1 : x + 1;
var points = [];
var origin = [ 0, 0, data[ ( y * width + x ) * 4 ] / 255 * depth ];
points.push( [ - 1, 0, data[ ( y * width + lx ) * 4 ] / 255 * depth ] );
points.push( [ - 1, - 1, data[ ( ly * width + lx ) * 4 ] / 255 * depth ] );
points.push( [ 0, - 1, data[ ( ly * width + x ) * 4 ] / 255 * depth ] );
points.push( [ 1, - 1, data[ ( ly * width + ux ) * 4 ] / 255 * depth ] );
points.push( [ 1, 0, data[ ( y * width + ux ) * 4 ] / 255 * depth ] );
points.push( [ 1, 1, data[ ( uy * width + ux ) * 4 ] / 255 * depth ] );
points.push( [ 0, 1, data[ ( uy * width + x ) * 4 ] / 255 * depth ] );
points.push( [ - 1, 1, data[ ( uy * width + lx ) * 4 ] / 255 * depth ] );
var normals = [];
var num_points = points.length;
for ( var i = 0; i < num_points; i ++ ) {
var v1 = points[ i ];
var v2 = points[ ( i + 1 ) % num_points ];
v1 = subtract( v1, origin );
v2 = subtract( v2, origin );
normals.push( normalize( cross( v1, v2 ) ) );
}
var normal = [ 0, 0, 0 ];
for ( var i = 0; i < normals.length; i ++ ) {
normal[ 0 ] += normals[ i ][ 0 ];
normal[ 1 ] += normals[ i ][ 1 ];
normal[ 2 ] += normals[ i ][ 2 ];
}
normal[ 0 ] /= normals.length;
normal[ 1 ] /= normals.length;
normal[ 2 ] /= normals.length;
var idx = ( y * width + x ) * 4;
output[ idx ] = ( ( normal[ 0 ] + 1.0 ) / 2.0 * 255 ) | 0;
output[ idx + 1 ] = ( ( normal[ 1 ] + 1.0 / 2.0 ) * 255 ) | 0;
output[ idx + 2 ] = ( normal[ 2 ] * 255 ) | 0;
output[ idx + 3 ] = 255;
}
}
context.putImageData( imageData, 0, 0 );
return canvas;
},
generateDataTexture: function ( width, height, color ) {
var size = width * height;
var data = new Uint8Array( 3 * size );
var r = Math.floor( color.r * 255 );
var g = Math.floor( color.g * 255 );
var b = Math.floor( color.b * 255 );
for ( var i = 0; i < size; i ++ ) {
data[ i * 3 ] = r;
data[ i * 3 + 1 ] = g;
data[ i * 3 + 2 ] = b;
}
var texture = new THREE.DataTexture( data, width, height, THREE.RGBFormat );
texture.needsUpdate = true;
return texture;
}
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.SceneUtils = {
showHierarchy : function ( root, visible ) {
THREE.SceneUtils.traverseHierarchy( root, function( node ) { node.visible = visible; } );
},
traverseHierarchy : function ( root, callback ) {
var n, i, l = root.children.length;
for ( i = 0; i < l; i ++ ) {
n = root.children[ i ];
callback( n );
THREE.SceneUtils.traverseHierarchy( n, callback );
}
},
createMultiMaterialObject : function ( geometry, materials ) {
var i, il = materials.length,
group = new THREE.Object3D();
for ( i = 0; i < il; i ++ ) {
var object = new THREE.Mesh( geometry, materials[ i ] );
group.add( object );
}
return group;
},
cloneObject: function ( source ) {
var object;
// subclass specific properties
// (must process in order from more specific subclasses to more abstract classes)
if ( source instanceof THREE.MorphAnimMesh ) {
object = new THREE.MorphAnimMesh( source.geometry, source.material );
object.duration = source.duration;
object.mirroredLoop = source.mirroredLoop;
object.time = source.time;
object.lastKeyframe = source.lastKeyframe;
object.currentKeyframe = source.currentKeyframe;
object.direction = source.direction;
object.directionBackwards = source.directionBackwards;
} else if ( source instanceof THREE.SkinnedMesh ) {
object = new THREE.SkinnedMesh( source.geometry, source.material );
} else if ( source instanceof THREE.Mesh ) {
object = new THREE.Mesh( source.geometry, source.material );
} else if ( source instanceof THREE.Line ) {
object = new THREE.Line( source.geometry, source.material, source.type );
} else if ( source instanceof THREE.Ribbon ) {
object = new THREE.Ribbon( source.geometry, source.material );
} else if ( source instanceof THREE.ParticleSystem ) {
object = new THREE.ParticleSystem( source.geometry, source.material );
object.sortParticles = source.sortParticles;
} else if ( source instanceof THREE.Particle ) {
object = new THREE.Particle( source.material );
} else if ( source instanceof THREE.Sprite ) {
object = new THREE.Sprite( {} );
object.color.copy( source.color );
object.map = source.map;
object.blending = source.blending;
object.useScreenCoordinates = source.useScreenCoordinates;
object.mergeWith3D = source.mergeWith3D;
object.affectedByDistance = source.affectedByDistance;
object.scaleByViewport = source.scaleByViewport;
object.alignment = source.alignment;
object.rotation3d.copy( source.rotation3d );
object.rotation = source.rotation;
object.opacity = source.opacity;
object.uvOffset.copy( source.uvOffset );
object.uvScale.copy( source.uvScale);
} else if ( source instanceof THREE.LOD ) {
object = new THREE.LOD();
/*
} else if ( source instanceof THREE.MarchingCubes ) {
object = new THREE.MarchingCubes( source.resolution, source.material );
object.field.set( source.field );
object.isolation = source.isolation;
*/
} else if ( source instanceof THREE.Object3D ) {
object = new THREE.Object3D();
}
// base class properties
object.name = source.name;
object.parent = source.parent;
object.up.copy( source.up );
object.position.copy( source.position );
// because of Sprite madness
if ( object.rotation instanceof THREE.Vector3 )
object.rotation.copy( source.rotation );
object.eulerOrder = source.eulerOrder;
object.scale.copy( source.scale );
object.dynamic = source.dynamic;
object.doubleSided = source.doubleSided;
object.flipSided = source.flipSided;
object.renderDepth = source.renderDepth;
object.rotationAutoUpdate = source.rotationAutoUpdate;
object.matrix.copy( source.matrix );
object.matrixWorld.copy( source.matrixWorld );
object.matrixRotationWorld.copy( source.matrixRotationWorld );
object.matrixAutoUpdate = source.matrixAutoUpdate;
object.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
object.quaternion.copy( source.quaternion );
object.useQuaternion = source.useQuaternion;
object.boundRadius = source.boundRadius;
object.boundRadiusScale = source.boundRadiusScale;
object.visible = source.visible;
object.castShadow = source.castShadow;
object.receiveShadow = source.receiveShadow;
object.frustumCulled = source.frustumCulled;
// children
for ( var i = 0; i < source.children.length; i ++ ) {
var child = THREE.SceneUtils.cloneObject( source.children[ i ] );
object.children[ i ] = child;
child.parent = object;
}
// LODs need to be patched separately to use cloned children
if ( source instanceof THREE.LOD ) {
for ( var i = 0; i < source.LODs.length; i ++ ) {
var lod = source.LODs[ i ];
object.LODs[ i ] = { visibleAtDistance: lod.visibleAtDistance, object3D: object.children[ i ] };
}
}
return object;
},
detach : function ( child, parent, scene ) {
child.applyMatrix( parent.matrixWorld );
parent.remove( child );
scene.add( child );
},
attach: function ( child, scene, parent ) {
var matrixWorldInverse = new THREE.Matrix4();
matrixWorldInverse.getInverse( parent.matrixWorld );
child.applyMatrix( matrixWorldInverse );
scene.remove( child );
parent.add( child );
}
};
/**
* @author alteredq / http://alteredqualia.com/
* @author mr.doob / http://mrdoob.com/
*
* ShaderUtils currently contains:
*
* fresnel
* normal
* cube
*
*/
if ( THREE.WebGLRenderer ) {
THREE.ShaderUtils = {
lib: {
/* -------------------------------------------------------------------------
// Fresnel shader
// - based on Nvidia Cg tutorial
------------------------------------------------------------------------- */
'fresnel': {
uniforms: {
"mRefractionRatio": { type: "f", value: 1.02 },
"mFresnelBias": { type: "f", value: 0.1 },
"mFresnelPower": { type: "f", value: 2.0 },
"mFresnelScale": { type: "f", value: 1.0 },
"tCube": { type: "t", value: 1, texture: null }
},
fragmentShader: [
"uniform samplerCube tCube;",
"varying vec3 vReflect;",
"varying vec3 vRefract[3];",
"varying float vReflectionFactor;",
"void main() {",
"vec4 reflectedColor = textureCube( tCube, vec3( -vReflect.x, vReflect.yz ) );",
"vec4 refractedColor = vec4( 1.0, 1.0, 1.0, 1.0 );",
"refractedColor.r = textureCube( tCube, vec3( -vRefract[0].x, vRefract[0].yz ) ).r;",
"refractedColor.g = textureCube( tCube, vec3( -vRefract[1].x, vRefract[1].yz ) ).g;",
"refractedColor.b = textureCube( tCube, vec3( -vRefract[2].x, vRefract[2].yz ) ).b;",
"refractedColor.a = 1.0;",
"gl_FragColor = mix( refractedColor, reflectedColor, clamp( vReflectionFactor, 0.0, 1.0 ) );",
"}"
].join("\n"),
vertexShader: [
"uniform float mRefractionRatio;",
"uniform float mFresnelBias;",
"uniform float mFresnelScale;",
"uniform float mFresnelPower;",
"varying vec3 vReflect;",
"varying vec3 vRefract[3];",
"varying float vReflectionFactor;",
"void main() {",
"vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );",
"vec4 mPosition = objectMatrix * vec4( position, 1.0 );",
"vec3 nWorld = normalize ( mat3( objectMatrix[0].xyz, objectMatrix[1].xyz, objectMatrix[2].xyz ) * normal );",
"vec3 I = mPosition.xyz - cameraPosition;",
"vReflect = reflect( I, nWorld );",
"vRefract[0] = refract( normalize( I ), nWorld, mRefractionRatio );",
"vRefract[1] = refract( normalize( I ), nWorld, mRefractionRatio * 0.99 );",
"vRefract[2] = refract( normalize( I ), nWorld, mRefractionRatio * 0.98 );",
"vReflectionFactor = mFresnelBias + mFresnelScale * pow( 1.0 + dot( normalize( I ), nWorld ), mFresnelPower );",
"gl_Position = projectionMatrix * mvPosition;",
"}"
].join("\n")
},
/* -------------------------------------------------------------------------
// Normal map shader
// - Blinn-Phong
// - normal + diffuse + specular + AO + displacement + reflection + shadow maps
// - point and directional lights (use with "lights: true" material option)
------------------------------------------------------------------------- */
'normal' : {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ "fog" ],
THREE.UniformsLib[ "lights" ],
THREE.UniformsLib[ "shadowmap" ],
{
"enableAO" : { type: "i", value: 0 },
"enableDiffuse" : { type: "i", value: 0 },
"enableSpecular" : { type: "i", value: 0 },
"enableReflection": { type: "i", value: 0 },
"tDiffuse" : { type: "t", value: 0, texture: null },
"tCube" : { type: "t", value: 1, texture: null },
"tNormal" : { type: "t", value: 2, texture: null },
"tSpecular" : { type: "t", value: 3, texture: null },
"tAO" : { type: "t", value: 4, texture: null },
"tDisplacement": { type: "t", value: 5, texture: null },
"uNormalScale": { type: "f", value: 1.0 },
"uDisplacementBias": { type: "f", value: 0.0 },
"uDisplacementScale": { type: "f", value: 1.0 },
"uDiffuseColor": { type: "c", value: new THREE.Color( 0xffffff ) },
"uSpecularColor": { type: "c", value: new THREE.Color( 0x111111 ) },
"uAmbientColor": { type: "c", value: new THREE.Color( 0xffffff ) },
"uShininess": { type: "f", value: 30 },
"uOpacity": { type: "f", value: 1 },
"uReflectivity": { type: "f", value: 0.5 },
"uOffset" : { type: "v2", value: new THREE.Vector2( 0, 0 ) },
"uRepeat" : { type: "v2", value: new THREE.Vector2( 1, 1 ) },
"wrapRGB" : { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) }
}
] ),
fragmentShader: [
"uniform vec3 uAmbientColor;",
"uniform vec3 uDiffuseColor;",
"uniform vec3 uSpecularColor;",
"uniform float uShininess;",
"uniform float uOpacity;",
"uniform bool enableDiffuse;",
"uniform bool enableSpecular;",
"uniform bool enableAO;",
"uniform bool enableReflection;",
"uniform sampler2D tDiffuse;",
"uniform sampler2D tNormal;",
"uniform sampler2D tSpecular;",
"uniform sampler2D tAO;",
"uniform samplerCube tCube;",
"uniform float uNormalScale;",
"uniform float uReflectivity;",
"varying vec3 vTangent;",
"varying vec3 vBinormal;",
"varying vec3 vNormal;",
"varying vec2 vUv;",
"uniform vec3 ambientLightColor;",
"#if MAX_DIR_LIGHTS > 0",
"uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];",
"uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];",
"#endif",
"#if MAX_POINT_LIGHTS > 0",
"uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];",
"varying vec4 vPointLight[ MAX_POINT_LIGHTS ];",
"#endif",
"#ifdef WRAP_AROUND",
"uniform vec3 wrapRGB;",
"#endif",
"varying vec3 vViewPosition;",
THREE.ShaderChunk[ "shadowmap_pars_fragment" ],
THREE.ShaderChunk[ "fog_pars_fragment" ],
"void main() {",
"gl_FragColor = vec4( vec3( 1.0 ), uOpacity );",
"vec3 specularTex = vec3( 1.0 );",
"vec3 normalTex = texture2D( tNormal, vUv ).xyz * 2.0 - 1.0;",
"normalTex.xy *= uNormalScale;",
"normalTex = normalize( normalTex );",
"if( enableDiffuse ) {",
"#ifdef GAMMA_INPUT",
"vec4 texelColor = texture2D( tDiffuse, vUv );",
"texelColor.xyz *= texelColor.xyz;",
"gl_FragColor = gl_FragColor * texelColor;",
"#else",
"gl_FragColor = gl_FragColor * texture2D( tDiffuse, vUv );",
"#endif",
"}",
"if( enableAO ) {",
"#ifdef GAMMA_INPUT",
"vec4 aoColor = texture2D( tAO, vUv );",
"aoColor.xyz *= aoColor.xyz;",
"gl_FragColor.xyz = gl_FragColor.xyz * aoColor.xyz;",
"#else",
"gl_FragColor.xyz = gl_FragColor.xyz * texture2D( tAO, vUv ).xyz;",
"#endif",
"}",
"if( enableSpecular )",
"specularTex = texture2D( tSpecular, vUv ).xyz;",
"mat3 tsb = mat3( normalize( vTangent ), normalize( vBinormal ), normalize( vNormal ) );",
"vec3 finalNormal = tsb * normalTex;",
"vec3 normal = normalize( finalNormal );",
"vec3 viewPosition = normalize( vViewPosition );",
// point lights
"#if MAX_POINT_LIGHTS > 0",
"vec3 pointDiffuse = vec3( 0.0 );",
"vec3 pointSpecular = vec3( 0.0 );",
"for ( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {",
"vec3 pointVector = normalize( vPointLight[ i ].xyz );",
"float pointDistance = vPointLight[ i ].w;",
// diffuse
"#ifdef WRAP_AROUND",
"float pointDiffuseWeightFull = max( dot( normal, pointVector ), 0.0 );",
"float pointDiffuseWeightHalf = max( 0.5 * dot( normal, pointVector ) + 0.5, 0.0 );",
"vec3 pointDiffuseWeight = mix( vec3 ( pointDiffuseWeightFull ), vec3( pointDiffuseWeightHalf ), wrapRGB );",
"#else",
"float pointDiffuseWeight = max( dot( normal, pointVector ), 0.0 );",
"#endif",
"pointDiffuse += pointDistance * pointLightColor[ i ] * uDiffuseColor * pointDiffuseWeight;",
// specular
"vec3 pointHalfVector = normalize( pointVector + viewPosition );",
"float pointDotNormalHalf = max( dot( normal, pointHalfVector ), 0.0 );",
"float pointSpecularWeight = specularTex.r * max( pow( pointDotNormalHalf, uShininess ), 0.0 );",
"#ifdef PHYSICALLY_BASED_SHADING",
// 2.0 => 2.0001 is hack to work around ANGLE bug
"float specularNormalization = ( uShininess + 2.0001 ) / 8.0;",
"vec3 schlick = uSpecularColor + vec3( 1.0 - uSpecularColor ) * pow( 1.0 - dot( pointVector, pointHalfVector ), 5.0 );",
"pointSpecular += schlick * pointLightColor[ i ] * pointSpecularWeight * pointDiffuseWeight * pointDistance * specularNormalization;",
"#else",
"pointSpecular += pointDistance * pointLightColor[ i ] * uSpecularColor * pointSpecularWeight * pointDiffuseWeight;",
"#endif",
"}",
"#endif",
// directional lights
"#if MAX_DIR_LIGHTS > 0",
"vec3 dirDiffuse = vec3( 0.0 );",
"vec3 dirSpecular = vec3( 0.0 );",
"for( int i = 0; i < MAX_DIR_LIGHTS; i++ ) {",
"vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );",
"vec3 dirVector = normalize( lDirection.xyz );",
// diffuse
"#ifdef WRAP_AROUND",
"float directionalLightWeightingFull = max( dot( normal, dirVector ), 0.0 );",
"float directionalLightWeightingHalf = max( 0.5 * dot( normal, dirVector ) + 0.5, 0.0 );",
"vec3 dirDiffuseWeight = mix( vec3( directionalLightWeightingFull ), vec3( directionalLightWeightingHalf ), wrapRGB );",
"#else",
"float dirDiffuseWeight = max( dot( normal, dirVector ), 0.0 );",
"#endif",
"dirDiffuse += directionalLightColor[ i ] * uDiffuseColor * dirDiffuseWeight;",
// specular
"vec3 dirHalfVector = normalize( dirVector + viewPosition );",
"float dirDotNormalHalf = max( dot( normal, dirHalfVector ), 0.0 );",
"float dirSpecularWeight = specularTex.r * max( pow( dirDotNormalHalf, uShininess ), 0.0 );",
"#ifdef PHYSICALLY_BASED_SHADING",
// 2.0 => 2.0001 is hack to work around ANGLE bug
"float specularNormalization = ( uShininess + 2.0001 ) / 8.0;",
"vec3 schlick = uSpecularColor + vec3( 1.0 - uSpecularColor ) * pow( 1.0 - dot( dirVector, dirHalfVector ), 5.0 );",
"dirSpecular += schlick * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight * specularNormalization;",
"#else",
"dirSpecular += directionalLightColor[ i ] * uSpecularColor * dirSpecularWeight * dirDiffuseWeight;",
"#endif",
"}",
"#endif",
// all lights contribution summation
"vec3 totalDiffuse = vec3( 0.0 );",
"vec3 totalSpecular = vec3( 0.0 );",
"#if MAX_DIR_LIGHTS > 0",
"totalDiffuse += dirDiffuse;",
"totalSpecular += dirSpecular;",
"#endif",
"#if MAX_POINT_LIGHTS > 0",
"totalDiffuse += pointDiffuse;",
"totalSpecular += pointSpecular;",
"#endif",
"gl_FragColor.xyz = gl_FragColor.xyz * ( totalDiffuse + ambientLightColor * uAmbientColor) + totalSpecular;",
"if ( enableReflection ) {",
"vec3 wPos = cameraPosition - vViewPosition;",
"vec3 vReflect = reflect( normalize( wPos ), normal );",
"vec4 cubeColor = textureCube( tCube, vec3( -vReflect.x, vReflect.yz ) );",
"#ifdef GAMMA_INPUT",
"cubeColor.xyz *= cubeColor.xyz;",
"#endif",
"gl_FragColor.xyz = mix( gl_FragColor.xyz, cubeColor.xyz, specularTex.r * uReflectivity );",
"}",
THREE.ShaderChunk[ "shadowmap_fragment" ],
THREE.ShaderChunk[ "linear_to_gamma_fragment" ],
THREE.ShaderChunk[ "fog_fragment" ],
"}"
].join("\n"),
vertexShader: [
"attribute vec4 tangent;",
"uniform vec2 uOffset;",
"uniform vec2 uRepeat;",
"#ifdef VERTEX_TEXTURES",
"uniform sampler2D tDisplacement;",
"uniform float uDisplacementScale;",
"uniform float uDisplacementBias;",
"#endif",
"varying vec3 vTangent;",
"varying vec3 vBinormal;",
"varying vec3 vNormal;",
"varying vec2 vUv;",
"#if MAX_POINT_LIGHTS > 0",
"uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];",
"uniform float pointLightDistance[ MAX_POINT_LIGHTS ];",
"varying vec4 vPointLight[ MAX_POINT_LIGHTS ];",
"#endif",
"varying vec3 vViewPosition;",
THREE.ShaderChunk[ "shadowmap_pars_vertex" ],
"void main() {",
"vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );",
"vViewPosition = -mvPosition.xyz;",
// normal, tangent and binormal vectors
"vNormal = normalMatrix * normal;",
"vTangent = normalMatrix * tangent.xyz;",
"vBinormal = cross( vNormal, vTangent ) * tangent.w;",
"vUv = uv * uRepeat + uOffset;",
// point lights
"#if MAX_POINT_LIGHTS > 0",
"for( int i = 0; i < MAX_POINT_LIGHTS; i++ ) {",
"vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );",
"vec3 lVector = lPosition.xyz - mvPosition.xyz;",
"float lDistance = 1.0;",
"if ( pointLightDistance[ i ] > 0.0 )",
"lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );",
"lVector = normalize( lVector );",
"vPointLight[ i ] = vec4( lVector, lDistance );",
"}",
"#endif",
// displacement mapping
"#ifdef VERTEX_TEXTURES",
"vec3 dv = texture2D( tDisplacement, uv ).xyz;",
"float df = uDisplacementScale * dv.x + uDisplacementBias;",
"vec4 displacedPosition = vec4( normalize( vNormal.xyz ) * df, 0.0 ) + mvPosition;",
"gl_Position = projectionMatrix * displacedPosition;",
"#else",
"gl_Position = projectionMatrix * mvPosition;",
"#endif",
THREE.ShaderChunk[ "shadowmap_vertex" ],
"}"
].join("\n")
},
/* -------------------------------------------------------------------------
// Cube map shader
------------------------------------------------------------------------- */
'cube': {
uniforms: { "tCube": { type: "t", value: 1, texture: null },
"tFlip": { type: "f", value: -1 } },
vertexShader: [
"varying vec3 vViewPosition;",
"void main() {",
"vec4 mPosition = objectMatrix * vec4( position, 1.0 );",
"vViewPosition = cameraPosition - mPosition.xyz;",
"gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );",
"}"
].join("\n"),
fragmentShader: [
"uniform samplerCube tCube;",
"uniform float tFlip;",
"varying vec3 vViewPosition;",
"void main() {",
"vec3 wPos = cameraPosition - vViewPosition;",
"gl_FragColor = textureCube( tCube, vec3( tFlip * wPos.x, wPos.yz ) );",
"}"
].join("\n")
}
}
};
};/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.BufferGeometry = function () {
this.id = THREE.GeometryCount ++;
// GL buffers
this.vertexIndexBuffer = null;
this.vertexPositionBuffer = null;
this.vertexNormalBuffer = null;
this.vertexUvBuffer = null;
this.vertexColorBuffer = null;
// typed arrays (kept only if dynamic flag is set)
this.vertexIndexArray = null;
this.vertexPositionArray = null;
this.vertexNormalArray = null;
this.vertexUvArray = null;
this.vertexColorArray = null;
this.dynamic = false;
// boundings
this.boundingBox = null;
this.boundingSphere = null;
// for compatibility
this.morphTargets = [];
};
THREE.BufferGeometry.prototype = {
constructor : THREE.BufferGeometry,
// for compatibility
computeBoundingBox: function () {
},
// for compatibility
computeBoundingSphere: function () {
}
};
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Extensible curve object
*
* Some common of Curve methods
* .getPoint(t), getTangent(t)
* .getPointAt(u), getTagentAt(u)
* .getPoints(), .getSpacedPoints()
* .getLength()
* .updateArcLengths()
*
* This file contains following classes:
*
* -- 2d classes --
* THREE.Curve
* THREE.LineCurve
* THREE.QuadraticBezierCurve
* THREE.CubicBezierCurve
* THREE.SplineCurve
* THREE.ArcCurve
*
* -- 3d classes --
* THREE.LineCurve3
* THREE.QuadraticBezierCurve3
* THREE.CubicBezierCurve3
* THREE.SplineCurve3
* THREE.ClosedSplineCurve3
*
* A series of curves can be represented as a THREE.CurvePath
*
**/
/**************************************************************
* Abstract Curve base class
**************************************************************/
THREE.Curve = function () {
};
// Virtual base class method to overwrite and implement in subclasses
// - t [0 .. 1]
THREE.Curve.prototype.getPoint = function ( t ) {
console.log( "Warning, getPoint() not implemented!" );
return null;
};
// Get point at relative position in curve according to arc length
// - u [0 .. 1]
THREE.Curve.prototype.getPointAt = function ( u ) {
var t = this.getUtoTmapping( u );
return this.getPoint( t );
};
// Get sequence of points using getPoint( t )
THREE.Curve.prototype.getPoints = function ( divisions ) {
if ( !divisions ) divisions = 5;
var d, pts = [];
for ( d = 0; d <= divisions; d ++ ) {
pts.push( this.getPoint( d / divisions ) );
}
return pts;
};
// Get sequence of points using getPointAt( u )
THREE.Curve.prototype.getSpacedPoints = function ( divisions ) {
if ( !divisions ) divisions = 5;
var d, pts = [];
for ( d = 0; d <= divisions; d ++ ) {
pts.push( this.getPointAt( d / divisions ) );
}
return pts;
};
// Get total curve arc length
THREE.Curve.prototype.getLength = function () {
var lengths = this.getLengths();
return lengths[ lengths.length - 1 ];
};
// Get list of cumulative segment lengths
THREE.Curve.prototype.getLengths = function ( divisions ) {
if ( !divisions ) divisions = (this.__arcLengthDivisions) ? (this.__arcLengthDivisions): 200;
if ( this.cacheArcLengths
&& ( this.cacheArcLengths.length == divisions + 1 )
&& !this.needsUpdate) {
//console.log( "cached", this.cacheArcLengths );
return this.cacheArcLengths;
}
this.needsUpdate = false;
var cache = [];
var current, last = this.getPoint( 0 );
var p, sum = 0;
cache.push( 0 );
for ( p = 1; p <= divisions; p ++ ) {
current = this.getPoint ( p / divisions );
sum += current.distanceTo( last );
cache.push( sum );
last = current;
}
this.cacheArcLengths = cache;
return cache; // { sums: cache, sum:sum }; Sum is in the last element.
};
THREE.Curve.prototype.updateArcLengths = function() {
this.needsUpdate = true;
this.getLengths();
};
// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equi distance
THREE.Curve.prototype.getUtoTmapping = function ( u, distance ) {
var arcLengths = this.getLengths();
var i = 0, il = arcLengths.length;
var targetArcLength; // The targeted u distance value to get
if ( distance ) {
targetArcLength = distance;
} else {
targetArcLength = u * arcLengths[ il - 1 ];
}
//var time = Date.now();
// binary search for the index with largest value smaller than target u distance
var low = 0, high = il - 1, comparison;
while ( low <= high ) {
i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
comparison = arcLengths[ i ] - targetArcLength;
if ( comparison < 0 ) {
low = i + 1;
continue;
} else if ( comparison > 0 ) {
high = i - 1;
continue;
} else {
high = i;
break;
// DONE
}
}
i = high;
//console.log('b' , i, low, high, Date.now()- time);
if ( arcLengths[ i ] == targetArcLength ) {
var t = i / ( il - 1 );
return t;
}
// we could get finer grain at lengths, or use simple interpolatation between two points
var lengthBefore = arcLengths[ i ];
var lengthAfter = arcLengths[ i + 1 ];
var segmentLength = lengthAfter - lengthBefore;
// determine where we are between the 'before' and 'after' points
var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
// add that fractional amount to t
var t = ( i + segmentFraction ) / ( il -1 );
return t;
};
// In 2D space, there are actually 2 normal vectors,
// and in 3D space, infinte
// TODO this should be depreciated.
THREE.Curve.prototype.getNormalVector = function( t ) {
var vec = this.getTangent( t );
return new THREE.Vector2( -vec.y , vec.x );
};
// Returns a unit vector tangent at t
// In case any sub curve does not implement its tangent / normal finding,
// we get 2 points with a small delta and find a gradient of the 2 points
// which seems to make a reasonable approximation
THREE.Curve.prototype.getTangent = function( t ) {
var delta = 0.0001;
var t1 = t - delta;
var t2 = t + delta;
// Capping in case of danger
if ( t1 < 0 ) t1 = 0;
if ( t2 > 1 ) t2 = 1;
var pt1 = this.getPoint( t1 );
var pt2 = this.getPoint( t2 );
var vec = pt2.clone().subSelf(pt1);
return vec.normalize();
};
THREE.Curve.prototype.getTangentAt = function ( u ) {
var t = this.getUtoTmapping( u );
return this.getTangent( t );
};
/**************************************************************
* Line
**************************************************************/
THREE.LineCurve = function ( v1, v2 ) {
this.v1 = v1;
this.v2 = v2;
};
THREE.LineCurve.prototype = new THREE.Curve();
THREE.LineCurve.prototype.constructor = THREE.LineCurve;
THREE.LineCurve.prototype.getPoint = function ( t ) {
var point = this.v2.clone().subSelf(this.v1);
point.multiplyScalar( t ).addSelf( this.v1 );
return point;
};
// Line curve is linear, so we can overwrite default getPointAt
THREE.LineCurve.prototype.getPointAt = function ( u ) {
return this.getPoint( u );
};
THREE.LineCurve.prototype.getTangent = function( t ) {
var tangent = this.v2.clone().subSelf(this.v1);
return tangent.normalize();
};
/**************************************************************
* Quadratic Bezier curve
**************************************************************/
THREE.QuadraticBezierCurve = function ( v0, v1, v2 ) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
};
THREE.QuadraticBezierCurve.prototype = new THREE.Curve();
THREE.QuadraticBezierCurve.prototype.constructor = THREE.QuadraticBezierCurve;
THREE.QuadraticBezierCurve.prototype.getPoint = function ( t ) {
var tx, ty;
tx = THREE.Shape.Utils.b2( t, this.v0.x, this.v1.x, this.v2.x );
ty = THREE.Shape.Utils.b2( t, this.v0.y, this.v1.y, this.v2.y );
return new THREE.Vector2( tx, ty );
};
THREE.QuadraticBezierCurve.prototype.getTangent = function( t ) {
var tx, ty;
tx = THREE.Curve.Utils.tangentQuadraticBezier( t, this.v0.x, this.v1.x, this.v2.x );
ty = THREE.Curve.Utils.tangentQuadraticBezier( t, this.v0.y, this.v1.y, this.v2.y );
// returns unit vector
var tangent = new THREE.Vector2( tx, ty );
tangent.normalize();
return tangent;
};
/**************************************************************
* Cubic Bezier curve
**************************************************************/
THREE.CubicBezierCurve = function ( v0, v1, v2, v3 ) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
};
THREE.CubicBezierCurve.prototype = new THREE.Curve();
THREE.CubicBezierCurve.prototype.constructor = THREE.CubicBezierCurve;
THREE.CubicBezierCurve.prototype.getPoint = function ( t ) {
var tx, ty;
tx = THREE.Shape.Utils.b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x );
ty = THREE.Shape.Utils.b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y );
return new THREE.Vector2( tx, ty );
};
THREE.CubicBezierCurve.prototype.getTangent = function( t ) {
var tx, ty;
tx = THREE.Curve.Utils.tangentCubicBezier( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x );
ty = THREE.Curve.Utils.tangentCubicBezier( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y );
var tangent = new THREE.Vector2( tx, ty );
tangent.normalize();
return tangent;
};
/**************************************************************
* Spline curve
**************************************************************/
THREE.SplineCurve = function ( points /* array of Vector2 */ ) {
this.points = (points == undefined) ? [] : points;
};
THREE.SplineCurve.prototype = new THREE.Curve();
THREE.SplineCurve.prototype.constructor = THREE.SplineCurve;
THREE.SplineCurve.prototype.getPoint = function ( t ) {
var v = new THREE.Vector2();
var c = [];
var points = this.points, point, intPoint, weight;
point = ( points.length - 1 ) * t;
intPoint = Math.floor( point );
weight = point - intPoint;
c[ 0 ] = intPoint == 0 ? intPoint : intPoint - 1;
c[ 1 ] = intPoint;
c[ 2 ] = intPoint > points.length - 2 ? points.length -1 : intPoint + 1;
c[ 3 ] = intPoint > points.length - 3 ? points.length -1 : intPoint + 2;
v.x = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].x, points[ c[ 1 ] ].x, points[ c[ 2 ] ].x, points[ c[ 3 ] ].x, weight );
v.y = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].y, points[ c[ 1 ] ].y, points[ c[ 2 ] ].y, points[ c[ 3 ] ].y, weight );
return v;
};
/**************************************************************
* Arc curve
**************************************************************/
THREE.ArcCurve = function ( aX, aY, aRadius,
aStartAngle, aEndAngle,
aClockwise ) {
this.aX = aX;
this.aY = aY;
this.aRadius = aRadius;
this.aStartAngle = aStartAngle;
this.aEndAngle = aEndAngle;
this.aClockwise = aClockwise;
};
THREE.ArcCurve.prototype = new THREE.Curve();
THREE.ArcCurve.prototype.constructor = THREE.ArcCurve;
THREE.ArcCurve.prototype.getPoint = function ( t ) {
var deltaAngle = this.aEndAngle - this.aStartAngle;
if ( !this.aClockwise ) {
t = 1 - t;
}
var angle = this.aStartAngle + t * deltaAngle;
var tx = this.aX + this.aRadius * Math.cos( angle );
var ty = this.aY + this.aRadius * Math.sin( angle );
return new THREE.Vector2( tx, ty );
};
/**************************************************************
* Utils
**************************************************************/
THREE.Curve.Utils = {
tangentQuadraticBezier: function ( t, p0, p1, p2 ) {
return 2 * ( 1 - t ) * ( p1 - p0 ) + 2 * t * ( p2 - p1 );
},
// Puay Bing, thanks for helping with this derivative!
tangentCubicBezier: function (t, p0, p1, p2, p3 ) {
return -3 * p0 * (1 - t) * (1 - t) +
3 * p1 * (1 - t) * (1-t) - 6 *t *p1 * (1-t) +
6 * t * p2 * (1-t) - 3 * t * t * p2 +
3 * t * t * p3;
},
tangentSpline: function ( t, p0, p1, p2, p3 ) {
// To check if my formulas are correct
var h00 = 6 * t * t - 6 * t; // derived from 2t^3 − 3t^2 + 1
var h10 = 3 * t * t - 4 * t + 1; // t^3 − 2t^2 + t
var h01 = -6 * t * t + 6 * t; // − 2t3 + 3t2
var h11 = 3 * t * t - 2 * t; // t3 − t2
return h00 + h10 + h01 + h11;
},
// Catmull-Rom
interpolate: function( p0, p1, p2, p3, t ) {
var v0 = ( p2 - p0 ) * 0.5;
var v1 = ( p3 - p1 ) * 0.5;
var t2 = t * t;
var t3 = t * t2;
return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;
}
};
// TODO: Transformation for Curves?
/**************************************************************
* 3D Curves
**************************************************************/
// A Factory method for creating new curve subclasses
THREE.Curve.create = function( constructor, getPointFunc ) {
var subClass = constructor;
subClass.prototype = new THREE.Curve();
subClass.prototype.constructor = constructor;
subClass.prototype.getPoint = getPointFunc;
return subClass;
};
/**************************************************************
* Line3D
**************************************************************/
THREE.LineCurve3 = THREE.Curve.create(
function ( v1, v2 ) {
this.v1 = v1;
this.v2 = v2;
},
function ( t ) {
var r = new THREE.Vector3();
r.sub( this.v2, this.v1 ); // diff
r.multiplyScalar( t );
r.addSelf( this.v1 );
return r;
}
);
/**************************************************************
* Quadratic Bezier 3D curve
**************************************************************/
THREE.QuadraticBezierCurve3 = THREE.Curve.create(
function ( v0, v1, v2 ) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
},
function ( t ) {
var tx, ty, tz;
tx = THREE.Shape.Utils.b2( t, this.v0.x, this.v1.x, this.v2.x );
ty = THREE.Shape.Utils.b2( t, this.v0.y, this.v1.y, this.v2.y );
tz = THREE.Shape.Utils.b2( t, this.v0.z, this.v1.z, this.v2.z );
return new THREE.Vector3( tx, ty, tz );
}
);
/**************************************************************
* Cubic Bezier 3D curve
**************************************************************/
THREE.CubicBezierCurve3 = THREE.Curve.create(
function ( v0, v1, v2, v3 ) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
},
function ( t ) {
var tx, ty, tz;
tx = THREE.Shape.Utils.b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x );
ty = THREE.Shape.Utils.b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y );
tz = THREE.Shape.Utils.b3( t, this.v0.z, this.v1.z, this.v2.z, this.v3.z );
return new THREE.Vector3( tx, ty, tz );
}
);
/**************************************************************
* Spline 3D curve
**************************************************************/
THREE.SplineCurve3 = THREE.Curve.create(
function ( points /* array of Vector3 */) {
this.points = (points == undefined) ? [] : points;
},
function ( t ) {
var v = new THREE.Vector3();
var c = [];
var points = this.points, point, intPoint, weight;
point = ( points.length - 1 ) * t;
intPoint = Math.floor( point );
weight = point - intPoint;
c[ 0 ] = intPoint == 0 ? intPoint : intPoint - 1;
c[ 1 ] = intPoint;
c[ 2 ] = intPoint > points.length - 2 ? points.length - 1 : intPoint + 1;
c[ 3 ] = intPoint > points.length - 3 ? points.length - 1 : intPoint + 2;
var pt0 = points[ c[0] ],
pt1 = points[ c[1] ],
pt2 = points[ c[2] ],
pt3 = points[ c[3] ];
v.x = THREE.Curve.Utils.interpolate(pt0.x, pt1.x, pt2.x, pt3.x, weight);
v.y = THREE.Curve.Utils.interpolate(pt0.y, pt1.y, pt2.y, pt3.y, weight);
v.z = THREE.Curve.Utils.interpolate(pt0.z, pt1.z, pt2.z, pt3.z, weight);
return v;
}
);
// THREE.SplineCurve3.prototype.getTangent = function(t) {
// var v = new THREE.Vector3();
// var c = [];
// var points = this.points, point, intPoint, weight;
// point = ( points.length - 1 ) * t;
// intPoint = Math.floor( point );
// weight = point - intPoint;
// c[ 0 ] = intPoint == 0 ? intPoint : intPoint - 1;
// c[ 1 ] = intPoint;
// c[ 2 ] = intPoint > points.length - 2 ? points.length - 1 : intPoint + 1;
// c[ 3 ] = intPoint > points.length - 3 ? points.length - 1 : intPoint + 2;
// var pt0 = points[ c[0] ],
// pt1 = points[ c[1] ],
// pt2 = points[ c[2] ],
// pt3 = points[ c[3] ];
// // t = weight;
// v.x = THREE.Curve.Utils.tangentSpline( t, pt0.x, pt1.x, pt2.x, pt3.x );
// v.y = THREE.Curve.Utils.tangentSpline( t, pt0.y, pt1.y, pt2.y, pt3.y );
// v.z = THREE.Curve.Utils.tangentSpline( t, pt0.z, pt1.z, pt2.z, pt3.z );
// return v;
// }
/**************************************************************
* Closed Spline 3D curve
**************************************************************/
THREE.ClosedSplineCurve3 = THREE.Curve.create(
function ( points /* array of Vector3 */) {
this.points = (points == undefined) ? [] : points;
},
function ( t ) {
var v = new THREE.Vector3();
var c = [];
var points = this.points, point, intPoint, weight;
point = ( points.length - 0 ) * t;
// This needs to be from 0-length +1
intPoint = Math.floor( point );
weight = point - intPoint;
intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / points.length ) + 1 ) * points.length;
c[ 0 ] = ( intPoint - 1 ) % points.length;
c[ 1 ] = ( intPoint ) % points.length;
c[ 2 ] = ( intPoint + 1 ) % points.length;
c[ 3 ] = ( intPoint + 2 ) % points.length;
v.x = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].x, points[ c[ 1 ] ].x, points[ c[ 2 ] ].x, points[ c[ 3 ] ].x, weight );
v.y = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].y, points[ c[ 1 ] ].y, points[ c[ 2 ] ].y, points[ c[ 3 ] ].y, weight );
v.z = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].z, points[ c[ 1 ] ].z, points[ c[ 2 ] ].z, points[ c[ 3 ] ].z, weight );
return v;
}
);/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*
**/
/**************************************************************
* Curved Path - a curve path is simply a array of connected
* curves, but retains the api of a curve
**************************************************************/
THREE.CurvePath = function () {
this.curves = [];
this.bends = [];
this.autoClose = false; // Automatically closes the path
};
THREE.CurvePath.prototype = new THREE.Curve();
THREE.CurvePath.prototype.constructor = THREE.CurvePath;
THREE.CurvePath.prototype.add = function ( curve ) {
this.curves.push( curve );
};
THREE.CurvePath.prototype.checkConnection = function() {
// TODO
// If the ending of curve is not connected to the starting
// or the next curve, then, this is not a real path
};
THREE.CurvePath.prototype.closePath = function() {
// TODO Test
// and verify for vector3 (needs to implement equals)
// Add a line curve if start and end of lines are not connected
var startPoint = this.curves[0].getPoint(0);
var endPoint = this.curves[this.curves.length-1].getPoint(1);
if (!startPoint.equals(endPoint)) {
this.curves.push( new THREE.LineCurve(endPoint, startPoint) );
}
};
// To get accurate point with reference to
// entire path distance at time t,
// following has to be done:
// 1. Length of each sub path have to be known
// 2. Locate and identify type of curve
// 3. Get t for the curve
// 4. Return curve.getPointAt(t')
THREE.CurvePath.prototype.getPoint = function( t ) {
var d = t * this.getLength();
var curveLengths = this.getCurveLengths();
var i = 0, diff, curve;
// To think about boundaries points.
while ( i < curveLengths.length ) {
if ( curveLengths[ i ] >= d ) {
diff = curveLengths[ i ] - d;
curve = this.curves[ i ];
var u = 1 - diff / curve.getLength();
return curve.getPointAt( u );
break;
}
i ++;
}
return null;
// loop where sum != 0, sum > d , sum+1 <d
};
/*
THREE.CurvePath.prototype.getTangent = function( t ) {
};*/
// We cannot use the default THREE.Curve getPoint() with getLength() because in
// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
// getPoint() depends on getLength
THREE.CurvePath.prototype.getLength = function() {
var lens = this.getCurveLengths();
return lens[ lens.length - 1 ];
};
// Compute lengths and cache them
// We cannot overwrite getLengths() because UtoT mapping uses it.
THREE.CurvePath.prototype.getCurveLengths = function() {
// We use cache values if curves and cache array are same length
if ( this.cacheLengths && this.cacheLengths.length == this.curves.length ) {
return this.cacheLengths;
};
// Get length of subsurve
// Push sums into cached array
var lengths = [], sums = 0;
var i, il = this.curves.length;
for ( i = 0; i < il; i ++ ) {
sums += this.curves[ i ].getLength();
lengths.push( sums );
}
this.cacheLengths = lengths;
return lengths;
};
// Returns min and max coordinates, as well as centroid
THREE.CurvePath.prototype.getBoundingBox = function () {
var points = this.getPoints();
var maxX, maxY;
var minX, minY;
maxX = maxY = Number.NEGATIVE_INFINITY;
minX = minY = Number.POSITIVE_INFINITY;
var p, i, il, sum;
sum = new THREE.Vector2();
for ( i = 0, il = points.length; i < il; i ++ ) {
p = points[ i ];
if ( p.x > maxX ) maxX = p.x;
else if ( p.x < minX ) minX = p.x;
if ( p.y > maxY ) maxY = p.y;
else if ( p.y < maxY ) minY = p.y;
sum.addSelf( p.x, p.y );
}
return {
minX: minX,
minY: minY,
maxX: maxX,
maxY: maxY,
centroid: sum.divideScalar( il )
};
};
/**************************************************************
* Create Geometries Helpers
**************************************************************/
/// Generate geometry from path points (for Line or ParticleSystem objects)
THREE.CurvePath.prototype.createPointsGeometry = function( divisions ) {
var pts = this.getPoints( divisions, true );
return this.createGeometry( pts );
};
// Generate geometry from equidistance sampling along the path
THREE.CurvePath.prototype.createSpacedPointsGeometry = function( divisions ) {
var pts = this.getSpacedPoints( divisions, true );
return this.createGeometry( pts );
};
THREE.CurvePath.prototype.createGeometry = function( points ) {
var geometry = new THREE.Geometry();
for ( var i = 0; i < points.length; i ++ ) {
geometry.vertices.push( new THREE.Vector3( points[ i ].x, points[ i ].y, 0 ) );
}
return geometry;
};
/**************************************************************
* Bend / Wrap Helper Methods
**************************************************************/
// Wrap path / Bend modifiers?
THREE.CurvePath.prototype.addWrapPath = function ( bendpath ) {
this.bends.push( bendpath );
};
THREE.CurvePath.prototype.getTransformedPoints = function( segments, bends ) {
var oldPts = this.getPoints( segments ); // getPoints getSpacedPoints
var i, il;
if ( !bends ) {
bends = this.bends;
}
for ( i = 0, il = bends.length; i < il; i ++ ) {
oldPts = this.getWrapPoints( oldPts, bends[ i ] );
}
return oldPts;
};
THREE.CurvePath.prototype.getTransformedSpacedPoints = function( segments, bends ) {
var oldPts = this.getSpacedPoints( segments );
var i, il;
if ( !bends ) {
bends = this.bends;
}
for ( i = 0, il = bends.length; i < il; i ++ ) {
oldPts = this.getWrapPoints( oldPts, bends[ i ] );
}
return oldPts;
};
// This returns getPoints() bend/wrapped around the contour of a path.
// Read http://www.planetclegg.com/projects/WarpingTextToSplines.html
THREE.CurvePath.prototype.getWrapPoints = function ( oldPts, path ) {
var bounds = this.getBoundingBox();
var i, il, p, oldX, oldY, xNorm;
for ( i = 0, il = oldPts.length; i < il; i ++ ) {
p = oldPts[ i ];
oldX = p.x;
oldY = p.y;
xNorm = oldX / bounds.maxX;
// If using actual distance, for length > path, requires line extrusions
//xNorm = path.getUtoTmapping(xNorm, oldX); // 3 styles. 1) wrap stretched. 2) wrap stretch by arc length 3) warp by actual distance
xNorm = path.getUtoTmapping( xNorm, oldX );
// check for out of bounds?
var pathPt = path.getPoint( xNorm );
var normal = path.getNormalVector( xNorm ).multiplyScalar( oldY );
p.x = pathPt.x + normal.x;
p.y = pathPt.y + normal.y;
}
return oldPts;
};
/**
* https://github.com/mrdoob/eventtarget.js/
*/
THREE.EventTarget = function () {
var listeners = {};
this.addEventListener = function ( type, listener ) {
if ( listeners[ type ] == undefined ) {
listeners[ type ] = [];
}
if ( listeners[ type ].indexOf( listener ) === - 1 ) {
listeners[ type ].push( listener );
}
};
this.dispatchEvent = function ( event ) {
for ( var listener in listeners[ event.type ] ) {
listeners[ event.type ][ listener ]( event );
}
};
this.removeEventListener = function ( type, listener ) {
var index = listeners[ type ].indexOf( listener );
if ( index !== - 1 ) {
listeners[ type ].splice( index, 1 );
}
};
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.Gyroscope = function () {
THREE.Object3D.call( this );
};
THREE.Gyroscope.prototype = new THREE.Object3D();
THREE.Gyroscope.prototype.constructor = THREE.Gyroscope;
THREE.Gyroscope.prototype.updateMatrixWorld = function ( force ) {
this.matrixAutoUpdate && this.updateMatrix();
// update matrixWorld
if ( this.matrixWorldNeedsUpdate || force ) {
if ( this.parent ) {
this.matrixWorld.multiply( this.parent.matrixWorld, this.matrix );
this.matrixWorld.decompose( this.translationWorld, this.rotationWorld, this.scaleWorld );
this.matrix.decompose( this.translationObject, this.rotationObject, this.scaleObject );
this.matrixWorld.compose( this.translationWorld, this.rotationObject, this.scaleWorld );
} else {
this.matrixWorld.copy( this.matrix );
}
this.matrixWorldNeedsUpdate = false;
force = true;
}
// update children
for ( var i = 0, l = this.children.length; i < l; i ++ ) {
this.children[ i ].updateMatrixWorld( force );
}
};
THREE.Gyroscope.prototype.translationWorld = new THREE.Vector3();
THREE.Gyroscope.prototype.translationObject = new THREE.Vector3();
THREE.Gyroscope.prototype.rotationWorld = new THREE.Quaternion();
THREE.Gyroscope.prototype.rotationObject = new THREE.Quaternion();
THREE.Gyroscope.prototype.scaleWorld = new THREE.Vector3();
THREE.Gyroscope.prototype.scaleObject = new THREE.Vector3();
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Creates free form 2d path using series of points, lines or curves.
*
**/
THREE.Path = function ( points ) {
THREE.CurvePath.call(this);
this.actions = [];
if ( points ) {
this.fromPoints( points );
}
};
THREE.Path.prototype = new THREE.CurvePath();
THREE.Path.prototype.constructor = THREE.Path;
THREE.PathActions = {
MOVE_TO: 'moveTo',
LINE_TO: 'lineTo',
QUADRATIC_CURVE_TO: 'quadraticCurveTo', // Bezier quadratic curve
BEZIER_CURVE_TO: 'bezierCurveTo', // Bezier cubic curve
CSPLINE_THRU: 'splineThru', // Catmull-rom spline
ARC: 'arc' // Circle
};
// TODO Clean up PATH API
// Create path using straight lines to connect all points
// - vectors: array of Vector2
THREE.Path.prototype.fromPoints = function ( vectors ) {
this.moveTo( vectors[ 0 ].x, vectors[ 0 ].y );
for ( var v = 1, vlen = vectors.length; v < vlen; v ++ ) {
this.lineTo( vectors[ v ].x, vectors[ v ].y );
};
};
// startPath() endPath()?
THREE.Path.prototype.moveTo = function ( x, y ) {
var args = Array.prototype.slice.call( arguments );
this.actions.push( { action: THREE.PathActions.MOVE_TO, args: args } );
};
THREE.Path.prototype.lineTo = function ( x, y ) {
var args = Array.prototype.slice.call( arguments );
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
var curve = new THREE.LineCurve( new THREE.Vector2( x0, y0 ), new THREE.Vector2( x, y ) );
this.curves.push( curve );
this.actions.push( { action: THREE.PathActions.LINE_TO, args: args } );
};
THREE.Path.prototype.quadraticCurveTo = function( aCPx, aCPy, aX, aY ) {
var args = Array.prototype.slice.call( arguments );
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
var curve = new THREE.QuadraticBezierCurve( new THREE.Vector2( x0, y0 ),
new THREE.Vector2( aCPx, aCPy ),
new THREE.Vector2( aX, aY ) );
this.curves.push( curve );
this.actions.push( { action: THREE.PathActions.QUADRATIC_CURVE_TO, args: args } );
};
THREE.Path.prototype.bezierCurveTo = function( aCP1x, aCP1y,
aCP2x, aCP2y,
aX, aY ) {
var args = Array.prototype.slice.call( arguments );
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
var curve = new THREE.CubicBezierCurve( new THREE.Vector2( x0, y0 ),
new THREE.Vector2( aCP1x, aCP1y ),
new THREE.Vector2( aCP2x, aCP2y ),
new THREE.Vector2( aX, aY ) );
this.curves.push( curve );
this.actions.push( { action: THREE.PathActions.BEZIER_CURVE_TO, args: args } );
};
THREE.Path.prototype.splineThru = function( pts /*Array of Vector*/ ) {
var args = Array.prototype.slice.call( arguments );
var lastargs = this.actions[ this.actions.length - 1 ].args;
var x0 = lastargs[ lastargs.length - 2 ];
var y0 = lastargs[ lastargs.length - 1 ];
//---
var npts = [ new THREE.Vector2( x0, y0 ) ];
Array.prototype.push.apply( npts, pts );
var curve = new THREE.SplineCurve( npts );
this.curves.push( curve );
this.actions.push( { action: THREE.PathActions.CSPLINE_THRU, args: args } );
};
// FUTURE: Change the API or follow canvas API?
// TODO ARC ( x, y, x - radius, y - radius, startAngle, endAngle )
THREE.Path.prototype.arc = function ( aX, aY, aRadius,
aStartAngle, aEndAngle, aClockwise ) {
var args = Array.prototype.slice.call( arguments );
var laste = this.actions[ this.actions.length - 1];
var curve = new THREE.ArcCurve( laste.x + aX, laste.y + aY, aRadius,
aStartAngle, aEndAngle, aClockwise );
this.curves.push( curve );
// All of the other actions look to the last two elements in the list to
// find the ending point, so we need to append them.
var lastPoint = curve.getPoint(aClockwise ? 1 : 0);
args.push(lastPoint.x);
args.push(lastPoint.y);
this.actions.push( { action: THREE.PathActions.ARC, args: args } );
};
THREE.Path.prototype.absarc = function ( aX, aY, aRadius,
aStartAngle, aEndAngle, aClockwise ) {
var args = Array.prototype.slice.call( arguments );
var curve = new THREE.ArcCurve( aX, aY, aRadius,
aStartAngle, aEndAngle, aClockwise );
this.curves.push( curve );
// console.log( 'arc', args );
// All of the other actions look to the last two elements in the list to
// find the ending point, so we need to append them.
var lastPoint = curve.getPoint(aClockwise ? 1 : 0);
args.push(lastPoint.x);
args.push(lastPoint.y);
this.actions.push( { action: THREE.PathActions.ARC, args: args } );
};
THREE.Path.prototype.getSpacedPoints = function ( divisions, closedPath ) {
if ( ! divisions ) divisions = 40;
var points = [];
for ( var i = 0; i < divisions; i ++ ) {
points.push( this.getPoint( i / divisions ) );
//if( !this.getPoint( i / divisions ) ) throw "DIE";
}
// if ( closedPath ) {
//
// points.push( points[ 0 ] );
//
// }
return points;
};
/* Return an array of vectors based on contour of the path */
THREE.Path.prototype.getPoints = function( divisions, closedPath ) {
if (this.useSpacedPoints) {
console.log('tata');
return this.getSpacedPoints( divisions, closedPath );
}
divisions = divisions || 12;
var points = [];
var i, il, item, action, args;
var cpx, cpy, cpx2, cpy2, cpx1, cpy1, cpx0, cpy0,
laste, j,
t, tx, ty;
for ( i = 0, il = this.actions.length; i < il; i ++ ) {
item = this.actions[ i ];
action = item.action;
args = item.args;
switch( action ) {
case THREE.PathActions.MOVE_TO:
points.push( new THREE.Vector2( args[ 0 ], args[ 1 ] ) );
break;
case THREE.PathActions.LINE_TO:
points.push( new THREE.Vector2( args[ 0 ], args[ 1 ] ) );
break;
case THREE.PathActions.QUADRATIC_CURVE_TO:
cpx = args[ 2 ];
cpy = args[ 3 ];
cpx1 = args[ 0 ];
cpy1 = args[ 1 ];
if ( points.length > 0 ) {
laste = points[ points.length - 1 ];
cpx0 = laste.x;
cpy0 = laste.y;
} else {
laste = this.actions[ i - 1 ].args;
cpx0 = laste[ laste.length - 2 ];
cpy0 = laste[ laste.length - 1 ];
}
for ( j = 1; j <= divisions; j ++ ) {
t = j / divisions;
tx = THREE.Shape.Utils.b2( t, cpx0, cpx1, cpx );
ty = THREE.Shape.Utils.b2( t, cpy0, cpy1, cpy );
points.push( new THREE.Vector2( tx, ty ) );
}
break;
case THREE.PathActions.BEZIER_CURVE_TO:
cpx = args[ 4 ];
cpy = args[ 5 ];
cpx1 = args[ 0 ];
cpy1 = args[ 1 ];
cpx2 = args[ 2 ];
cpy2 = args[ 3 ];
if ( points.length > 0 ) {
laste = points[ points.length - 1 ];
cpx0 = laste.x;
cpy0 = laste.y;
} else {
laste = this.actions[ i - 1 ].args;
cpx0 = laste[ laste.length - 2 ];
cpy0 = laste[ laste.length - 1 ];
}
for ( j = 1; j <= divisions; j ++ ) {
t = j / divisions;
tx = THREE.Shape.Utils.b3( t, cpx0, cpx1, cpx2, cpx );
ty = THREE.Shape.Utils.b3( t, cpy0, cpy1, cpy2, cpy );
points.push( new THREE.Vector2( tx, ty ) );
}
break;
case THREE.PathActions.CSPLINE_THRU:
laste = this.actions[ i - 1 ].args;
var last = new THREE.Vector2( laste[ laste.length - 2 ], laste[ laste.length - 1 ] );
var spts = [ last ];
var n = divisions * args[ 0 ].length;
spts = spts.concat( args[ 0 ] );
var spline = new THREE.SplineCurve( spts );
for ( j = 1; j <= n; j ++ ) {
points.push( spline.getPointAt( j / n ) ) ;
}
break;
case THREE.PathActions.ARC:
laste = this.actions[ i - 1 ].args;
var aX = args[ 0 ], aY = args[ 1 ],
aRadius = args[ 2 ],
aStartAngle = args[ 3 ], aEndAngle = args[ 4 ],
aClockwise = !!args[ 5 ];
var deltaAngle = aEndAngle - aStartAngle;
var angle;
var tdivisions = divisions * 2;
for ( j = 1; j <= tdivisions; j ++ ) {
t = j / tdivisions;
if ( ! aClockwise ) {
t = 1 - t;
}
angle = aStartAngle + t * deltaAngle;
tx = aX + aRadius * Math.cos( angle );
ty = aY + aRadius * Math.sin( angle );
//console.log('t', t, 'angle', angle, 'tx', tx, 'ty', ty);
points.push( new THREE.Vector2( tx, ty ) );
}
//console.log(points);
break;
} // end switch
}
// Normalize to remove the closing point by default.
var lastPoint = points[ points.length - 1];
var EPSILON = 0.0000000001;
if ( Math.abs(lastPoint.x - points[ 0 ].x) < EPSILON &&
Math.abs(lastPoint.y - points[ 0 ].y) < EPSILON)
points.splice( points.length - 1, 1);
if ( closedPath ) {
points.push( points[ 0 ] );
}
return points;
};
// This was used for testing purposes. Should be removed soon.
THREE.Path.prototype.transform = function( path, segments ) {
var bounds = this.getBoundingBox();
var oldPts = this.getPoints( segments ); // getPoints getSpacedPoints
//console.log( path.cacheArcLengths() );
//path.getLengths(400);
//segments = 40;
return this.getWrapPoints( oldPts, path );
};
// Read http://www.tinaja.com/glib/nonlingr.pdf
// nonlinear transforms
THREE.Path.prototype.nltransform = function( a, b, c, d, e, f ) {
// a - horizontal size
// b - lean
// c - x offset
// d - vertical size
// e - climb
// f - y offset
var oldPts = this.getPoints();
var i, il, p, oldX, oldY;
for ( i = 0, il = oldPts.length; i < il; i ++ ) {
p = oldPts[i];
oldX = p.x;
oldY = p.y;
p.x = a * oldX + b * oldY + c;
p.y = d * oldY + e * oldX + f;
}
return oldPts;
};
// FUTURE Export JSON Format
/* Draws this path onto a 2d canvas easily */
THREE.Path.prototype.debug = function( canvas ) {
var bounds = this.getBoundingBox();
if ( !canvas ) {
canvas = document.createElement( "canvas" );
canvas.setAttribute( 'width', bounds.maxX + 100 );
canvas.setAttribute( 'height', bounds.maxY + 100 );
document.body.appendChild( canvas );
}
var ctx = canvas.getContext( "2d" );
ctx.fillStyle = "white";
ctx.fillRect( 0, 0, canvas.width, canvas.height );
ctx.strokeStyle = "black";
ctx.beginPath();
var i, il, item, action, args;
// Debug Path
for ( i = 0, il = this.actions.length; i < il; i ++ ) {
item = this.actions[ i ];
args = item.args;
action = item.action;
// Short hand for now
if ( action != THREE.PathActions.CSPLINE_THRU ) {
ctx[ action ].apply( ctx, args );
}
/*
switch ( action ) {
case THREE.PathActions.MOVE_TO:
ctx[ action ]( args[ 0 ], args[ 1 ] );
break;
case THREE.PathActions.LINE_TO:
ctx[ action ]( args[ 0 ], args[ 1 ] );
break;
case THREE.PathActions.QUADRATIC_CURVE_TO:
ctx[ action ]( args[ 0 ], args[ 1 ], args[ 2 ], args[ 3 ] );
break;
case THREE.PathActions.CUBIC_CURVE_TO:
ctx[ action ]( args[ 0 ], args[ 1 ], args[ 2 ], args[ 3 ], args[ 4 ], args[ 5 ] );
break;
}
*/
}
ctx.stroke();
ctx.closePath();
// Debug Points
ctx.strokeStyle = "red";
/* TO CLEAN UP */
var p, points = this.getPoints();
for ( i = 0, il = points.length; i < il; i ++ ) {
p = points[ i ];
ctx.beginPath();
ctx.arc( p.x, p.y, 1.5, 0, Math.PI * 2, false );
ctx.stroke();
ctx.closePath();
}
};
// Breaks path into shapes
THREE.Path.prototype.toShapes = function() {
var i, il, item, action, args;
var subPaths = [], lastPath = new THREE.Path();
for ( i = 0, il = this.actions.length; i < il; i ++ ) {
item = this.actions[ i ];
args = item.args;
action = item.action;
if ( action == THREE.PathActions.MOVE_TO ) {
if ( lastPath.actions.length != 0 ) {
subPaths.push( lastPath );
lastPath = new THREE.Path();
}
}
lastPath[ action ].apply( lastPath, args );
}
if ( lastPath.actions.length != 0 ) {
subPaths.push( lastPath );
}
// console.log(subPaths);
if ( subPaths.length == 0 ) return [];
var tmpPath, tmpShape, shapes = [];
var holesFirst = !THREE.Shape.Utils.isClockWise( subPaths[ 0 ].getPoints() );
// console.log("Holes first", holesFirst);
if ( subPaths.length == 1) {
tmpPath = subPaths[0];
tmpShape = new THREE.Shape();
tmpShape.actions = tmpPath.actions;
tmpShape.curves = tmpPath.curves;
shapes.push( tmpShape );
return shapes;
};
if ( holesFirst ) {
tmpShape = new THREE.Shape();
for ( i = 0, il = subPaths.length; i < il; i ++ ) {
tmpPath = subPaths[ i ];
if ( THREE.Shape.Utils.isClockWise( tmpPath.getPoints() ) ) {
tmpShape.actions = tmpPath.actions;
tmpShape.curves = tmpPath.curves;
shapes.push( tmpShape );
tmpShape = new THREE.Shape();
//console.log('cw', i);
} else {
tmpShape.holes.push( tmpPath );
//console.log('ccw', i);
}
}
} else {
// Shapes first
for ( i = 0, il = subPaths.length; i < il; i ++ ) {
tmpPath = subPaths[ i ];
if ( THREE.Shape.Utils.isClockWise( tmpPath.getPoints() ) ) {
if ( tmpShape ) shapes.push( tmpShape );
tmpShape = new THREE.Shape();
tmpShape.actions = tmpPath.actions;
tmpShape.curves = tmpPath.curves;
} else {
tmpShape.holes.push( tmpPath );
}
}
shapes.push( tmpShape );
}
//console.log("shape", shapes);
return shapes;
};
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Defines a 2d shape plane using paths.
**/
// STEP 1 Create a path.
// STEP 2 Turn path into shape.
// STEP 3 ExtrudeGeometry takes in Shape/Shapes
// STEP 3a - Extract points from each shape, turn to vertices
// STEP 3b - Triangulate each shape, add faces.
THREE.Shape = function ( ) {
THREE.Path.apply( this, arguments );
this.holes = [];
};
THREE.Shape.prototype = new THREE.Path();
THREE.Shape.prototype.constructor = THREE.Path;
// Convenience method to return ExtrudeGeometry
THREE.Shape.prototype.extrude = function ( options ) {
var extruded = new THREE.ExtrudeGeometry( this, options );
return extruded;
};
// Get points of holes
THREE.Shape.prototype.getPointsHoles = function ( divisions ) {
var i, il = this.holes.length, holesPts = [];
for ( i = 0; i < il; i ++ ) {
holesPts[ i ] = this.holes[ i ].getTransformedPoints( divisions, this.bends );
}
return holesPts;
};
// Get points of holes (spaced by regular distance)
THREE.Shape.prototype.getSpacedPointsHoles = function ( divisions ) {
var i, il = this.holes.length, holesPts = [];
for ( i = 0; i < il; i ++ ) {
holesPts[ i ] = this.holes[ i ].getTransformedSpacedPoints( divisions, this.bends );
}
return holesPts;
};
// Get points of shape and holes (keypoints based on segments parameter)
THREE.Shape.prototype.extractAllPoints = function ( divisions ) {
return {
shape: this.getTransformedPoints( divisions ),
holes: this.getPointsHoles( divisions )
};
};
THREE.Shape.prototype.extractPoints = function ( divisions ) {
if (this.useSpacedPoints) {
return this.extractAllSpacedPoints(divisions);
}
return this.extractAllPoints(divisions);
};
//
// THREE.Shape.prototype.extractAllPointsWithBend = function ( divisions, bend ) {
//
// return {
//
// shape: this.transform( bend, divisions ),
// holes: this.getPointsHoles( divisions, bend )
//
// };
//
// };
// Get points of shape and holes (spaced by regular distance)
THREE.Shape.prototype.extractAllSpacedPoints = function ( divisions ) {
return {
shape: this.getTransformedSpacedPoints( divisions ),
holes: this.getSpacedPointsHoles( divisions )
};
};
/**************************************************************
* Utils
**************************************************************/
THREE.Shape.Utils = {
/*
contour - array of vector2 for contour
holes - array of array of vector2
*/
removeHoles: function ( contour, holes ) {
var shape = contour.concat(); // work on this shape
var allpoints = shape.concat();
/* For each isolated shape, find the closest points and break to the hole to allow triangulation */
var prevShapeVert, nextShapeVert,
prevHoleVert, nextHoleVert,
holeIndex, shapeIndex,
shapeId, shapeGroup,
h, h2,
hole, shortest, d,
p, pts1, pts2,
tmpShape1, tmpShape2,
tmpHole1, tmpHole2,
verts = [];
for ( h = 0; h < holes.length; h ++ ) {
hole = holes[ h ];
/*
shapeholes[ h ].concat(); // preserves original
holes.push( hole );
*/
Array.prototype.push.apply( allpoints, hole );
shortest = Number.POSITIVE_INFINITY;
// Find the shortest pair of pts between shape and hole
// Note: Actually, I'm not sure now if we could optimize this to be faster than O(m*n)
// Using distanceToSquared() intead of distanceTo() should speed a little
// since running square roots operations are reduced.
for ( h2 = 0; h2 < hole.length; h2 ++ ) {
pts1 = hole[ h2 ];
var dist = [];
for ( p = 0; p < shape.length; p++ ) {
pts2 = shape[ p ];
d = pts1.distanceToSquared( pts2 );
dist.push( d );
if ( d < shortest ) {
shortest = d;
holeIndex = h2;
shapeIndex = p;
}
}
}
//console.log("shortest", shortest, dist);
prevShapeVert = ( shapeIndex - 1 ) >= 0 ? shapeIndex - 1 : shape.length - 1;
prevHoleVert = ( holeIndex - 1 ) >= 0 ? holeIndex - 1 : hole.length - 1;
var areaapts = [
hole[ holeIndex ],
shape[ shapeIndex ],
shape[ prevShapeVert ]
];
var areaa = THREE.FontUtils.Triangulate.area( areaapts );
var areabpts = [
hole[ holeIndex ],
hole[ prevHoleVert ],
shape[ shapeIndex ]
];
var areab = THREE.FontUtils.Triangulate.area( areabpts );
var shapeOffset = 1;
var holeOffset = -1;
var oldShapeIndex = shapeIndex, oldHoleIndex = holeIndex;
shapeIndex += shapeOffset;
holeIndex += holeOffset;
if ( shapeIndex < 0 ) { shapeIndex += shape.length; }
shapeIndex %= shape.length;
if ( holeIndex < 0 ) { holeIndex += hole.length; }
holeIndex %= hole.length;
prevShapeVert = ( shapeIndex - 1 ) >= 0 ? shapeIndex - 1 : shape.length - 1;
prevHoleVert = ( holeIndex - 1 ) >= 0 ? holeIndex - 1 : hole.length - 1;
areaapts = [
hole[ holeIndex ],
shape[ shapeIndex ],
shape[ prevShapeVert ]
];
var areaa2 = THREE.FontUtils.Triangulate.area( areaapts );
areabpts = [
hole[ holeIndex ],
hole[ prevHoleVert ],
shape[ shapeIndex ]
];
var areab2 = THREE.FontUtils.Triangulate.area( areabpts );
//console.log(areaa,areab ,areaa2,areab2, ( areaa + areab ), ( areaa2 + areab2 ));
if ( ( areaa + areab ) > ( areaa2 + areab2 ) ) {
// In case areas are not correct.
//console.log("USE THIS");
shapeIndex = oldShapeIndex;
holeIndex = oldHoleIndex ;
if ( shapeIndex < 0 ) { shapeIndex += shape.length; }
shapeIndex %= shape.length;
if ( holeIndex < 0 ) { holeIndex += hole.length; }
holeIndex %= hole.length;
prevShapeVert = ( shapeIndex - 1 ) >= 0 ? shapeIndex - 1 : shape.length - 1;
prevHoleVert = ( holeIndex - 1 ) >= 0 ? holeIndex - 1 : hole.length - 1;
} else {
//console.log("USE THAT ")
}
tmpShape1 = shape.slice( 0, shapeIndex );
tmpShape2 = shape.slice( shapeIndex );
tmpHole1 = hole.slice( holeIndex );
tmpHole2 = hole.slice( 0, holeIndex );
// Should check orders here again?
var trianglea = [
hole[ holeIndex ],
shape[ shapeIndex ],
shape[ prevShapeVert ]
];
var triangleb = [
hole[ holeIndex ] ,
hole[ prevHoleVert ],
shape[ shapeIndex ]
];
verts.push( trianglea );
verts.push( triangleb );
shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 );
}
return {
shape:shape, /* shape with no holes */
isolatedPts: verts, /* isolated faces */
allpoints: allpoints
}
},
triangulateShape: function ( contour, holes ) {
var shapeWithoutHoles = THREE.Shape.Utils.removeHoles( contour, holes );
var shape = shapeWithoutHoles.shape,
allpoints = shapeWithoutHoles.allpoints,
isolatedPts = shapeWithoutHoles.isolatedPts;
var triangles = THREE.FontUtils.Triangulate( shape, false ); // True returns indices for points of spooled shape
// To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first.
//console.log( "triangles",triangles, triangles.length );
//console.log( "allpoints",allpoints, allpoints.length );
var i, il, f, face,
key, index,
allPointsMap = {},
isolatedPointsMap = {};
// prepare all points map
for ( i = 0, il = allpoints.length; i < il; i ++ ) {
key = allpoints[ i ].x + ":" + allpoints[ i ].y;
if ( allPointsMap[ key ] !== undefined ) {
console.log( "Duplicate point", key );
}
allPointsMap[ key ] = i;
}
// check all face vertices against all points map
for ( i = 0, il = triangles.length; i < il; i ++ ) {
face = triangles[ i ];
for ( f = 0; f < 3; f ++ ) {
key = face[ f ].x + ":" + face[ f ].y;
index = allPointsMap[ key ];
if ( index !== undefined ) {
face[ f ] = index;
}
}
}
// check isolated points vertices against all points map
for ( i = 0, il = isolatedPts.length; i < il; i ++ ) {
face = isolatedPts[ i ];
for ( f = 0; f < 3; f ++ ) {
key = face[ f ].x + ":" + face[ f ].y;
index = allPointsMap[ key ];
if ( index !== undefined ) {
face[ f ] = index;
}
}
}
return triangles.concat( isolatedPts );
}, // end triangulate shapes
/*
triangulate2 : function( pts, holes ) {
// For use with Poly2Tri.js
var allpts = pts.concat();
var shape = [];
for (var p in pts) {
shape.push(new js.poly2tri.Point(pts[p].x, pts[p].y));
}
var swctx = new js.poly2tri.SweepContext(shape);
for (var h in holes) {
var aHole = holes[h];
var newHole = []
for (i in aHole) {
newHole.push(new js.poly2tri.Point(aHole[i].x, aHole[i].y));
allpts.push(aHole[i]);
}
swctx.AddHole(newHole);
}
var find;
var findIndexForPt = function (pt) {
find = new THREE.Vector2(pt.x, pt.y);
var p;
for (p=0, pl = allpts.length; p<pl; p++) {
if (allpts[p].equals(find)) return p;
}
return -1;
};
// triangulate
js.poly2tri.sweep.Triangulate(swctx);
var triangles = swctx.GetTriangles();
var tr ;
var facesPts = [];
for (var t in triangles) {
tr = triangles[t];
facesPts.push([
findIndexForPt(tr.GetPoint(0)),
findIndexForPt(tr.GetPoint(1)),
findIndexForPt(tr.GetPoint(2))
]);
}
// console.log(facesPts);
// console.log("triangles", triangles.length, triangles);
// Returns array of faces with 3 element each
return facesPts;
},
*/
isClockWise: function ( pts ) {
return THREE.FontUtils.Triangulate.area( pts ) < 0;
},
// Bezier Curves formulas obtained from
// http://en.wikipedia.org/wiki/B%C3%A9zier_curve
// Quad Bezier Functions
b2p0: function ( t, p ) {
var k = 1 - t;
return k * k * p;
},
b2p1: function ( t, p ) {
return 2 * ( 1 - t ) * t * p;
},
b2p2: function ( t, p ) {
return t * t * p;
},
b2: function ( t, p0, p1, p2 ) {
return this.b2p0( t, p0 ) + this.b2p1( t, p1 ) + this.b2p2( t, p2 );
},
// Cubic Bezier Functions
b3p0: function ( t, p ) {
var k = 1 - t;
return k * k * k * p;
},
b3p1: function ( t, p ) {
var k = 1 - t;
return 3 * k * k * t * p;
},
b3p2: function ( t, p ) {
var k = 1 - t;
return 3 * k * t * t * p;
},
b3p3: function ( t, p ) {
return t * t * t * p;
},
b3: function ( t, p0, p1, p2, p3 ) {
return this.b3p0( t, p0 ) + this.b3p1( t, p1 ) + this.b3p2( t, p2 ) + this.b3p3( t, p3 );
}
};
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*
* TextPath
*
**/
THREE.TextPath = function ( text, parameters ) {
THREE.Path.call( this );
this.parameters = parameters || {};
this.set( text );
};
THREE.TextPath.prototype.set = function ( text, parameters ) {
parameters = parameters || this.parameters;
this.text = text;
var size = parameters.size !== undefined ? parameters.size : 100;
var curveSegments = parameters.curveSegments !== undefined ? parameters.curveSegments: 4;
var font = parameters.font !== undefined ? parameters.font : "helvetiker";
var weight = parameters.weight !== undefined ? parameters.weight : "normal";
var style = parameters.style !== undefined ? parameters.style : "normal";
THREE.FontUtils.size = size;
THREE.FontUtils.divisions = curveSegments;
THREE.FontUtils.face = font;
THREE.FontUtils.weight = weight;
THREE.FontUtils.style = style;
};
THREE.TextPath.prototype.toShapes = function () {
// Get a Font data json object
var data = THREE.FontUtils.drawText( this.text );
var paths = data.paths;
var shapes = [];
for ( var p = 0, pl = paths.length; p < pl; p ++ ) {
Array.prototype.push.apply( shapes, paths[ p ].toShapes() );
}
return shapes;
//console.log(path);
//console.log(fontShapes);
// Either find actions or curves.
//var text3d = new THREE.ExtrudeGeometry( shapes , { amount: 20, bevelEnabled:true, bevelThickness:3 } );
//return text3d;
};
/**
* @author mikael emtinger / http://gomo.se/
*/
THREE.AnimationHandler = (function() {
var playing = [];
var library = {};
var that = {};
//--- update ---
that.update = function( deltaTimeMS ) {
for( var i = 0; i < playing.length; i++ )
playing[ i ].update( deltaTimeMS );
};
//--- add ---
that.addToUpdate = function( animation ) {
if( playing.indexOf( animation ) === -1 )
playing.push( animation );
};
//--- remove ---
that.removeFromUpdate = function( animation ) {
var index = playing.indexOf( animation );
if( index !== -1 )
playing.splice( index, 1 );
};
//--- add ---
that.add = function( data ) {
if( library[ data.name ] !== undefined )
console.log( "THREE.AnimationHandler.add: Warning! " + data.name + " already exists in library. Overwriting." );
library[ data.name ] = data;
initData( data );
};
//--- get ---
that.get = function( name ) {
if( typeof name === "string" ) {
if( library[ name ] ) {
return library[ name ];
} else {
console.log( "THREE.AnimationHandler.get: Couldn't find animation " + name );
return null;
}
} else {
// todo: add simple tween library
}
};
//--- parse ---
that.parse = function( root ) {
// setup hierarchy
var hierarchy = [];
if ( root instanceof THREE.SkinnedMesh ) {
for( var b = 0; b < root.bones.length; b++ ) {
hierarchy.push( root.bones[ b ] );
}
} else {
parseRecurseHierarchy( root, hierarchy );
}
return hierarchy;
};
var parseRecurseHierarchy = function( root, hierarchy ) {
hierarchy.push( root );
for( var c = 0; c < root.children.length; c++ )
parseRecurseHierarchy( root.children[ c ], hierarchy );
}
//--- init data ---
var initData = function( data ) {
if( data.initialized === true )
return;
// loop through all keys
for( var h = 0; h < data.hierarchy.length; h ++ ) {
for( var k = 0; k < data.hierarchy[ h ].keys.length; k ++ ) {
// remove minus times
if( data.hierarchy[ h ].keys[ k ].time < 0 )
data.hierarchy[ h ].keys[ k ].time = 0;
// create quaternions
if( data.hierarchy[ h ].keys[ k ].rot !== undefined &&
!( data.hierarchy[ h ].keys[ k ].rot instanceof THREE.Quaternion ) ) {
var quat = data.hierarchy[ h ].keys[ k ].rot;
data.hierarchy[ h ].keys[ k ].rot = new THREE.Quaternion( quat[0], quat[1], quat[2], quat[3] );
}
}
// prepare morph target keys
if( data.hierarchy[h].keys.length && data.hierarchy[ h ].keys[ 0 ].morphTargets !== undefined ) {
// get all used
var usedMorphTargets = {};
for( var k = 0; k < data.hierarchy[ h ].keys.length; k ++ ) {
for( var m = 0; m < data.hierarchy[ h ].keys[ k ].morphTargets.length; m ++ ) {
var morphTargetName = data.hierarchy[ h ].keys[ k ].morphTargets[ m ];
usedMorphTargets[ morphTargetName ] = -1;
}
}
data.hierarchy[ h ].usedMorphTargets = usedMorphTargets;
// set all used on all frames
for( var k = 0; k < data.hierarchy[ h ].keys.length; k ++ ) {
var influences = {};
for( var morphTargetName in usedMorphTargets ) {
for( var m = 0; m < data.hierarchy[ h ].keys[ k ].morphTargets.length; m ++ ) {
if( data.hierarchy[ h ].keys[ k ].morphTargets[ m ] === morphTargetName ) {
influences[ morphTargetName ] = data.hierarchy[ h ].keys[ k ].morphTargetsInfluences[ m ];
break;
}
}
if( m === data.hierarchy[ h ].keys[ k ].morphTargets.length ) {
influences[ morphTargetName ] = 0;
}
}
data.hierarchy[ h ].keys[ k ].morphTargetsInfluences = influences;
}
}
// remove all keys that are on the same time
for( var k = 1; k < data.hierarchy[ h ].keys.length; k ++ ) {
if( data.hierarchy[ h ].keys[ k ].time === data.hierarchy[ h ].keys[ k - 1 ].time ) {
data.hierarchy[ h ].keys.splice( k, 1 );
k --;
}
}
// set index
for( var k = 0; k < data.hierarchy[ h ].keys.length; k ++ ) {
data.hierarchy[ h ].keys[ k ].index = k;
}
}
// JIT
var lengthInFrames = parseInt( data.length * data.fps, 10 );
data.JIT = {};
data.JIT.hierarchy = [];
for( var h = 0; h < data.hierarchy.length; h ++ )
data.JIT.hierarchy.push( new Array( lengthInFrames ) );
// done
data.initialized = true;
};
// interpolation types
that.LINEAR = 0;
that.CATMULLROM = 1;
that.CATMULLROM_FORWARD = 2;
return that;
}());
/**
* @author mikael emtinger / http://gomo.se/
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
THREE.Animation = function( root, data, interpolationType, JITCompile ) {
this.root = root;
this.data = THREE.AnimationHandler.get( data );
this.hierarchy = THREE.AnimationHandler.parse( root );
this.currentTime = 0;
this.timeScale = 1;
this.isPlaying = false;
this.isPaused = true;
this.loop = true;
this.interpolationType = interpolationType !== undefined ? interpolationType : THREE.AnimationHandler.LINEAR;
this.JITCompile = JITCompile !== undefined ? JITCompile : true;
this.points = [];
this.target = new THREE.Vector3();
};
// Play
THREE.Animation.prototype.play = function( loop, startTimeMS ) {
if( !this.isPlaying ) {
this.isPlaying = true;
this.loop = loop !== undefined ? loop : true;
this.currentTime = startTimeMS !== undefined ? startTimeMS : 0;
// reset key cache
var h, hl = this.hierarchy.length,
object;
for ( h = 0; h < hl; h++ ) {
object = this.hierarchy[ h ];
if ( this.interpolationType !== THREE.AnimationHandler.CATMULLROM_FORWARD ) {
object.useQuaternion = true;
}
object.matrixAutoUpdate = true;
if ( object.animationCache === undefined ) {
object.animationCache = {};
object.animationCache.prevKey = { pos: 0, rot: 0, scl: 0 };
object.animationCache.nextKey = { pos: 0, rot: 0, scl: 0 };
object.animationCache.originalMatrix = object instanceof THREE.Bone ? object.skinMatrix : object.matrix;
}
var prevKey = object.animationCache.prevKey;
var nextKey = object.animationCache.nextKey;
prevKey.pos = this.data.hierarchy[ h ].keys[ 0 ];
prevKey.rot = this.data.hierarchy[ h ].keys[ 0 ];
prevKey.scl = this.data.hierarchy[ h ].keys[ 0 ];
nextKey.pos = this.getNextKeyWith( "pos", h, 1 );
nextKey.rot = this.getNextKeyWith( "rot", h, 1 );
nextKey.scl = this.getNextKeyWith( "scl", h, 1 );
}
this.update( 0 );
}
this.isPaused = false;
THREE.AnimationHandler.addToUpdate( this );
};
// Pause
THREE.Animation.prototype.pause = function() {
if( this.isPaused ) {
THREE.AnimationHandler.addToUpdate( this );
} else {
THREE.AnimationHandler.removeFromUpdate( this );
}
this.isPaused = !this.isPaused;
};
// Stop
THREE.Animation.prototype.stop = function() {
this.isPlaying = false;
this.isPaused = false;
THREE.AnimationHandler.removeFromUpdate( this );
// reset JIT matrix and remove cache
for ( var h = 0; h < this.hierarchy.length; h++ ) {
if ( this.hierarchy[ h ].animationCache !== undefined ) {
if( this.hierarchy[ h ] instanceof THREE.Bone ) {
this.hierarchy[ h ].skinMatrix = this.hierarchy[ h ].animationCache.originalMatrix;
} else {
this.hierarchy[ h ].matrix = this.hierarchy[ h ].animationCache.originalMatrix;
}
delete this.hierarchy[ h ].animationCache;
}
}
};
// Update
THREE.Animation.prototype.update = function( deltaTimeMS ) {
// early out
if( !this.isPlaying ) return;
// vars
var types = [ "pos", "rot", "scl" ];
var type;
var scale;
var vector;
var prevXYZ, nextXYZ;
var prevKey, nextKey;
var object;
var animationCache;
var frame;
var JIThierarchy = this.data.JIT.hierarchy;
var currentTime, unloopedCurrentTime;
var currentPoint, forwardPoint, angle;
// update
this.currentTime += deltaTimeMS * this.timeScale;
unloopedCurrentTime = this.currentTime;
currentTime = this.currentTime = this.currentTime % this.data.length;
frame = parseInt( Math.min( currentTime * this.data.fps, this.data.length * this.data.fps ), 10 );
// update
for ( var h = 0, hl = this.hierarchy.length; h < hl; h++ ) {
object = this.hierarchy[ h ];
animationCache = object.animationCache;
// use JIT?
if ( this.JITCompile && JIThierarchy[ h ][ frame ] !== undefined ) {
if( object instanceof THREE.Bone ) {
object.skinMatrix = JIThierarchy[ h ][ frame ];
object.matrixAutoUpdate = false;
object.matrixWorldNeedsUpdate = false;
} else {
object.matrix = JIThierarchy[ h ][ frame ];
object.matrixAutoUpdate = false;
object.matrixWorldNeedsUpdate = true;
}
// use interpolation
} else {
// make sure so original matrix and not JIT matrix is set
if ( this.JITCompile ) {
if( object instanceof THREE.Bone ) {
object.skinMatrix = object.animationCache.originalMatrix;
} else {
object.matrix = object.animationCache.originalMatrix;
}
}
// loop through pos/rot/scl
for ( var t = 0; t < 3; t++ ) {
// get keys
type = types[ t ];
prevKey = animationCache.prevKey[ type ];
nextKey = animationCache.nextKey[ type ];
// switch keys?
if ( nextKey.time <= unloopedCurrentTime ) {
// did we loop?
if ( currentTime < unloopedCurrentTime ) {
if ( this.loop ) {
prevKey = this.data.hierarchy[ h ].keys[ 0 ];
nextKey = this.getNextKeyWith( type, h, 1 );
while( nextKey.time < currentTime ) {
prevKey = nextKey;
nextKey = this.getNextKeyWith( type, h, nextKey.index + 1 );
}
} else {
this.stop();
return;
}
} else {
do {
prevKey = nextKey;
nextKey = this.getNextKeyWith( type, h, nextKey.index + 1 );
} while( nextKey.time < currentTime )
}
animationCache.prevKey[ type ] = prevKey;
animationCache.nextKey[ type ] = nextKey;
}
object.matrixAutoUpdate = true;
object.matrixWorldNeedsUpdate = true;
scale = ( currentTime - prevKey.time ) / ( nextKey.time - prevKey.time );
prevXYZ = prevKey[ type ];
nextXYZ = nextKey[ type ];
// check scale error
if ( scale < 0 || scale > 1 ) {
console.log( "THREE.Animation.update: Warning! Scale out of bounds:" + scale + " on bone " + h );
scale = scale < 0 ? 0 : 1;
}
// interpolate
if ( type === "pos" ) {
vector = object.position;
if( this.interpolationType === THREE.AnimationHandler.LINEAR ) {
vector.x = prevXYZ[ 0 ] + ( nextXYZ[ 0 ] - prevXYZ[ 0 ] ) * scale;
vector.y = prevXYZ[ 1 ] + ( nextXYZ[ 1 ] - prevXYZ[ 1 ] ) * scale;
vector.z = prevXYZ[ 2 ] + ( nextXYZ[ 2 ] - prevXYZ[ 2 ] ) * scale;
} else if ( this.interpolationType === THREE.AnimationHandler.CATMULLROM ||
this.interpolationType === THREE.AnimationHandler.CATMULLROM_FORWARD ) {
this.points[ 0 ] = this.getPrevKeyWith( "pos", h, prevKey.index - 1 )[ "pos" ];
this.points[ 1 ] = prevXYZ;
this.points[ 2 ] = nextXYZ;
this.points[ 3 ] = this.getNextKeyWith( "pos", h, nextKey.index + 1 )[ "pos" ];
scale = scale * 0.33 + 0.33;
currentPoint = this.interpolateCatmullRom( this.points, scale );
vector.x = currentPoint[ 0 ];
vector.y = currentPoint[ 1 ];
vector.z = currentPoint[ 2 ];
if( this.interpolationType === THREE.AnimationHandler.CATMULLROM_FORWARD ) {
forwardPoint = this.interpolateCatmullRom( this.points, scale * 1.01 );
this.target.set( forwardPoint[ 0 ], forwardPoint[ 1 ], forwardPoint[ 2 ] );
this.target.subSelf( vector );
this.target.y = 0;
this.target.normalize();
angle = Math.atan2( this.target.x, this.target.z );
object.rotation.set( 0, angle, 0 );
}
}
} else if ( type === "rot" ) {
THREE.Quaternion.slerp( prevXYZ, nextXYZ, object.quaternion, scale );
} else if( type === "scl" ) {
vector = object.scale;
vector.x = prevXYZ[ 0 ] + ( nextXYZ[ 0 ] - prevXYZ[ 0 ] ) * scale;
vector.y = prevXYZ[ 1 ] + ( nextXYZ[ 1 ] - prevXYZ[ 1 ] ) * scale;
vector.z = prevXYZ[ 2 ] + ( nextXYZ[ 2 ] - prevXYZ[ 2 ] ) * scale;
}
}
}
}
// update JIT?
if ( this.JITCompile ) {
if ( JIThierarchy[ 0 ][ frame ] === undefined ) {
this.hierarchy[ 0 ].updateMatrixWorld( true );
for ( var h = 0; h < this.hierarchy.length; h++ ) {
if( this.hierarchy[ h ] instanceof THREE.Bone ) {
JIThierarchy[ h ][ frame ] = this.hierarchy[ h ].skinMatrix.clone();
} else {
JIThierarchy[ h ][ frame ] = this.hierarchy[ h ].matrix.clone();
}
}
}
}
};
// Catmull-Rom spline
THREE.Animation.prototype.interpolateCatmullRom = function ( points, scale ) {
var c = [], v3 = [],
point, intPoint, weight, w2, w3,
pa, pb, pc, pd;
point = ( points.length - 1 ) * scale;
intPoint = Math.floor( point );
weight = point - intPoint;
c[ 0 ] = intPoint === 0 ? intPoint : intPoint - 1;
c[ 1 ] = intPoint;
c[ 2 ] = intPoint > points.length - 2 ? intPoint : intPoint + 1;
c[ 3 ] = intPoint > points.length - 3 ? intPoint : intPoint + 2;
pa = points[ c[ 0 ] ];
pb = points[ c[ 1 ] ];
pc = points[ c[ 2 ] ];
pd = points[ c[ 3 ] ];
w2 = weight * weight;
w3 = weight * w2;
v3[ 0 ] = this.interpolate( pa[ 0 ], pb[ 0 ], pc[ 0 ], pd[ 0 ], weight, w2, w3 );
v3[ 1 ] = this.interpolate( pa[ 1 ], pb[ 1 ], pc[ 1 ], pd[ 1 ], weight, w2, w3 );
v3[ 2 ] = this.interpolate( pa[ 2 ], pb[ 2 ], pc[ 2 ], pd[ 2 ], weight, w2, w3 );
return v3;
};
THREE.Animation.prototype.interpolate = function( p0, p1, p2, p3, t, t2, t3 ) {
var v0 = ( p2 - p0 ) * 0.5,
v1 = ( p3 - p1 ) * 0.5;
return ( 2 * ( p1 - p2 ) + v0 + v1 ) * t3 + ( - 3 * ( p1 - p2 ) - 2 * v0 - v1 ) * t2 + v0 * t + p1;
};
// Get next key with
THREE.Animation.prototype.getNextKeyWith = function( type, h, key ) {
var keys = this.data.hierarchy[ h ].keys;
if ( this.interpolationType === THREE.AnimationHandler.CATMULLROM ||
this.interpolationType === THREE.AnimationHandler.CATMULLROM_FORWARD ) {
key = key < keys.length - 1 ? key : keys.length - 1;
} else {
key = key % keys.length;
}
for ( ; key < keys.length; key++ ) {
if ( keys[ key ][ type ] !== undefined ) {
return keys[ key ];
}
}
return this.data.hierarchy[ h ].keys[ 0 ];
};
// Get previous key with
THREE.Animation.prototype.getPrevKeyWith = function( type, h, key ) {
var keys = this.data.hierarchy[ h ].keys;
if ( this.interpolationType === THREE.AnimationHandler.CATMULLROM ||
this.interpolationType === THREE.AnimationHandler.CATMULLROM_FORWARD ) {
key = key > 0 ? key : 0;
} else {
key = key >= 0 ? key : key + keys.length;
}
for ( ; key >= 0; key-- ) {
if ( keys[ key ][ type ] !== undefined ) {
return keys[ key ];
}
}
return this.data.hierarchy[ h ].keys[ keys.length - 1 ];
};/**
* @author mikael emtinger / http://gomo.se/
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author khang duong
* @author erik kitson
*/
THREE.KeyFrameAnimation = function( root, data, JITCompile ) {
this.root = root;
this.data = THREE.AnimationHandler.get( data );
this.hierarchy = THREE.AnimationHandler.parse( root );
this.currentTime = 0;
this.timeScale = 0.001;
this.isPlaying = false;
this.isPaused = true;
this.loop = true;
this.JITCompile = JITCompile !== undefined ? JITCompile : true;
// initialize to first keyframes
for ( var h = 0, hl = this.hierarchy.length; h < hl; h++ ) {
var keys = this.data.hierarchy[h].keys,
sids = this.data.hierarchy[h].sids,
obj = this.hierarchy[h];
if ( keys.length && sids ) {
for ( var s = 0; s < sids.length; s++ ) {
var sid = sids[ s ],
next = this.getNextKeyWith( sid, h, 0 );
if ( next ) {
next.apply( sid );
}
}
obj.matrixAutoUpdate = false;
this.data.hierarchy[h].node.updateMatrix();
obj.matrixWorldNeedsUpdate = true;
}
}
};
// Play
THREE.KeyFrameAnimation.prototype.play = function( loop, startTimeMS ) {
if( !this.isPlaying ) {
this.isPlaying = true;
this.loop = loop !== undefined ? loop : true;
this.currentTime = startTimeMS !== undefined ? startTimeMS : 0;
this.startTimeMs = startTimeMS;
this.startTime = 10000000;
this.endTime = -this.startTime;
// reset key cache
var h, hl = this.hierarchy.length,
object,
node;
for ( h = 0; h < hl; h++ ) {
object = this.hierarchy[ h ];
node = this.data.hierarchy[ h ];
object.useQuaternion = true;
if ( node.animationCache === undefined ) {
node.animationCache = {};
node.animationCache.prevKey = null;
node.animationCache.nextKey = null;
node.animationCache.originalMatrix = object instanceof THREE.Bone ? object.skinMatrix : object.matrix;
}
var keys = this.data.hierarchy[h].keys;
if (keys.length) {
node.animationCache.prevKey = keys[ 0 ];
node.animationCache.nextKey = keys[ 1 ];
this.startTime = Math.min( keys[0].time, this.startTime );
this.endTime = Math.max( keys[keys.length - 1].time, this.endTime );
}
}
this.update( 0 );
}
this.isPaused = false;
THREE.AnimationHandler.addToUpdate( this );
};
// Pause
THREE.KeyFrameAnimation.prototype.pause = function() {
if( this.isPaused ) {
THREE.AnimationHandler.addToUpdate( this );
} else {
THREE.AnimationHandler.removeFromUpdate( this );
}
this.isPaused = !this.isPaused;
};
// Stop
THREE.KeyFrameAnimation.prototype.stop = function() {
this.isPlaying = false;
this.isPaused = false;
THREE.AnimationHandler.removeFromUpdate( this );
// reset JIT matrix and remove cache
for ( var h = 0; h < this.data.hierarchy.length; h++ ) {
var obj = this.hierarchy[ h ];
var node = this.data.hierarchy[ h ];
if ( node.animationCache !== undefined ) {
var original = node.animationCache.originalMatrix;
if( obj instanceof THREE.Bone ) {
original.copy( obj.skinMatrix );
obj.skinMatrix = original;
} else {
original.copy( obj.matrix );
obj.matrix = original;
}
delete node.animationCache;
}
}
};
// Update
THREE.KeyFrameAnimation.prototype.update = function( deltaTimeMS ) {
// early out
if( !this.isPlaying ) return;
// vars
var prevKey, nextKey;
var object;
var node;
var frame;
var JIThierarchy = this.data.JIT.hierarchy;
var currentTime, unloopedCurrentTime;
var looped;
// update
this.currentTime += deltaTimeMS * this.timeScale;
unloopedCurrentTime = this.currentTime;
currentTime = this.currentTime = this.currentTime % this.data.length;
// if looped around, the current time should be based on the startTime
if ( currentTime < this.startTimeMs ) {
currentTime = this.currentTime = this.startTimeMs + currentTime;
}
frame = parseInt( Math.min( currentTime * this.data.fps, this.data.length * this.data.fps ), 10 );
looped = currentTime < unloopedCurrentTime;
if ( looped && !this.loop ) {
// Set the animation to the last keyframes and stop
for ( var h = 0, hl = this.hierarchy.length; h < hl; h++ ) {
var keys = this.data.hierarchy[h].keys,
sids = this.data.hierarchy[h].sids,
end = keys.length-1,
obj = this.hierarchy[h];
if ( keys.length ) {
for ( var s = 0; s < sids.length; s++ ) {
var sid = sids[ s ],
prev = this.getPrevKeyWith( sid, h, end );
if ( prev ) {
prev.apply( sid );
}
}
this.data.hierarchy[h].node.updateMatrix();
obj.matrixWorldNeedsUpdate = true;
}
}
this.stop();
return;
}
// check pre-infinity
if ( currentTime < this.startTime ) {
return;
}
// update
for ( var h = 0, hl = this.hierarchy.length; h < hl; h++ ) {
object = this.hierarchy[ h ];
node = this.data.hierarchy[ h ];
var keys = node.keys,
animationCache = node.animationCache;
// use JIT?
if ( this.JITCompile && JIThierarchy[ h ][ frame ] !== undefined ) {
if( object instanceof THREE.Bone ) {
object.skinMatrix = JIThierarchy[ h ][ frame ];
object.matrixWorldNeedsUpdate = false;
} else {
object.matrix = JIThierarchy[ h ][ frame ];
object.matrixWorldNeedsUpdate = true;
}
// use interpolation
} else if ( keys.length ) {
// make sure so original matrix and not JIT matrix is set
if ( this.JITCompile && animationCache ) {
if( object instanceof THREE.Bone ) {
object.skinMatrix = animationCache.originalMatrix;
} else {
object.matrix = animationCache.originalMatrix;
}
}
prevKey = animationCache.prevKey;
nextKey = animationCache.nextKey;
if ( prevKey && nextKey ) {
// switch keys?
if ( nextKey.time <= unloopedCurrentTime ) {
// did we loop?
if ( looped && this.loop ) {
prevKey = keys[ 0 ];
nextKey = keys[ 1 ];
while ( nextKey.time < currentTime ) {
prevKey = nextKey;
nextKey = keys[ prevKey.index + 1 ];
}
} else if ( !looped ) {
var lastIndex = keys.length - 1;
while ( nextKey.time < currentTime && nextKey.index !== lastIndex ) {
prevKey = nextKey;
nextKey = keys[ prevKey.index + 1 ];
}
}
animationCache.prevKey = prevKey;
animationCache.nextKey = nextKey;
}
if(nextKey.time >= currentTime)
prevKey.interpolate( nextKey, currentTime );
else
prevKey.interpolate( nextKey, nextKey.time);
}
this.data.hierarchy[h].node.updateMatrix();
object.matrixWorldNeedsUpdate = true;
}
}
// update JIT?
if ( this.JITCompile ) {
if ( JIThierarchy[ 0 ][ frame ] === undefined ) {
this.hierarchy[ 0 ].updateMatrixWorld( true );
for ( var h = 0; h < this.hierarchy.length; h++ ) {
if( this.hierarchy[ h ] instanceof THREE.Bone ) {
JIThierarchy[ h ][ frame ] = this.hierarchy[ h ].skinMatrix.clone();
} else {
JIThierarchy[ h ][ frame ] = this.hierarchy[ h ].matrix.clone();
}
}
}
}
};
// Get next key with
THREE.KeyFrameAnimation.prototype.getNextKeyWith = function( sid, h, key ) {
var keys = this.data.hierarchy[ h ].keys;
key = key % keys.length;
for ( ; key < keys.length; key++ ) {
if ( keys[ key ].hasTarget( sid ) ) {
return keys[ key ];
}
}
return keys[ 0 ];
};
// Get previous key with
THREE.KeyFrameAnimation.prototype.getPrevKeyWith = function( sid, h, key ) {
var keys = this.data.hierarchy[ h ].keys;
key = key >= 0 ? key : key + keys.length;
for ( ; key >= 0; key-- ) {
if ( keys[ key ].hasTarget( sid ) ) {
return keys[ key ];
}
}
return keys[ keys.length - 1 ];
};
/**
* Camera for rendering cube maps
* - renders scene into axis-aligned cube
*
* @author alteredq / http://alteredqualia.com/
*/
THREE.CubeCamera = function ( near, far, cubeResolution ) {
THREE.Object3D.call( this );
var fov = 90, aspect = 1;
var cameraPX = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraPX.up.set( 0, -1, 0 );
cameraPX.lookAt( new THREE.Vector3( 1, 0, 0 ) );
this.add( cameraPX );
var cameraNX = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraNX.up.set( 0, -1, 0 );
cameraNX.lookAt( new THREE.Vector3( -1, 0, 0 ) );
this.add( cameraNX );
var cameraPY = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraPY.up.set( 0, 0, 1 );
cameraPY.lookAt( new THREE.Vector3( 0, 1, 0 ) );
this.add( cameraPY );
var cameraNY = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraNY.up.set( 0, 0, -1 );
cameraNY.lookAt( new THREE.Vector3( 0, -1, 0 ) );
this.add( cameraNY );
var cameraPZ = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraPZ.up.set( 0, -1, 0 );
cameraPZ.lookAt( new THREE.Vector3( 0, 0, 1 ) );
this.add( cameraPZ );
var cameraNZ = new THREE.PerspectiveCamera( fov, aspect, near, far );
cameraNZ.up.set( 0, -1, 0 );
cameraNZ.lookAt( new THREE.Vector3( 0, 0, -1 ) );
this.add( cameraNZ );
this.renderTarget = new THREE.WebGLRenderTargetCube( cubeResolution, cubeResolution, { format: THREE.RGBFormat, magFilter: THREE.LinearFilter, minFilter: THREE.LinearFilter } );
this.updateCubeMap = function ( renderer, scene ) {
var renderTarget = this.renderTarget;
var generateMipmaps = renderTarget.generateMipmaps;
renderTarget.generateMipmaps = false;
renderTarget.activeCubeFace = 0;
renderer.render( scene, cameraPX, renderTarget );
renderTarget.activeCubeFace = 1;
renderer.render( scene, cameraNX, renderTarget );
renderTarget.activeCubeFace = 2;
renderer.render( scene, cameraPY, renderTarget );
renderTarget.activeCubeFace = 3;
renderer.render( scene, cameraNY, renderTarget );
renderTarget.activeCubeFace = 4;
renderer.render( scene, cameraPZ, renderTarget );
renderTarget.generateMipmaps = generateMipmaps;
renderTarget.activeCubeFace = 5;
renderer.render( scene, cameraNZ, renderTarget );
};
};
THREE.CubeCamera.prototype = new THREE.Object3D();
THREE.CubeCamera.prototype.constructor = THREE.CubeCamera;
/*
* @author zz85 / http://twitter.com/blurspline / http://www.lab4games.net/zz85/blog
*
* A general perpose camera, for setting FOV, Lens Focal Length,
* and switching between perspective and orthographic views easily.
* Use this only if you do not wish to manage
* both a Orthographic and Perspective Camera
*
*/
THREE.CombinedCamera = function ( width, height, fov, near, far, orthonear, orthofar ) {
THREE.Camera.call( this );
this.fov = fov;
this.left = -width / 2;
this.right = width / 2
this.top = height / 2;
this.bottom = -height / 2;
// We could also handle the projectionMatrix internally, but just wanted to test nested camera objects
this.cameraO = new THREE.OrthographicCamera( width / - 2, width / 2, height / 2, height / - 2, orthonear, orthofar );
this.cameraP = new THREE.PerspectiveCamera( fov, width/height, near, far );
this.zoom = 1;
this.toPerspective();
var aspect = width/height;
};
THREE.CombinedCamera.prototype = new THREE.Camera();
THREE.CombinedCamera.prototype.constructor = THREE.CombinedCamera;
THREE.CombinedCamera.prototype.toPerspective = function () {
// Switches to the Perspective Camera
this.near = this.cameraP.near;
this.far = this.cameraP.far;
this.cameraP.fov = this.fov / this.zoom ;
this.cameraP.updateProjectionMatrix();
this.projectionMatrix = this.cameraP.projectionMatrix;
this.inPersepectiveMode = true;
this.inOrthographicMode = false;
};
THREE.CombinedCamera.prototype.toOrthographic = function () {
// Switches to the Orthographic camera estimating viewport from Perspective
var fov = this.fov;
var aspect = this.cameraP.aspect;
var near = this.cameraP.near;
var far = this.cameraP.far;
// The size that we set is the mid plane of the viewing frustum
var hyperfocus = ( near + far ) / 2;
var halfHeight = Math.tan( fov / 2 ) * hyperfocus;
var planeHeight = 2 * halfHeight;
var planeWidth = planeHeight * aspect;
var halfWidth = planeWidth / 2;
halfHeight /= this.zoom;
halfWidth /= this.zoom;
this.cameraO.left = -halfWidth;
this.cameraO.right = halfWidth;
this.cameraO.top = halfHeight;
this.cameraO.bottom = -halfHeight;
// this.cameraO.left = -farHalfWidth;
// this.cameraO.right = farHalfWidth;
// this.cameraO.top = farHalfHeight;
// this.cameraO.bottom = -farHalfHeight;
// this.cameraO.left = this.left / this.zoom;
// this.cameraO.right = this.right / this.zoom;
// this.cameraO.top = this.top / this.zoom;
// this.cameraO.bottom = this.bottom / this.zoom;
this.cameraO.updateProjectionMatrix();
this.near = this.cameraO.near;
this.far = this.cameraO.far;
this.projectionMatrix = this.cameraO.projectionMatrix;
this.inPersepectiveMode = false;
this.inOrthographicMode = true;
};
THREE.CombinedCamera.prototype.setSize = function(width, height) {
this.cameraP.aspect = width / height;
this.left = -width / 2;
this.right = width / 2
this.top = height / 2;
this.bottom = -height / 2;
}
THREE.CombinedCamera.prototype.setFov = function(fov) {
this.fov = fov;
if (this.inPersepectiveMode) {
this.toPerspective();
} else {
this.toOrthographic();
}
};
// For mantaining similar API with PerspectiveCamera
THREE.CombinedCamera.prototype.updateProjectionMatrix = function() {
if (this.inPersepectiveMode) {
this.toPerspective();
} else {
this.toPerspective();
this.toOrthographic();
}
};
/*
* Uses Focal Length (in mm) to estimate and set FOV
* 35mm (fullframe) camera is used if frame size is not specified;
* Formula based on http://www.bobatkins.com/photography/technical/field_of_view.html
*/
THREE.CombinedCamera.prototype.setLens = function ( focalLength, frameHeight ) {
frameHeight = frameHeight !== undefined ? frameHeight : 24;
var fov = 2 * Math.atan( frameHeight / ( focalLength * 2 ) ) * ( 180 / Math.PI );
this.setFov( fov );
return fov;
};
THREE.CombinedCamera.prototype.setZoom = function(zoom) {
this.zoom = zoom;
if (this.inPersepectiveMode) {
this.toPerspective();
} else {
this.toOrthographic();
}
};
THREE.CombinedCamera.prototype.toFrontView = function() {
this.rotation.x = 0;
this.rotation.y = 0;
this.rotation.z = 0;
// should we be modifing the matrix instead?
this.rotationAutoUpdate = false;
};
THREE.CombinedCamera.prototype.toBackView = function() {
this.rotation.x = 0;
this.rotation.y = Math.PI;
this.rotation.z = 0;
this.rotationAutoUpdate = false;
};
THREE.CombinedCamera.prototype.toLeftView = function() {
this.rotation.x = 0;
this.rotation.y = - Math.PI / 2;
this.rotation.z = 0;
this.rotationAutoUpdate = false;
};
THREE.CombinedCamera.prototype.toRightView = function() {
this.rotation.x = 0;
this.rotation.y = Math.PI / 2;
this.rotation.z = 0;
this.rotationAutoUpdate = false;
};
THREE.CombinedCamera.prototype.toTopView = function() {
this.rotation.x = - Math.PI / 2;
this.rotation.y = 0;
this.rotation.z = 0;
this.rotationAutoUpdate = false;
};
THREE.CombinedCamera.prototype.toBottomView = function() {
this.rotation.x = Math.PI / 2;
this.rotation.y = 0;
this.rotation.z = 0;
this.rotationAutoUpdate = false;
};
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author paulirish / http://paulirish.com/
*/
THREE.FirstPersonControls = function ( object, domElement ) {
this.object = object;
this.target = new THREE.Vector3( 0, 0, 0 );
this.domElement = ( domElement !== undefined ) ? domElement : document;
this.movementSpeed = 1.0;
this.lookSpeed = 0.005;
this.noFly = false;
this.lookVertical = true;
this.autoForward = false;
// this.invertVertical = false;
this.activeLook = true;
this.heightSpeed = false;
this.heightCoef = 1.0;
this.heightMin = 0.0;
this.constrainVertical = false;
this.verticalMin = 0;
this.verticalMax = Math.PI;
this.autoSpeedFactor = 0.0;
this.mouseX = 0;
this.mouseY = 0;
this.lat = 0;
this.lon = 0;
this.phi = 0;
this.theta = 0;
this.moveForward = false;
this.moveBackward = false;
this.moveLeft = false;
this.moveRight = false;
this.freeze = false;
this.mouseDragOn = false;
if ( this.domElement === document ) {
this.viewHalfX = window.innerWidth / 2;
this.viewHalfY = window.innerHeight / 2;
} else {
this.viewHalfX = this.domElement.offsetWidth / 2;
this.viewHalfY = this.domElement.offsetHeight / 2;
this.domElement.setAttribute( 'tabindex', -1 );
}
this.onMouseDown = function ( event ) {
if ( this.domElement !== document ) {
this.domElement.focus();
}
event.preventDefault();
event.stopPropagation();
if ( this.activeLook ) {
switch ( event.button ) {
case 0: this.moveForward = true; break;
case 2: this.moveBackward = true; break;
}
}
this.mouseDragOn = true;
};
this.onMouseUp = function ( event ) {
event.preventDefault();
event.stopPropagation();
if ( this.activeLook ) {
switch ( event.button ) {
case 0: this.moveForward = false; break;
case 2: this.moveBackward = false; break;
}
}
this.mouseDragOn = false;
};
this.onMouseMove = function ( event ) {
if ( this.domElement === document ) {
this.mouseX = event.pageX - this.viewHalfX;
this.mouseY = event.pageY - this.viewHalfY;
} else {
this.mouseX = event.pageX - this.domElement.offsetLeft - this.viewHalfX;
this.mouseY = event.pageY - this.domElement.offsetTop - this.viewHalfY;
}
};
this.onKeyDown = function ( event ) {
switch( event.keyCode ) {
case 38: /*up*/
case 87: /*W*/ this.moveForward = true; break;
case 37: /*left*/
case 65: /*A*/ this.moveLeft = true; break;
case 40: /*down*/
case 83: /*S*/ this.moveBackward = true; break;
case 39: /*right*/
case 68: /*D*/ this.moveRight = true; break;
case 82: /*R*/ this.moveUp = true; break;
case 70: /*F*/ this.moveDown = true; break;
case 81: /*Q*/ this.freeze = !this.freeze; break;
}
};
this.onKeyUp = function ( event ) {
switch( event.keyCode ) {
case 38: /*up*/
case 87: /*W*/ this.moveForward = false; break;
case 37: /*left*/
case 65: /*A*/ this.moveLeft = false; break;
case 40: /*down*/
case 83: /*S*/ this.moveBackward = false; break;
case 39: /*right*/
case 68: /*D*/ this.moveRight = false; break;
case 82: /*R*/ this.moveUp = false; break;
case 70: /*F*/ this.moveDown = false; break;
}
};
this.update = function( delta ) {
var actualMoveSpeed = 0;
if ( this.freeze ) {
return;
} else {
if ( this.heightSpeed ) {
var y = THREE.Math.clamp( this.object.position.y, this.heightMin, this.heightMax );
var heightDelta = y - this.heightMin;
this.autoSpeedFactor = delta * ( heightDelta * this.heightCoef );
} else {
this.autoSpeedFactor = 0.0;
}
actualMoveSpeed = delta * this.movementSpeed;
if ( this.moveForward || ( this.autoForward && !this.moveBackward ) ) this.object.translateZ( - ( actualMoveSpeed + this.autoSpeedFactor ) );
if ( this.moveBackward ) this.object.translateZ( actualMoveSpeed );
if ( this.moveLeft ) this.object.translateX( - actualMoveSpeed );
if ( this.moveRight ) this.object.translateX( actualMoveSpeed );
if ( this.moveUp ) this.object.translateY( actualMoveSpeed );
if ( this.moveDown ) this.object.translateY( - actualMoveSpeed );
var actualLookSpeed = delta * this.lookSpeed;
if ( !this.activeLook ) {
actualLookSpeed = 0;
}
this.lon += this.mouseX * actualLookSpeed;
if( this.lookVertical ) this.lat -= this.mouseY * actualLookSpeed; // * this.invertVertical?-1:1;
this.lat = Math.max( - 85, Math.min( 85, this.lat ) );
this.phi = ( 90 - this.lat ) * Math.PI / 180;
this.theta = this.lon * Math.PI / 180;
var targetPosition = this.target,
position = this.object.position;
targetPosition.x = position.x + 100 * Math.sin( this.phi ) * Math.cos( this.theta );
targetPosition.y = position.y + 100 * Math.cos( this.phi );
targetPosition.z = position.z + 100 * Math.sin( this.phi ) * Math.sin( this.theta );
}
var verticalLookRatio = 1;
if ( this.constrainVertical ) {
verticalLookRatio = Math.PI / ( this.verticalMax - this.verticalMin );
}
this.lon += this.mouseX * actualLookSpeed;
if( this.lookVertical ) this.lat -= this.mouseY * actualLookSpeed * verticalLookRatio;
this.lat = Math.max( - 85, Math.min( 85, this.lat ) );
this.phi = ( 90 - this.lat ) * Math.PI / 180;
this.theta = this.lon * Math.PI / 180;
if ( this.constrainVertical ) {
this.phi = THREE.Math.mapLinear( this.phi, 0, Math.PI, this.verticalMin, this.verticalMax );
}
var targetPosition = this.target,
position = this.object.position;
targetPosition.x = position.x + 100 * Math.sin( this.phi ) * Math.cos( this.theta );
targetPosition.y = position.y + 100 * Math.cos( this.phi );
targetPosition.z = position.z + 100 * Math.sin( this.phi ) * Math.sin( this.theta );
this.object.lookAt( targetPosition );
};
this.domElement.addEventListener( 'contextmenu', function ( event ) { event.preventDefault(); }, false );
this.domElement.addEventListener( 'mousemove', bind( this, this.onMouseMove ), false );
this.domElement.addEventListener( 'mousedown', bind( this, this.onMouseDown ), false );
this.domElement.addEventListener( 'mouseup', bind( this, this.onMouseUp ), false );
this.domElement.addEventListener( 'keydown', bind( this, this.onKeyDown ), false );
this.domElement.addEventListener( 'keyup', bind( this, this.onKeyUp ), false );
function bind( scope, fn ) {
return function () {
fn.apply( scope, arguments );
};
};
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.PathControls = function ( object, domElement ) {
this.object = object;
this.domElement = ( domElement !== undefined ) ? domElement : document;
this.id = "PathControls" + THREE.PathControlsIdCounter ++;
// API
this.duration = 10 * 1000; // milliseconds
this.waypoints = [];
this.useConstantSpeed = true;
this.resamplingCoef = 50;
this.debugPath = new THREE.Object3D();
this.debugDummy = new THREE.Object3D();
this.animationParent = new THREE.Object3D();
this.lookSpeed = 0.005;
this.lookVertical = true;
this.lookHorizontal = true;
this.verticalAngleMap = { srcRange: [ 0, 2 * Math.PI ], dstRange: [ 0, 2 * Math.PI ] };
this.horizontalAngleMap = { srcRange: [ 0, 2 * Math.PI ], dstRange: [ 0, 2 * Math.PI ] };
// internals
this.target = new THREE.Object3D();
this.mouseX = 0;
this.mouseY = 0;
this.lat = 0;
this.lon = 0;
this.phi = 0;
this.theta = 0;
if ( this.domElement === document ) {
this.viewHalfX = window.innerWidth / 2;
this.viewHalfY = window.innerHeight / 2;
} else {
this.viewHalfX = this.domElement.offsetWidth / 2;
this.viewHalfY = this.domElement.offsetHeight / 2;
this.domElement.setAttribute( 'tabindex', -1 );
}
var PI2 = Math.PI * 2,
PI180 = Math.PI / 180;
// methods
this.update = function ( delta ) {
var srcRange, dstRange;
if( this.lookHorizontal ) this.lon += this.mouseX * this.lookSpeed * delta;
if( this.lookVertical ) this.lat -= this.mouseY * this.lookSpeed * delta;
this.lon = Math.max( 0, Math.min( 360, this.lon ) );
this.lat = Math.max( - 85, Math.min( 85, this.lat ) );
this.phi = ( 90 - this.lat ) * PI180;
this.theta = this.lon * PI180;
this.phi = normalize_angle_rad( this.phi );
// constrain vertical look angle
srcRange = this.verticalAngleMap.srcRange;
dstRange = this.verticalAngleMap.dstRange;
var tmpPhi = THREE.Math.mapLinear( this.phi, srcRange[ 0 ], srcRange[ 1 ], dstRange[ 0 ], dstRange[ 1 ] );
var tmpPhiFullRange = dstRange[ 1 ] - dstRange[ 0 ];
var tmpPhiNormalized = ( tmpPhi - dstRange[ 0 ] ) / tmpPhiFullRange;
this.phi = QuadraticEaseInOut( tmpPhiNormalized ) * tmpPhiFullRange + dstRange[ 0 ];
// constrain horizontal look angle
srcRange = this.horizontalAngleMap.srcRange;
dstRange = this.horizontalAngleMap.dstRange;
var tmpTheta = THREE.Math.mapLinear( this.theta, srcRange[ 0 ], srcRange[ 1 ], dstRange[ 0 ], dstRange[ 1 ] );
var tmpThetaFullRange = dstRange[ 1 ] - dstRange[ 0 ];
var tmpThetaNormalized = ( tmpTheta - dstRange[ 0 ] ) / tmpThetaFullRange;
this.theta = QuadraticEaseInOut( tmpThetaNormalized ) * tmpThetaFullRange + dstRange[ 0 ];
var targetPosition = this.target.position,
position = this.object.position;
targetPosition.x = 100 * Math.sin( this.phi ) * Math.cos( this.theta );
targetPosition.y = 100 * Math.cos( this.phi );
targetPosition.z = 100 * Math.sin( this.phi ) * Math.sin( this.theta );
this.object.lookAt( this.target.position );
};
this.onMouseMove = function ( event ) {
if ( this.domElement === document ) {
this.mouseX = event.pageX - this.viewHalfX;
this.mouseY = event.pageY - this.viewHalfY;
} else {
this.mouseX = event.pageX - this.domElement.offsetLeft - this.viewHalfX;
this.mouseY = event.pageY - this.domElement.offsetTop - this.viewHalfY;
}
};
// utils
function normalize_angle_rad( a ) {
var b = a % PI2;
return b >= 0 ? b : b + PI2;
};
function distance( a, b ) {
var dx = a[ 0 ] - b[ 0 ],
dy = a[ 1 ] - b[ 1 ],
dz = a[ 2 ] - b[ 2 ];
return Math.sqrt( dx * dx + dy * dy + dz * dz );
};
function QuadraticEaseInOut ( k ) {
if ( ( k *= 2 ) < 1 ) return 0.5 * k * k;
return - 0.5 * ( --k * ( k - 2 ) - 1 );
};
function bind( scope, fn ) {
return function () {
fn.apply( scope, arguments );
};
};
function initAnimationPath( parent, spline, name, duration ) {
var animationData = {
name: name,
fps: 0.6,
length: duration,
hierarchy: []
};
var i,
parentAnimation, childAnimation,
path = spline.getControlPointsArray(),
sl = spline.getLength(),
pl = path.length,
t = 0,
first = 0,
last = pl - 1;
parentAnimation = { parent: -1, keys: [] };
parentAnimation.keys[ first ] = { time: 0, pos: path[ first ], rot: [ 0, 0, 0, 1 ], scl: [ 1, 1, 1 ] };
parentAnimation.keys[ last ] = { time: duration, pos: path[ last ], rot: [ 0, 0, 0, 1 ], scl: [ 1, 1, 1 ] };
for ( i = 1; i < pl - 1; i++ ) {
// real distance (approximation via linear segments)
t = duration * sl.chunks[ i ] / sl.total;
// equal distance
//t = duration * ( i / pl );
// linear distance
//t += duration * distance( path[ i ], path[ i - 1 ] ) / sl.total;
parentAnimation.keys[ i ] = { time: t, pos: path[ i ] };
}
animationData.hierarchy[ 0 ] = parentAnimation;
THREE.AnimationHandler.add( animationData );
return new THREE.Animation( parent, name, THREE.AnimationHandler.CATMULLROM_FORWARD, false );
};
function createSplineGeometry( spline, n_sub ) {
var i, index, position,
geometry = new THREE.Geometry();
for ( i = 0; i < spline.points.length * n_sub; i ++ ) {
index = i / ( spline.points.length * n_sub );
position = spline.getPoint( index );
geometry.vertices[ i ] = new THREE.Vector3( position.x, position.y, position.z );
}
return geometry;
};
function createPath( parent, spline ) {
var lineGeo = createSplineGeometry( spline, 10 ),
particleGeo = createSplineGeometry( spline, 10 ),
lineMat = new THREE.LineBasicMaterial( { color: 0xff0000, linewidth: 3 } ),
lineObj = new THREE.Line( lineGeo, lineMat ),
particleObj = new THREE.ParticleSystem( particleGeo, new THREE.ParticleBasicMaterial( { color: 0xffaa00, size: 3 } ) );
lineObj.scale.set( 1, 1, 1 );
parent.add( lineObj );
particleObj.scale.set( 1, 1, 1 );
parent.add( particleObj );
var waypoint,
geo = new THREE.SphereGeometry( 1, 16, 8 ),
mat = new THREE.MeshBasicMaterial( { color: 0x00ff00 } );
for ( var i = 0; i < spline.points.length; i ++ ) {
waypoint = new THREE.Mesh( geo, mat );
waypoint.position.copy( spline.points[ i ] );
parent.add( waypoint );
}
};
this.init = function ( ) {
// constructor
this.spline = new THREE.Spline();
this.spline.initFromArray( this.waypoints );
if ( this.useConstantSpeed ) {
this.spline.reparametrizeByArcLength( this.resamplingCoef );
}
if ( this.createDebugDummy ) {
var dummyParentMaterial = new THREE.MeshLambertMaterial( { color: 0x0077ff } ),
dummyChildMaterial = new THREE.MeshLambertMaterial( { color: 0x00ff00 } ),
dummyParentGeo = new THREE.CubeGeometry( 10, 10, 20 ),
dummyChildGeo = new THREE.CubeGeometry( 2, 2, 10 );
this.animationParent = new THREE.Mesh( dummyParentGeo, dummyParentMaterial );
var dummyChild = new THREE.Mesh( dummyChildGeo, dummyChildMaterial );
dummyChild.position.set( 0, 10, 0 );
this.animation = initAnimationPath( this.animationParent, this.spline, this.id, this.duration );
this.animationParent.add( this.object );
this.animationParent.add( this.target );
this.animationParent.add( dummyChild );
} else {
this.animation = initAnimationPath( this.animationParent, this.spline, this.id, this.duration );
this.animationParent.add( this.target );
this.animationParent.add( this.object );
}
if ( this.createDebugPath ) {
createPath( this.debugPath, this.spline );
}
this.domElement.addEventListener( 'mousemove', bind( this, this.onMouseMove ), false );
};
};
THREE.PathControlsIdCounter = 0;
/**
* @author James Baicoianu / http://www.baicoianu.com/
*/
THREE.FlyControls = function ( object, domElement ) {
this.object = object;
this.domElement = ( domElement !== undefined ) ? domElement : document;
if ( domElement ) this.domElement.setAttribute( 'tabindex', -1 );
// API
this.movementSpeed = 1.0;
this.rollSpeed = 0.005;
this.dragToLook = false;
this.autoForward = false;
// disable default target object behavior
this.object.useQuaternion = true;
// internals
this.tmpQuaternion = new THREE.Quaternion();
this.mouseStatus = 0;
this.moveState = { up: 0, down: 0, left: 0, right: 0, forward: 0, back: 0, pitchUp: 0, pitchDown: 0, yawLeft: 0, yawRight: 0, rollLeft: 0, rollRight: 0 };
this.moveVector = new THREE.Vector3( 0, 0, 0 );
this.rotationVector = new THREE.Vector3( 0, 0, 0 );
this.handleEvent = function ( event ) {
if ( typeof this[ event.type ] == 'function' ) {
this[ event.type ]( event );
}
};
this.keydown = function( event ) {
if ( event.altKey ) {
return;
}
switch( event.keyCode ) {
case 16: /* shift */ this.movementSpeedMultiplier = .1; break;
case 87: /*W*/ this.moveState.forward = 1; break;
case 83: /*S*/ this.moveState.back = 1; break;
case 65: /*A*/ this.moveState.left = 1; break;
case 68: /*D*/ this.moveState.right = 1; break;
case 82: /*R*/ this.moveState.up = 1; break;
case 70: /*F*/ this.moveState.down = 1; break;
case 38: /*up*/ this.moveState.pitchUp = 1; break;
case 40: /*down*/ this.moveState.pitchDown = 1; break;
case 37: /*left*/ this.moveState.yawLeft = 1; break;
case 39: /*right*/ this.moveState.yawRight = 1; break;
case 81: /*Q*/ this.moveState.rollLeft = 1; break;
case 69: /*E*/ this.moveState.rollRight = 1; break;
}
this.updateMovementVector();
this.updateRotationVector();
};
this.keyup = function( event ) {
switch( event.keyCode ) {
case 16: /* shift */ this.movementSpeedMultiplier = 1; break;
case 87: /*W*/ this.moveState.forward = 0; break;
case 83: /*S*/ this.moveState.back = 0; break;
case 65: /*A*/ this.moveState.left = 0; break;
case 68: /*D*/ this.moveState.right = 0; break;
case 82: /*R*/ this.moveState.up = 0; break;
case 70: /*F*/ this.moveState.down = 0; break;
case 38: /*up*/ this.moveState.pitchUp = 0; break;
case 40: /*down*/ this.moveState.pitchDown = 0; break;
case 37: /*left*/ this.moveState.yawLeft = 0; break;
case 39: /*right*/ this.moveState.yawRight = 0; break;
case 81: /*Q*/ this.moveState.rollLeft = 0; break;
case 69: /*E*/ this.moveState.rollRight = 0; break;
}
this.updateMovementVector();
this.updateRotationVector();
};
this.mousedown = function( event ) {
if ( this.domElement !== document ) {
this.domElement.focus();
}
event.preventDefault();
event.stopPropagation();
if ( this.dragToLook ) {
this.mouseStatus ++;
} else {
switch ( event.button ) {
case 0: this.object.moveForward = true; break;
case 2: this.object.moveBackward = true; break;
}
}
};
this.mousemove = function( event ) {
if ( !this.dragToLook || this.mouseStatus > 0 ) {
var container = this.getContainerDimensions();
var halfWidth = container.size[ 0 ] / 2;
var halfHeight = container.size[ 1 ] / 2;
this.moveState.yawLeft = - ( ( event.pageX - container.offset[ 0 ] ) - halfWidth ) / halfWidth;
this.moveState.pitchDown = ( ( event.pageY - container.offset[ 1 ] ) - halfHeight ) / halfHeight;
this.updateRotationVector();
}
};
this.mouseup = function( event ) {
event.preventDefault();
event.stopPropagation();
if ( this.dragToLook ) {
this.mouseStatus --;
this.moveState.yawLeft = this.moveState.pitchDown = 0;
} else {
switch ( event.button ) {
case 0: this.moveForward = false; break;
case 2: this.moveBackward = false; break;
}
}
this.updateRotationVector();
};
this.update = function( delta ) {
var moveMult = delta * this.movementSpeed;
var rotMult = delta * this.rollSpeed;
this.object.translateX( this.moveVector.x * moveMult );
this.object.translateY( this.moveVector.y * moveMult );
this.object.translateZ( this.moveVector.z * moveMult );
this.tmpQuaternion.set( this.rotationVector.x * rotMult, this.rotationVector.y * rotMult, this.rotationVector.z * rotMult, 1 ).normalize();
this.object.quaternion.multiplySelf( this.tmpQuaternion );
this.object.matrix.setPosition( this.object.position );
this.object.matrix.setRotationFromQuaternion( this.object.quaternion );
this.object.matrixWorldNeedsUpdate = true;
};
this.updateMovementVector = function() {
var forward = ( this.moveState.forward || ( this.autoForward && !this.moveState.back ) ) ? 1 : 0;
this.moveVector.x = ( -this.moveState.left + this.moveState.right );
this.moveVector.y = ( -this.moveState.down + this.moveState.up );
this.moveVector.z = ( -forward + this.moveState.back );
//console.log( 'move:', [ this.moveVector.x, this.moveVector.y, this.moveVector.z ] );
};
this.updateRotationVector = function() {
this.rotationVector.x = ( -this.moveState.pitchDown + this.moveState.pitchUp );
this.rotationVector.y = ( -this.moveState.yawRight + this.moveState.yawLeft );
this.rotationVector.z = ( -this.moveState.rollRight + this.moveState.rollLeft );
//console.log( 'rotate:', [ this.rotationVector.x, this.rotationVector.y, this.rotationVector.z ] );
};
this.getContainerDimensions = function() {
if ( this.domElement != document ) {
return {
size : [ this.domElement.offsetWidth, this.domElement.offsetHeight ],
offset : [ this.domElement.offsetLeft, this.domElement.offsetTop ]
};
} else {
return {
size : [ window.innerWidth, window.innerHeight ],
offset : [ 0, 0 ]
};
}
};
function bind( scope, fn ) {
return function () {
fn.apply( scope, arguments );
};
};
this.domElement.addEventListener( 'mousemove', bind( this, this.mousemove ), false );
this.domElement.addEventListener( 'mousedown', bind( this, this.mousedown ), false );
this.domElement.addEventListener( 'mouseup', bind( this, this.mouseup ), false );
this.domElement.addEventListener( 'keydown', bind( this, this.keydown ), false );
this.domElement.addEventListener( 'keyup', bind( this, this.keyup ), false );
this.updateMovementVector();
this.updateRotationVector();
};
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.RollControls = function ( object, domElement ) {
this.object = object;
this.domElement = ( domElement !== undefined ) ? domElement : document;
// API
this.mouseLook = true;
this.autoForward = false;
this.lookSpeed = 1;
this.movementSpeed = 1;
this.rollSpeed = 1;
this.constrainVertical = [ -0.9, 0.9 ];
// disable default target object behavior
this.object.matrixAutoUpdate = false;
// internals
this.forward = new THREE.Vector3( 0, 0, 1 );
this.roll = 0;
var xTemp = new THREE.Vector3();
var yTemp = new THREE.Vector3();
var zTemp = new THREE.Vector3();
var rollMatrix = new THREE.Matrix4();
var doRoll = false, rollDirection = 1, forwardSpeed = 0, sideSpeed = 0, upSpeed = 0;
var mouseX = 0, mouseY = 0;
var windowHalfX = window.innerWidth / 2;
var windowHalfY = window.innerHeight / 2;
// custom update
this.update = function ( delta ) {
if ( this.mouseLook ) {
var actualLookSpeed = delta * this.lookSpeed;
this.rotateHorizontally( actualLookSpeed * mouseX );
this.rotateVertically( actualLookSpeed * mouseY );
}
var actualSpeed = delta * this.movementSpeed;
var forwardOrAuto = ( forwardSpeed > 0 || ( this.autoForward && ! ( forwardSpeed < 0 ) ) ) ? 1 : forwardSpeed;
this.object.translateZ( -actualSpeed * forwardOrAuto );
this.object.translateX( actualSpeed * sideSpeed );
this.object.translateY( actualSpeed * upSpeed );
if( doRoll ) {
this.roll += this.rollSpeed * delta * rollDirection;
}
// cap forward up / down
if( this.forward.y > this.constrainVertical[ 1 ] ) {
this.forward.y = this.constrainVertical[ 1 ];
this.forward.normalize();
} else if( this.forward.y < this.constrainVertical[ 0 ] ) {
this.forward.y = this.constrainVertical[ 0 ];
this.forward.normalize();
}
// construct unrolled camera matrix
zTemp.copy( this.forward );
yTemp.set( 0, 1, 0 );
xTemp.cross( yTemp, zTemp ).normalize();
yTemp.cross( zTemp, xTemp ).normalize();
this.object.matrix.elements[0] = xTemp.x; this.object.matrix.elements[4] = yTemp.x; this.object.matrix.elements[8] = zTemp.x;
this.object.matrix.elements[1] = xTemp.y; this.object.matrix.elements[5] = yTemp.y; this.object.matrix.elements[9] = zTemp.y;
this.object.matrix.elements[2] = xTemp.z; this.object.matrix.elements[6] = yTemp.z; this.object.matrix.elements[10] = zTemp.z;
// calculate roll matrix
rollMatrix.identity();
rollMatrix.elements[0] = Math.cos( this.roll ); rollMatrix.elements[4] = -Math.sin( this.roll );
rollMatrix.elements[1] = Math.sin( this.roll ); rollMatrix.elements[5] = Math.cos( this.roll );
// multiply camera with roll
this.object.matrix.multiplySelf( rollMatrix );
this.object.matrixWorldNeedsUpdate = true;
// set position
this.object.matrix.elements[12] = this.object.position.x;
this.object.matrix.elements[13] = this.object.position.y;
this.object.matrix.elements[14] = this.object.position.z;
};
this.translateX = function ( distance ) {
this.object.position.x += this.object.matrix.elements[0] * distance;
this.object.position.y += this.object.matrix.elements[1] * distance;
this.object.position.z += this.object.matrix.elements[2] * distance;
};
this.translateY = function ( distance ) {
this.object.position.x += this.object.matrix.elements[4] * distance;
this.object.position.y += this.object.matrix.elements[5] * distance;
this.object.position.z += this.object.matrix.elements[6] * distance;
};
this.translateZ = function ( distance ) {
this.object.position.x -= this.object.matrix.elements[8] * distance;
this.object.position.y -= this.object.matrix.elements[9] * distance;
this.object.position.z -= this.object.matrix.elements[10] * distance;
};
this.rotateHorizontally = function ( amount ) {
// please note that the amount is NOT degrees, but a scale value
xTemp.set( this.object.matrix.elements[0], this.object.matrix.elements[1], this.object.matrix.elements[2] );
xTemp.multiplyScalar( amount );
this.forward.subSelf( xTemp );
this.forward.normalize();
};
this.rotateVertically = function ( amount ) {
// please note that the amount is NOT degrees, but a scale value
yTemp.set( this.object.matrix.elements[4], this.object.matrix.elements[5], this.object.matrix.elements[6] );
yTemp.multiplyScalar( amount );
this.forward.addSelf( yTemp );
this.forward.normalize();
};
function onKeyDown( event ) {
switch( event.keyCode ) {
case 38: /*up*/
case 87: /*W*/ forwardSpeed = 1; break;
case 37: /*left*/
case 65: /*A*/ sideSpeed = -1; break;
case 40: /*down*/
case 83: /*S*/ forwardSpeed = -1; break;
case 39: /*right*/
case 68: /*D*/ sideSpeed = 1; break;
case 81: /*Q*/ doRoll = true; rollDirection = 1; break;
case 69: /*E*/ doRoll = true; rollDirection = -1; break;
case 82: /*R*/ upSpeed = 1; break;
case 70: /*F*/ upSpeed = -1; break;
}
};
function onKeyUp( event ) {
switch( event.keyCode ) {
case 38: /*up*/
case 87: /*W*/ forwardSpeed = 0; break;
case 37: /*left*/
case 65: /*A*/ sideSpeed = 0; break;
case 40: /*down*/
case 83: /*S*/ forwardSpeed = 0; break;
case 39: /*right*/
case 68: /*D*/ sideSpeed = 0; break;
case 81: /*Q*/ doRoll = false; break;
case 69: /*E*/ doRoll = false; break;
case 82: /*R*/ upSpeed = 0; break;
case 70: /*F*/ upSpeed = 0; break;
}
};
function onMouseMove( event ) {
mouseX = ( event.clientX - windowHalfX ) / window.innerWidth;
mouseY = ( event.clientY - windowHalfY ) / window.innerHeight;
};
function onMouseDown ( event ) {
event.preventDefault();
event.stopPropagation();
switch ( event.button ) {
case 0: forwardSpeed = 1; break;
case 2: forwardSpeed = -1; break;
}
};
function onMouseUp ( event ) {
event.preventDefault();
event.stopPropagation();
switch ( event.button ) {
case 0: forwardSpeed = 0; break;
case 2: forwardSpeed = 0; break;
}
};
this.domElement.addEventListener( 'contextmenu', function ( event ) { event.preventDefault(); }, false );
this.domElement.addEventListener( 'mousemove', onMouseMove, false );
this.domElement.addEventListener( 'mousedown', onMouseDown, false );
this.domElement.addEventListener( 'mouseup', onMouseUp, false );
this.domElement.addEventListener( 'keydown', onKeyDown, false );
this.domElement.addEventListener( 'keyup', onKeyUp, false );
};
/**
* @author Eberhard Graether / http://egraether.com/
*/
THREE.TrackballControls = function ( object, domElement ) {
THREE.EventTarget.call( this );
var _this = this,
STATE = { NONE : -1, ROTATE : 0, ZOOM : 1, PAN : 2 };
this.object = object;
this.domElement = ( domElement !== undefined ) ? domElement : document;
// API
this.enabled = true;
this.screen = { width: window.innerWidth, height: window.innerHeight, offsetLeft: 0, offsetTop: 0 };
this.radius = ( this.screen.width + this.screen.height ) / 4;
this.rotateSpeed = 1.0;
this.zoomSpeed = 1.2;
this.panSpeed = 0.3;
this.noRotate = false;
this.noZoom = false;
this.noPan = false;
this.staticMoving = false;
this.dynamicDampingFactor = 0.2;
this.minDistance = 0;
this.maxDistance = Infinity;
this.keys = [ 65 /*A*/, 83 /*S*/, 68 /*D*/ ];
// internals
this.target = new THREE.Vector3();
var lastPosition = new THREE.Vector3();
var _keyPressed = false,
_state = STATE.NONE,
_eye = new THREE.Vector3(),
_rotateStart = new THREE.Vector3(),
_rotateEnd = new THREE.Vector3(),
_zoomStart = new THREE.Vector2(),
_zoomEnd = new THREE.Vector2(),
_panStart = new THREE.Vector2(),
_panEnd = new THREE.Vector2();
// events
var changeEvent = { type: 'change' };
// methods
this.handleEvent = function ( event ) {
if ( typeof this[ event.type ] == 'function' ) {
this[ event.type ]( event );
}
};
this.getMouseOnScreen = function ( clientX, clientY ) {
return new THREE.Vector2(
( clientX - _this.screen.offsetLeft ) / _this.radius * 0.5,
( clientY - _this.screen.offsetTop ) / _this.radius * 0.5
);
};
this.getMouseProjectionOnBall = function ( clientX, clientY ) {
var mouseOnBall = new THREE.Vector3(
( clientX - _this.screen.width * 0.5 - _this.screen.offsetLeft ) / _this.radius,
( _this.screen.height * 0.5 + _this.screen.offsetTop - clientY ) / _this.radius,
0.0
);
var length = mouseOnBall.length();
if ( length > 1.0 ) {
mouseOnBall.normalize();
} else {
mouseOnBall.z = Math.sqrt( 1.0 - length * length );
}
_eye.copy( _this.object.position ).subSelf( _this.target );
var projection = _this.object.up.clone().setLength( mouseOnBall.y );
projection.addSelf( _this.object.up.clone().crossSelf( _eye ).setLength( mouseOnBall.x ) );
projection.addSelf( _eye.setLength( mouseOnBall.z ) );
return projection;
};
this.rotateCamera = function () {
var angle = Math.acos( _rotateStart.dot( _rotateEnd ) / _rotateStart.length() / _rotateEnd.length() );
if ( angle ) {
var axis = ( new THREE.Vector3() ).cross( _rotateStart, _rotateEnd ).normalize(),
quaternion = new THREE.Quaternion();
angle *= _this.rotateSpeed;
quaternion.setFromAxisAngle( axis, -angle );
quaternion.multiplyVector3( _eye );
quaternion.multiplyVector3( _this.object.up );
quaternion.multiplyVector3( _rotateEnd );
if ( _this.staticMoving ) {
_rotateStart = _rotateEnd;
} else {
quaternion.setFromAxisAngle( axis, angle * ( _this.dynamicDampingFactor - 1.0 ) );
quaternion.multiplyVector3( _rotateStart );
}
}
};
this.zoomCamera = function () {
var factor = 1.0 + ( _zoomEnd.y - _zoomStart.y ) * _this.zoomSpeed;
if ( factor !== 1.0 && factor > 0.0 ) {
_eye.multiplyScalar( factor );
if ( _this.staticMoving ) {
_zoomStart = _zoomEnd;
} else {
_zoomStart.y += ( _zoomEnd.y - _zoomStart.y ) * this.dynamicDampingFactor;
}
}
};
this.panCamera = function () {
var mouseChange = _panEnd.clone().subSelf( _panStart );
if ( mouseChange.lengthSq() ) {
mouseChange.multiplyScalar( _eye.length() * _this.panSpeed );
var pan = _eye.clone().crossSelf( _this.object.up ).setLength( mouseChange.x );
pan.addSelf( _this.object.up.clone().setLength( mouseChange.y ) );
_this.object.position.addSelf( pan );
_this.target.addSelf( pan );
if ( _this.staticMoving ) {
_panStart = _panEnd;
} else {
_panStart.addSelf( mouseChange.sub( _panEnd, _panStart ).multiplyScalar( _this.dynamicDampingFactor ) );
}
}
};
this.checkDistances = function () {
if ( !_this.noZoom || !_this.noPan ) {
if ( _this.object.position.lengthSq() > _this.maxDistance * _this.maxDistance ) {
_this.object.position.setLength( _this.maxDistance );
}
if ( _eye.lengthSq() < _this.minDistance * _this.minDistance ) {
_this.object.position.add( _this.target, _eye.setLength( _this.minDistance ) );
}
}
};
this.update = function () {
_eye.copy( _this.object.position ).subSelf( _this.target );
if ( !_this.noRotate ) {
_this.rotateCamera();
}
if ( !_this.noZoom ) {
_this.zoomCamera();
}
if ( !_this.noPan ) {
_this.panCamera();
}
_this.object.position.add( _this.target, _eye );
_this.checkDistances();
_this.object.lookAt( _this.target );
if ( lastPosition.distanceTo( _this.object.position ) > 0 ) {
_this.dispatchEvent( changeEvent );
lastPosition.copy( _this.object.position );
}
};
// listeners
function keydown( event ) {
if ( ! _this.enabled ) return;
if ( _state !== STATE.NONE ) {
return;
} else if ( event.keyCode === _this.keys[ STATE.ROTATE ] && !_this.noRotate ) {
_state = STATE.ROTATE;
} else if ( event.keyCode === _this.keys[ STATE.ZOOM ] && !_this.noZoom ) {
_state = STATE.ZOOM;
} else if ( event.keyCode === _this.keys[ STATE.PAN ] && !_this.noPan ) {
_state = STATE.PAN;
}
if ( _state !== STATE.NONE ) {
_keyPressed = true;
}
};
function keyup( event ) {
if ( ! _this.enabled ) return;
if ( _state !== STATE.NONE ) {
_state = STATE.NONE;
}
};
function mousedown( event ) {
if ( ! _this.enabled ) return;
event.preventDefault();
event.stopPropagation();
if ( _state === STATE.NONE ) {
_state = event.button;
if ( _state === STATE.ROTATE && !_this.noRotate ) {
_rotateStart = _rotateEnd = _this.getMouseProjectionOnBall( event.clientX, event.clientY );
} else if ( _state === STATE.ZOOM && !_this.noZoom ) {
_zoomStart = _zoomEnd = _this.getMouseOnScreen( event.clientX, event.clientY );
} else if ( !this.noPan ) {
_panStart = _panEnd = _this.getMouseOnScreen( event.clientX, event.clientY );
}
}
};
function mousemove( event ) {
if ( ! _this.enabled ) return;
if ( _keyPressed ) {
_rotateStart = _rotateEnd = _this.getMouseProjectionOnBall( event.clientX, event.clientY );
_zoomStart = _zoomEnd = _this.getMouseOnScreen( event.clientX, event.clientY );
_panStart = _panEnd = _this.getMouseOnScreen( event.clientX, event.clientY );
_keyPressed = false;
}
if ( _state === STATE.NONE ) {
return;
} else if ( _state === STATE.ROTATE && !_this.noRotate ) {
_rotateEnd = _this.getMouseProjectionOnBall( event.clientX, event.clientY );
} else if ( _state === STATE.ZOOM && !_this.noZoom ) {
_zoomEnd = _this.getMouseOnScreen( event.clientX, event.clientY );
} else if ( _state === STATE.PAN && !_this.noPan ) {
_panEnd = _this.getMouseOnScreen( event.clientX, event.clientY );
}
};
function mouseup( event ) {
if ( ! _this.enabled ) return;
event.preventDefault();
event.stopPropagation();
_state = STATE.NONE;
};
this.domElement.addEventListener( 'contextmenu', function ( event ) { event.preventDefault(); }, false );
this.domElement.addEventListener( 'mousemove', mousemove, false );
this.domElement.addEventListener( 'mousedown', mousedown, false );
this.domElement.addEventListener( 'mouseup', mouseup, false );
window.addEventListener( 'keydown', keydown, false );
window.addEventListener( 'keyup', keyup, false );
};
/**
* @author mr.doob / http://mrdoob.com/
* based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Cube.as
*/
THREE.CubeGeometry = function ( width, height, depth, segmentsWidth, segmentsHeight, segmentsDepth, materials, sides ) {
THREE.Geometry.call( this );
var scope = this,
width_half = width / 2,
height_half = height / 2,
depth_half = depth / 2;
var mpx, mpy, mpz, mnx, mny, mnz;
if ( materials !== undefined ) {
if ( materials instanceof Array ) {
this.materials = materials;
} else {
this.materials = [];
for ( var i = 0; i < 6; i ++ ) {
this.materials.push( materials );
}
}
mpx = 0; mnx = 1; mpy = 2; mny = 3; mpz = 4; mnz = 5;
} else {
this.materials = [];
}
this.sides = { px: true, nx: true, py: true, ny: true, pz: true, nz: true };
if ( sides != undefined ) {
for ( var s in sides ) {
if ( this.sides[ s ] !== undefined ) {
this.sides[ s ] = sides[ s ];
}
}
}
this.sides.px && buildPlane( 'z', 'y', - 1, - 1, depth, height, width_half, mpx ); // px
this.sides.nx && buildPlane( 'z', 'y', 1, - 1, depth, height, - width_half, mnx ); // nx
this.sides.py && buildPlane( 'x', 'z', 1, 1, width, depth, height_half, mpy ); // py
this.sides.ny && buildPlane( 'x', 'z', 1, - 1, width, depth, - height_half, mny ); // ny
this.sides.pz && buildPlane( 'x', 'y', 1, - 1, width, height, depth_half, mpz ); // pz
this.sides.nz && buildPlane( 'x', 'y', - 1, - 1, width, height, - depth_half, mnz ); // nz
function buildPlane( u, v, udir, vdir, width, height, depth, material ) {
var w, ix, iy,
gridX = segmentsWidth || 1,
gridY = segmentsHeight || 1,
width_half = width / 2,
height_half = height / 2,
offset = scope.vertices.length;
if ( ( u === 'x' && v === 'y' ) || ( u === 'y' && v === 'x' ) ) {
w = 'z';
} else if ( ( u === 'x' && v === 'z' ) || ( u === 'z' && v === 'x' ) ) {
w = 'y';
gridY = segmentsDepth || 1;
} else if ( ( u === 'z' && v === 'y' ) || ( u === 'y' && v === 'z' ) ) {
w = 'x';
gridX = segmentsDepth || 1;
}
var gridX1 = gridX + 1,
gridY1 = gridY + 1,
segment_width = width / gridX,
segment_height = height / gridY,
normal = new THREE.Vector3();
normal[ w ] = depth > 0 ? 1 : - 1;
for ( iy = 0; iy < gridY1; iy ++ ) {
for ( ix = 0; ix < gridX1; ix ++ ) {
var vector = new THREE.Vector3();
vector[ u ] = ( ix * segment_width - width_half ) * udir;
vector[ v ] = ( iy * segment_height - height_half ) * vdir;
vector[ w ] = depth;
scope.vertices.push( vector );
}
}
for ( iy = 0; iy < gridY; iy++ ) {
for ( ix = 0; ix < gridX; ix++ ) {
var a = ix + gridX1 * iy;
var b = ix + gridX1 * ( iy + 1 );
var c = ( ix + 1 ) + gridX1 * ( iy + 1 );
var d = ( ix + 1 ) + gridX1 * iy;
var face = new THREE.Face4( a + offset, b + offset, c + offset, d + offset );
face.normal.copy( normal );
face.vertexNormals.push( normal.clone(), normal.clone(), normal.clone(), normal.clone() );
face.materialIndex = material;
scope.faces.push( face );
scope.faceVertexUvs[ 0 ].push( [
new THREE.UV( ix / gridX, iy / gridY ),
new THREE.UV( ix / gridX, ( iy + 1 ) / gridY ),
new THREE.UV( ( ix + 1 ) / gridX, ( iy + 1 ) / gridY ),
new THREE.UV( ( ix + 1 ) / gridX, iy / gridY )
] );
}
}
}
this.computeCentroids();
this.mergeVertices();
};
THREE.CubeGeometry.prototype = new THREE.Geometry();
THREE.CubeGeometry.prototype.constructor = THREE.CubeGeometry;
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.CylinderGeometry = function ( radiusTop, radiusBottom, height, segmentsRadius, segmentsHeight, openEnded ) {
THREE.Geometry.call( this );
radiusTop = radiusTop !== undefined ? radiusTop : 20;
radiusBottom = radiusBottom !== undefined ? radiusBottom : 20;
height = height !== undefined ? height : 100;
var heightHalf = height / 2;
var segmentsX = segmentsRadius || 8;
var segmentsY = segmentsHeight || 1;
var x, y, vertices = [], uvs = [];
for ( y = 0; y <= segmentsY; y ++ ) {
var verticesRow = [];
var uvsRow = [];
var v = y / segmentsY;
var radius = v * ( radiusBottom - radiusTop ) + radiusTop;
for ( x = 0; x <= segmentsX; x ++ ) {
var u = x / segmentsX;
var vertex = new THREE.Vector3();
vertex.x = radius * Math.sin( u * Math.PI * 2 );
vertex.y = - v * height + heightHalf;
vertex.z = radius * Math.cos( u * Math.PI * 2 );
this.vertices.push( vertex );
verticesRow.push( this.vertices.length - 1 );
uvsRow.push( new THREE.UV( u, v ) );
}
vertices.push( verticesRow );
uvs.push( uvsRow );
}
var tanTheta = ( radiusBottom - radiusTop ) / height;
var na, nb;
for ( x = 0; x < segmentsX; x ++ ) {
if ( radiusTop !== 0 ) {
na = this.vertices[ vertices[ 0 ][ x ] ].clone();
nb = this.vertices[ vertices[ 0 ][ x + 1 ] ].clone();
} else {
na = this.vertices[ vertices[ 1 ][ x ] ].clone();
nb = this.vertices[ vertices[ 1 ][ x + 1 ] ].clone();
}
na.setY( Math.sqrt( na.x * na.x + na.z * na.z ) * tanTheta ).normalize();
nb.setY( Math.sqrt( nb.x * nb.x + nb.z * nb.z ) * tanTheta ).normalize();
for ( y = 0; y < segmentsY; y ++ ) {
var v1 = vertices[ y ][ x ];
var v2 = vertices[ y + 1 ][ x ];
var v3 = vertices[ y + 1 ][ x + 1 ];
var v4 = vertices[ y ][ x + 1 ];
var n1 = na.clone();
var n2 = na.clone();
var n3 = nb.clone();
var n4 = nb.clone();
var uv1 = uvs[ y ][ x ].clone();
var uv2 = uvs[ y + 1 ][ x ].clone();
var uv3 = uvs[ y + 1 ][ x + 1 ].clone();
var uv4 = uvs[ y ][ x + 1 ].clone();
this.faces.push( new THREE.Face4( v1, v2, v3, v4, [ n1, n2, n3, n4 ] ) );
this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv3, uv4 ] );
}
}
// top cap
if ( !openEnded && radiusTop > 0 ) {
this.vertices.push( new THREE.Vector3( 0, heightHalf, 0 ) );
for ( x = 0; x < segmentsX; x ++ ) {
var v1 = vertices[ 0 ][ x ];
var v2 = vertices[ 0 ][ x + 1 ];
var v3 = this.vertices.length - 1;
var n1 = new THREE.Vector3( 0, 1, 0 );
var n2 = new THREE.Vector3( 0, 1, 0 );
var n3 = new THREE.Vector3( 0, 1, 0 );
var uv1 = uvs[ 0 ][ x ].clone();
var uv2 = uvs[ 0 ][ x + 1 ].clone();
var uv3 = new THREE.UV( uv2.u, 0 );
this.faces.push( new THREE.Face3( v1, v2, v3, [ n1, n2, n3 ] ) );
this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv3 ] );
}
}
// bottom cap
if ( !openEnded && radiusBottom > 0 ) {
this.vertices.push( new THREE.Vector3( 0, - heightHalf, 0 ) );
for ( x = 0; x < segmentsX; x ++ ) {
var v1 = vertices[ y ][ x + 1 ];
var v2 = vertices[ y ][ x ];
var v3 = this.vertices.length - 1;
var n1 = new THREE.Vector3( 0, - 1, 0 );
var n2 = new THREE.Vector3( 0, - 1, 0 );
var n3 = new THREE.Vector3( 0, - 1, 0 );
var uv1 = uvs[ y ][ x + 1 ].clone();
var uv2 = uvs[ y ][ x ].clone();
var uv3 = new THREE.UV( uv2.u, 1 );
this.faces.push( new THREE.Face3( v1, v2, v3, [ n1, n2, n3 ] ) );
this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv3 ] );
}
}
this.computeCentroids();
this.computeFaceNormals();
}
THREE.CylinderGeometry.prototype = new THREE.Geometry();
THREE.CylinderGeometry.prototype.constructor = THREE.CylinderGeometry;
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*
* Creates extruded geometry from a path shape.
*
* parameters = {
*
* size: <float>, // size of the text
* height: <float>, // thickness to extrude text
* curveSegments: <int>, // number of points on the curves
* steps: <int>, // number of points for z-side extrusions / used for subdividing segements of extrude spline too
amount: <int>, // Amount
*
* bevelEnabled: <bool>, // turn on bevel
* bevelThickness: <float>, // how deep into text bevel goes
* bevelSize: <float>, // how far from text outline is bevel
* bevelSegments: <int>, // number of bevel layers
*
* extrudePath: <THREE.CurvePath> // 2d/3d spline path to extrude shape orthogonality to
* bendPath: <THREE.CurvePath> // 2d path for bend the shape around x/y plane
*
* material: <int> // material index for front and back faces
* extrudeMaterial: <int> // material index for extrusion and beveled faces
*
* }
**/
THREE.ExtrudeGeometry = function( shapes, options ) {
if ( typeof( shapes ) === "undefined" ) {
shapes = [];
return;
}
THREE.Geometry.call( this );
shapes = shapes instanceof Array ? shapes : [ shapes ];
this.shapebb = shapes[ shapes.length - 1 ].getBoundingBox();
this.addShapeList( shapes, options );
this.computeCentroids();
this.computeFaceNormals();
// can't really use automatic vertex normals
// as then front and back sides get smoothed too
// should do separate smoothing just for sides
//this.computeVertexNormals();
//console.log( "took", ( Date.now() - startTime ) );
};
THREE.ExtrudeGeometry.prototype = new THREE.Geometry();
THREE.ExtrudeGeometry.prototype.constructor = THREE.ExtrudeGeometry;
THREE.ExtrudeGeometry.prototype.addShapeList = function(shapes, options) {
var sl = shapes.length;
for ( var s = 0; s < sl; s ++ ) {
var shape = shapes[ s ];
this.addShape( shape, options );
}
};
THREE.ExtrudeGeometry.prototype.addShape = function( shape, options ) {
var amount = options.amount !== undefined ? options.amount : 100;
var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; // 10
var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; // 8
var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; // false
var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
var steps = options.steps !== undefined ? options.steps : 1;
var bendPath = options.bendPath;
var extrudePath = options.extrudePath;
var extrudePts, extrudeByPath = false;
var material = options.material;
var extrudeMaterial = options.extrudeMaterial;
var shapebb = this.shapebb;
//shapebb = shape.getBoundingBox();
var splineTube, binormal, normal, position2;
if ( extrudePath ) {
extrudePts = extrudePath.getSpacedPoints( steps );
extrudeByPath = true;
bevelEnabled = false; // bevels not supported for path extrusion
// SETUP TNB variables
// Reuse TNB from TubeGeomtry for now.
// TODO1 - have a .isClosed in spline?
splineTube = new THREE.TubeGeometry.FrenetFrames(extrudePath, steps, false);
// console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
binormal = new THREE.Vector3();
normal = new THREE.Vector3();
position2 = new THREE.Vector3();
}
// Safeguards if bevels are not enabled
if ( ! bevelEnabled ) {
bevelSegments = 0;
bevelThickness = 0;
bevelSize = 0;
}
// Variables initalization
var ahole, h, hl; // looping of holes
var scope = this;
var bevelPoints = [];
var shapesOffset = this.vertices.length;
if ( bendPath ) {
shape.addWrapPath( bendPath );
}
var shapePoints = shape.extractPoints();
var vertices = shapePoints.shape;
var holes = shapePoints.holes;
var reverse = !THREE.Shape.Utils.isClockWise( vertices ) ;
if ( reverse ) {
vertices = vertices.reverse();
// Maybe we should also check if holes are in the opposite direction, just to be safe ...
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
if ( THREE.Shape.Utils.isClockWise( ahole ) ) {
holes[ h ] = ahole.reverse();
}
}
reverse = false; // If vertices are in order now, we shouldn't need to worry about them again (hopefully)!
}
var faces = THREE.Shape.Utils.triangulateShape ( vertices, holes );
//var faces = THREE.Shape.Utils.triangulate2( vertices, holes );
// Would it be better to move points after triangulation?
// shapePoints = shape.extractAllPointsWithBend( curveSegments, bendPath );
// vertices = shapePoints.shape;
// holes = shapePoints.holes;
//console.log(faces);
////
/// Handle Vertices
////
var contour = vertices; // vertices has all points but contour has only points of circumference
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
vertices = vertices.concat( ahole );
}
function scalePt2 ( pt, vec, size ) {
if ( !vec ) console.log( "die" );
return vec.clone().multiplyScalar( size ).addSelf( pt );
}
var b, bs, t, z,
vert, vlen = vertices.length,
face, flen = faces.length,
cont, clen = contour.length;
//------
// Find directions for point movement
//
var RAD_TO_DEGREES = 180 / Math.PI;
function getBevelVec( pt_i, pt_j, pt_k ) {
// Algorithm 2
return getBevelVec2( pt_i, pt_j, pt_k );
}
function getBevelVec1( pt_i, pt_j, pt_k ) {
var anglea = Math.atan2( pt_j.y - pt_i.y, pt_j.x - pt_i.x );
var angleb = Math.atan2( pt_k.y - pt_i.y, pt_k.x - pt_i.x );
if ( anglea > angleb ) {
angleb += Math.PI * 2;
}
var anglec = ( anglea + angleb ) / 2;
//console.log('angle1', anglea * RAD_TO_DEGREES,'angle2', angleb * RAD_TO_DEGREES, 'anglec', anglec *RAD_TO_DEGREES);
var x = - Math.cos( anglec );
var y = - Math.sin( anglec );
var vec = new THREE.Vector2( x, y ); //.normalize();
return vec;
}
function getBevelVec2( pt_i, pt_j, pt_k ) {
var a = THREE.ExtrudeGeometry.__v1,
b = THREE.ExtrudeGeometry.__v2,
v_hat = THREE.ExtrudeGeometry.__v3,
w_hat = THREE.ExtrudeGeometry.__v4,
p = THREE.ExtrudeGeometry.__v5,
q = THREE.ExtrudeGeometry.__v6,
v, w,
v_dot_w_hat, q_sub_p_dot_w_hat,
s, intersection;
// good reading for line-line intersection
// http://sputsoft.com/blog/2010/03/line-line-intersection.html
// define a as vector j->i
// define b as vectot k->i
a.set( pt_i.x - pt_j.x, pt_i.y - pt_j.y );
b.set( pt_i.x - pt_k.x, pt_i.y - pt_k.y );
// get unit vectors
v = a.normalize();
w = b.normalize();
// normals from pt i
v_hat.set( -v.y, v.x );
w_hat.set( w.y, -w.x );
// pts from i
p.copy( pt_i ).addSelf( v_hat );
q.copy( pt_i ).addSelf( w_hat );
if ( p.equals( q ) ) {
//console.log("Warning: lines are straight");
return w_hat.clone();
}
// Points from j, k. helps prevents points cross overover most of the time
p.copy( pt_j ).addSelf( v_hat );
q.copy( pt_k ).addSelf( w_hat );
v_dot_w_hat = v.dot( w_hat );
q_sub_p_dot_w_hat = q.subSelf( p ).dot( w_hat );
// We should not reach these conditions
if ( v_dot_w_hat === 0 ) {
console.log( "Either infinite or no solutions!" );
if ( q_sub_p_dot_w_hat === 0 ) {
console.log( "Its finite solutions." );
} else {
console.log( "Too bad, no solutions." );
}
}
s = q_sub_p_dot_w_hat / v_dot_w_hat;
if ( s < 0 ) {
// in case of emergecy, revert to algorithm 1.
return getBevelVec1( pt_i, pt_j, pt_k );
}
intersection = v.multiplyScalar( s ).addSelf( p );
return intersection.subSelf( pt_i ).clone(); // Don't normalize!, otherwise sharp corners become ugly
}
var contourMovements = [];
for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
if ( j === il ) j = 0;
if ( k === il ) k = 0;
// (j)---(i)---(k)
// console.log('i,j,k', i, j , k)
var pt_i = contour[ i ];
var pt_j = contour[ j ];
var pt_k = contour[ k ];
contourMovements[ i ]= getBevelVec( contour[ i ], contour[ j ], contour[ k ] );
}
var holesMovements = [], oneHoleMovements, verticesMovements = contourMovements.concat();
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
oneHoleMovements = [];
for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
if ( j === il ) j = 0;
if ( k === il ) k = 0;
// (j)---(i)---(k)
oneHoleMovements[ i ]= getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );
}
holesMovements.push( oneHoleMovements );
verticesMovements = verticesMovements.concat( oneHoleMovements );
}
// Loop bevelSegments, 1 for the front, 1 for the back
for ( b = 0; b < bevelSegments; b ++ ) {
//for ( b = bevelSegments; b > 0; b -- ) {
t = b / bevelSegments;
z = bevelThickness * ( 1 - t );
//z = bevelThickness * t;
bs = bevelSize * ( Math.sin ( t * Math.PI/2 ) ) ; // curved
//bs = bevelSize * t ; // linear
// contract shape
for ( i = 0, il = contour.length; i < il; i ++ ) {
vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
//vert = scalePt( contour[ i ], contourCentroid, bs, false );
v( vert.x, vert.y, - z );
}
// expand holes
for ( h = 0, hl = holes.length; h < hl; h++ ) {
ahole = holes[ h ];
oneHoleMovements = holesMovements[ h ];
for ( i = 0, il = ahole.length; i < il; i++ ) {
vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
//vert = scalePt( ahole[ i ], holesCentroids[ h ], bs, true );
v( vert.x, vert.y, -z );
}
}
}
bs = bevelSize;
// Back facing vertices
for ( i = 0; i < vlen; i ++ ) {
vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
if ( !extrudeByPath ) {
v( vert.x, vert.y, 0 );
} else {
// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
normal.copy(splineTube.normals[0]).multiplyScalar(vert.x);
binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y);
position2.copy(extrudePts[0]).addSelf(normal).addSelf(binormal);
v(position2.x, position2.y, position2.z);
}
}
// Add stepped vertices...
// Including front facing vertices
var s;
for ( s = 1; s <= steps; s ++ ) {
for ( i = 0; i < vlen; i ++ ) {
vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
if ( !extrudeByPath ) {
v( vert.x, vert.y, amount / steps * s );
} else {
// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
normal.copy(splineTube.normals[s]).multiplyScalar(vert.x);
binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y);
position2.copy(extrudePts[s]).addSelf(normal).addSelf(binormal);
v(position2.x, position2.y, position2.z );
}
}
}
// Add bevel segments planes
//for ( b = 1; b <= bevelSegments; b ++ ) {
for ( b = bevelSegments - 1; b >= 0; b -- ) {
t = b / bevelSegments;
z = bevelThickness * ( 1 - t );
//bs = bevelSize * ( 1-Math.sin ( ( 1 - t ) * Math.PI/2 ) );
bs = bevelSize * Math.sin ( t * Math.PI/2 ) ;
// contract shape
for ( i = 0, il = contour.length; i < il; i ++ ) {
vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
v( vert.x, vert.y, amount + z );
}
// expand holes
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
oneHoleMovements = holesMovements[ h ];
for ( i = 0, il = ahole.length; i < il; i++ ) {
vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
if ( !extrudeByPath ) {
v( vert.x, vert.y, amount + z );
} else {
v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );
}
}
}
}
// set UV generator
var uvgen = THREE.ExtrudeGeometry.WorldUVGenerator;
////
/// Handle Faces
////
// Top and bottom faces
buildLidFaces();
// Sides faces
buildSideFaces();
///// Internal functions
function buildLidFaces() {
if ( bevelEnabled ) {
var layer = 0 ; // steps + 1
var offset = vlen * layer;
// Bottom faces
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
f3( face[ 2 ]+ offset, face[ 1 ]+ offset, face[ 0 ] + offset, true );
}
layer = steps + bevelSegments * 2;
offset = vlen * layer;
// Top faces
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset, false );
}
} else {
// Bottom faces
for ( i = 0; i < flen; i++ ) {
face = faces[ i ];
f3( face[ 2 ], face[ 1 ], face[ 0 ], true );
}
// Top faces
for ( i = 0; i < flen; i ++ ) {
face = faces[ i ];
f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps, false );
}
}
}
// Create faces for the z-sides of the shape
function buildSideFaces() {
var layeroffset = 0;
sidewalls( contour, layeroffset );
layeroffset += contour.length;
for ( h = 0, hl = holes.length; h < hl; h ++ ) {
ahole = holes[ h ];
sidewalls( ahole, layeroffset );
//, true
layeroffset += ahole.length;
}
}
function sidewalls( contour, layeroffset ) {
var j, k;
i = contour.length;
while ( --i >= 0 ) {
j = i;
k = i - 1;
if ( k < 0 ) k = contour.length - 1;
//console.log('b', i,j, i-1, k,vertices.length);
var s = 0, sl = steps + bevelSegments * 2;
for ( s = 0; s < sl; s ++ ) {
var slen1 = vlen * s;
var slen2 = vlen * ( s + 1 );
var a = layeroffset + j + slen1,
b = layeroffset + k + slen1,
c = layeroffset + k + slen2,
d = layeroffset + j + slen2;
f4( a, b, c, d, contour, s, sl );
}
}
}
function v( x, y, z ) {
scope.vertices.push( new THREE.Vector3( x, y, z ) );
}
function f3( a, b, c, isBottom ) {
a += shapesOffset;
b += shapesOffset;
c += shapesOffset;
// normal, color, material
scope.faces.push( new THREE.Face3( a, b, c, null, null, material ) );
var uvs = isBottom ? uvgen.generateBottomUV( scope, shape, options, a, b, c)
: uvgen.generateTopUV( scope, shape, options, a, b, c);
scope.faceVertexUvs[ 0 ].push(uvs);
}
function f4( a, b, c, d, wallContour, stepIndex, stepsLength ) {
a += shapesOffset;
b += shapesOffset;
c += shapesOffset;
d += shapesOffset;
scope.faces.push( new THREE.Face4( a, b, c, d, null, null, extrudeMaterial ) );
var uvs = uvgen.generateSideWallUV( scope, shape, wallContour, options, a, b, c, d, stepIndex, stepsLength);
scope.faceVertexUvs[ 0 ].push(uvs);
}
};
THREE.ExtrudeGeometry.WorldUVGenerator = {
generateTopUV: function( geometry, extrudedShape, extrudeOptions, indexA, indexB, indexC) {
var ax = geometry.vertices[ indexA ].x,
ay = geometry.vertices[ indexA ].y,
bx = geometry.vertices[ indexB ].x,
by = geometry.vertices[ indexB ].y,
cx = geometry.vertices[ indexC ].x,
cy = geometry.vertices[ indexC ].y;
return [
new THREE.UV( ax, 1 - ay ),
new THREE.UV( bx, 1 - by ),
new THREE.UV( cx, 1 - cy )
];
},
generateBottomUV: function( geometry, extrudedShape, extrudeOptions, indexA, indexB, indexC) {
return this.generateTopUV( geometry, extrudedShape, extrudeOptions, indexA, indexB, indexC );
},
generateSideWallUV: function( geometry, extrudedShape, wallContour, extrudeOptions,
indexA, indexB, indexC, indexD, stepIndex, stepsLength) {
var ax = geometry.vertices[ indexA ].x,
ay = geometry.vertices[ indexA ].y,
az = geometry.vertices[ indexA ].z,
bx = geometry.vertices[ indexB ].x,
by = geometry.vertices[ indexB ].y,
bz = geometry.vertices[ indexB ].z,
cx = geometry.vertices[ indexC ].x,
cy = geometry.vertices[ indexC ].y,
cz = geometry.vertices[ indexC ].z,
dx = geometry.vertices[ indexD ].x,
dy = geometry.vertices[ indexD ].y,
dz = geometry.vertices[ indexD ].z;
if ( Math.abs( ay - by ) < 0.01 ) {
return [
new THREE.UV( ax, az ),
new THREE.UV( bx, bz ),
new THREE.UV( cx, cz ),
new THREE.UV( dx, dz )
];
} else {
return [
new THREE.UV( ay, az ),
new THREE.UV( by, bz ),
new THREE.UV( cy, cz ),
new THREE.UV( dy, dz )
];
}
}
};
THREE.ExtrudeGeometry.__v1 = new THREE.Vector2();
THREE.ExtrudeGeometry.__v2 = new THREE.Vector2();
THREE.ExtrudeGeometry.__v3 = new THREE.Vector2();
THREE.ExtrudeGeometry.__v4 = new THREE.Vector2();
THREE.ExtrudeGeometry.__v5 = new THREE.Vector2();
THREE.ExtrudeGeometry.__v6 = new THREE.Vector2();
/**
* @author astrodud / http://astrodud.isgreat.org/
* @author zz85 / https://github.com/zz85
*/
THREE.LatheGeometry = function ( points, steps, angle ) {
THREE.Geometry.call( this );
var _steps = steps || 12;
var _angle = angle || 2 * Math.PI;
var _newV = [];
var _matrix = new THREE.Matrix4().makeRotationZ( _angle / _steps );
for ( var j = 0; j < points.length; j ++ ) {
_newV[ j ] = points[ j ].clone();
this.vertices.push( _newV[ j ] );
}
var i, il = _steps + 1;
for ( i = 0; i < il; i ++ ) {
for ( var j = 0; j < _newV.length; j ++ ) {
_newV[ j ] = _matrix.multiplyVector3( _newV[ j ].clone() );
this.vertices.push( _newV[ j ] );
}
}
for ( i = 0; i < _steps; i ++ ) {
for ( var k = 0, kl = points.length; k < kl - 1; k ++ ) {
var a = i * kl + k;
var b = ( ( i + 1 ) % il ) * kl + k;
var c = ( ( i + 1 ) % il ) * kl + ( k + 1 ) % kl;
var d = i * kl + ( k + 1 ) % kl;
this.faces.push( new THREE.Face4( a, b, c, d ) );
this.faceVertexUvs[ 0 ].push( [
new THREE.UV( 1 - i / _steps, k / kl ),
new THREE.UV( 1 - ( i + 1 ) / _steps, k / kl ),
new THREE.UV( 1 - ( i + 1 ) / _steps, ( k + 1 ) / kl ),
new THREE.UV( 1 - i / _steps, ( k + 1 ) / kl )
] );
}
}
this.computeCentroids();
this.computeFaceNormals();
this.computeVertexNormals();
};
THREE.LatheGeometry.prototype = new THREE.Geometry();
THREE.LatheGeometry.prototype.constructor = THREE.LatheGeometry;
/**
* @author mr.doob / http://mrdoob.com/
* based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as
*/
THREE.PlaneGeometry = function ( width, depth, segmentsWidth, segmentsDepth ) {
THREE.Geometry.call( this );
var ix, iz,
width_half = width / 2,
depth_half = depth / 2,
gridX = segmentsWidth || 1,
gridZ = segmentsDepth || 1,
gridX1 = gridX + 1,
gridZ1 = gridZ + 1,
segment_width = width / gridX,
segment_depth = depth / gridZ,
normal = new THREE.Vector3( 0, 1, 0 );
for ( iz = 0; iz < gridZ1; iz ++ ) {
for ( ix = 0; ix < gridX1; ix ++ ) {
var x = ix * segment_width - width_half;
var z = iz * segment_depth - depth_half;
this.vertices.push( new THREE.Vector3( x, 0, z ) );
}
}
for ( iz = 0; iz < gridZ; iz ++ ) {
for ( ix = 0; ix < gridX; ix ++ ) {
var a = ix + gridX1 * iz;
var b = ix + gridX1 * ( iz + 1 );
var c = ( ix + 1 ) + gridX1 * ( iz + 1 );
var d = ( ix + 1 ) + gridX1 * iz;
var face = new THREE.Face4( a, b, c, d );
face.normal.copy( normal );
face.vertexNormals.push( normal.clone(), normal.clone(), normal.clone(), normal.clone() );
this.faces.push( face );
this.faceVertexUvs[ 0 ].push( [
new THREE.UV( ix / gridX, iz / gridZ ),
new THREE.UV( ix / gridX, ( iz + 1 ) / gridZ ),
new THREE.UV( ( ix + 1 ) / gridX, ( iz + 1 ) / gridZ ),
new THREE.UV( ( ix + 1 ) / gridX, iz / gridZ )
] );
}
}
this.computeCentroids();
};
THREE.PlaneGeometry.prototype = new THREE.Geometry();
THREE.PlaneGeometry.prototype.constructor = THREE.PlaneGeometry;
/**
* @author mr.doob / http://mrdoob.com/
*/
THREE.SphereGeometry = function ( radius, segmentsWidth, segmentsHeight, phiStart, phiLength, thetaStart, thetaLength ) {
THREE.Geometry.call( this );
radius = radius || 50;
phiStart = phiStart !== undefined ? phiStart : 0;
phiLength = phiLength !== undefined ? phiLength : Math.PI * 2;
thetaStart = thetaStart !== undefined ? thetaStart : 0;
thetaLength = thetaLength !== undefined ? thetaLength : Math.PI;
var segmentsX = Math.max( 3, Math.floor( segmentsWidth ) || 8 );
var segmentsY = Math.max( 2, Math.floor( segmentsHeight ) || 6 );
var x, y, vertices = [], uvs = [];
for ( y = 0; y <= segmentsY; y ++ ) {
var verticesRow = [];
var uvsRow = [];
for ( x = 0; x <= segmentsX; x ++ ) {
var u = x / segmentsX;
var v = y / segmentsY;
var vertex = new THREE.Vector3();
vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
vertex.y = radius * Math.cos( thetaStart + v * thetaLength );
vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
this.vertices.push( vertex );
verticesRow.push( this.vertices.length - 1 );
uvsRow.push( new THREE.UV( u, v ) );
}
vertices.push( verticesRow );
uvs.push( uvsRow );
}
for ( y = 0; y < segmentsY; y ++ ) {
for ( x = 0; x < segmentsX; x ++ ) {
var v1 = vertices[ y ][ x + 1 ];
var v2 = vertices[ y ][ x ];
var v3 = vertices[ y + 1 ][ x ];
var v4 = vertices[ y + 1 ][ x + 1 ];
var n1 = this.vertices[ v1 ].clone().normalize();
var n2 = this.vertices[ v2 ].clone().normalize();
var n3 = this.vertices[ v3 ].clone().normalize();
var n4 = this.vertices[ v4 ].clone().normalize();
var uv1 = uvs[ y ][ x + 1 ].clone();
var uv2 = uvs[ y ][ x ].clone();
var uv3 = uvs[ y + 1 ][ x ].clone();
var uv4 = uvs[ y + 1 ][ x + 1 ].clone();
if ( Math.abs( this.vertices[ v1 ].y ) == radius ) {
this.faces.push( new THREE.Face3( v1, v3, v4, [ n1, n3, n4 ] ) );
this.faceVertexUvs[ 0 ].push( [ uv1, uv3, uv4 ] );
} else if ( Math.abs( this.vertices[ v3 ].y ) == radius ) {
this.faces.push( new THREE.Face3( v1, v2, v3, [ n1, n2, n3 ] ) );
this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv3 ] );
} else {
this.faces.push( new THREE.Face4( v1, v2, v3, v4, [ n1, n2, n3, n4 ] ) );
this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv3, uv4 ] );
}
}
}
this.computeCentroids();
this.computeFaceNormals();
this.boundingSphere = { radius: radius };
};
THREE.SphereGeometry.prototype = new THREE.Geometry();
THREE.SphereGeometry.prototype.constructor = THREE.SphereGeometry;
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author alteredq / http://alteredqualia.com/
*
* For creating 3D text geometry in three.js
*
* Text = 3D Text
*
* parameters = {
* size: <float>, // size of the text
* height: <float>, // thickness to extrude text
* curveSegments: <int>, // number of points on the curves
*
* font: <string>, // font name
* weight: <string>, // font weight (normal, bold)
* style: <string>, // font style (normal, italics)
*
* bevelEnabled: <bool>, // turn on bevel
* bevelThickness: <float>, // how deep into text bevel goes
* bevelSize: <float>, // how far from text outline is bevel
*
* bend: <bool> // bend according to hardcoded curve (generates bendPath)
* bendPath: <curve> // wraps text according to bend Path
* }
*
* It uses techniques used in:
*
* typeface.js and canvastext
* For converting fonts and rendering with javascript
* http://typeface.neocracy.org
*
* Triangulation ported from AS3
* Simple Polygon Triangulation
* http://actionsnippet.com/?p=1462
*
* A Method to triangulate shapes with holes
* http://www.sakri.net/blog/2009/06/12/an-approach-to-triangulating-polygons-with-holes/
*
*/
/* Usage Examples
// TextGeometry wrapper
var text3d = new TextGeometry( text, options );
// Complete manner
var textPath = new THREE.TextPath( text, options );
var textShapes = textPath.toShapes();
var text3d = new ExtrudeGeometry( textShapes, options );
*/
THREE.TextGeometry = function ( text, parameters ) {
var textPath = new THREE.TextPath( text, parameters );
var textShapes = textPath.toShapes();
// translate parameters to ExtrudeGeometry API
parameters.amount = parameters.height !== undefined ? parameters.height : 50;
// defaults
if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10;
if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8;
if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false;
if ( parameters.bend ) {
var b = textShapes[ textShapes.length - 1 ].getBoundingBox();
var max = b.maxX;
parameters.bendPath = new THREE.QuadraticBezierCurve( new THREE.Vector2( 0, 0 ),
new THREE.Vector2( max / 2, 120 ),
new THREE.Vector2( max, 0 ) );
}
THREE.ExtrudeGeometry.call( this, textShapes, parameters );
};
THREE.TextGeometry.prototype = new THREE.ExtrudeGeometry();
THREE.TextGeometry.prototype.constructor = THREE.TextGeometry;
THREE.FontUtils = {
faces : {},
// Just for now. face[weight][style]
face : "helvetiker",
weight: "normal",
style : "normal",
size : 150,
divisions : 10,
getFace : function() {
return this.faces[ this.face ][ this.weight ][ this.style ];
},
loadFace : function( data ) {
var family = data.familyName.toLowerCase();
var ThreeFont = this;
ThreeFont.faces[ family ] = ThreeFont.faces[ family ] || {};
ThreeFont.faces[ family ][ data.cssFontWeight ] = ThreeFont.faces[ family ][ data.cssFontWeight ] || {};
ThreeFont.faces[ family ][ data.cssFontWeight ][ data.cssFontStyle ] = data;
var face = ThreeFont.faces[ family ][ data.cssFontWeight ][ data.cssFontStyle ] = data;
return data;
},
drawText : function( text ) {
var characterPts = [], allPts = [];
// RenderText
var i, p,
face = this.getFace(),
scale = this.size / face.resolution,
offset = 0,
chars = String( text ).split( '' ),
length = chars.length;
var fontPaths = [];
for ( i = 0; i < length; i ++ ) {
var path = new THREE.Path();
var ret = this.extractGlyphPoints( chars[ i ], face, scale, offset, path );
offset += ret.offset;
//characterPts.push( ret.points );
//allPts = allPts.concat( ret.points );
fontPaths.push( ret.path );
}
// get the width
var width = offset / 2;
//
// for ( p = 0; p < allPts.length; p++ ) {
//
// allPts[ p ].x -= width;
//
// }
//var extract = this.extractPoints( allPts, characterPts );
//extract.contour = allPts;
//extract.paths = fontPaths;
//extract.offset = width;
return { paths : fontPaths, offset : width };
},
extractGlyphPoints : function( c, face, scale, offset, path ) {
var pts = [];
var i, i2, divisions,
outline, action, length,
scaleX, scaleY,
x, y, cpx, cpy, cpx0, cpy0, cpx1, cpy1, cpx2, cpy2,
laste,
glyph = face.glyphs[ c ] || face.glyphs[ '?' ];
if ( !glyph ) return;
if ( glyph.o ) {
outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) );
length = outline.length;
scaleX = scale;
scaleY = scale;
for ( i = 0; i < length; ) {
action = outline[ i ++ ];
//console.log( action );
switch( action ) {
case 'm':
// Move To
x = outline[ i++ ] * scaleX + offset;
y = outline[ i++ ] * scaleY;
pts.push( new THREE.Vector2( x, y ) );
path.moveTo( x, y );
break;
case 'l':
// Line To
x = outline[ i++ ] * scaleX + offset;
y = outline[ i++ ] * scaleY;
pts.push( new THREE.Vector2( x, y ) );
path.lineTo(x,y);
break;
case 'q':
// QuadraticCurveTo
cpx = outline[ i++ ] * scaleX + offset;
cpy = outline[ i++ ] * scaleY;
cpx1 = outline[ i++ ] * scaleX + offset;
cpy1 = outline[ i++ ] * scaleY;
path.quadraticCurveTo(cpx1, cpy1, cpx, cpy);
laste = pts[ pts.length - 1 ];
if ( laste ) {
cpx0 = laste.x;
cpy0 = laste.y;
for ( i2 = 1, divisions = this.divisions; i2 <= divisions; i2 ++ ) {
var t = i2 / divisions;
var tx = THREE.Shape.Utils.b2( t, cpx0, cpx1, cpx );
var ty = THREE.Shape.Utils.b2( t, cpy0, cpy1, cpy );
pts.push( new THREE.Vector2( tx, ty ) );
}
}
break;
case 'b':
// Cubic Bezier Curve
cpx = outline[ i++ ] * scaleX + offset;
cpy = outline[ i++ ] * scaleY;
cpx1 = outline[ i++ ] * scaleX + offset;
cpy1 = outline[ i++ ] * -scaleY;
cpx2 = outline[ i++ ] * scaleX + offset;
cpy2 = outline[ i++ ] * -scaleY;
path.bezierCurveTo( cpx, cpy, cpx1, cpy1, cpx2, cpy2 );
laste = pts[ pts.length - 1 ];
if ( laste ) {
cpx0 = laste.x;
cpy0 = laste.y;
for ( i2 = 1, divisions = this.divisions; i2 <= divisions; i2 ++ ) {
var t = i2 / divisions;
var tx = THREE.Shape.Utils.b3( t, cpx0, cpx1, cpx2, cpx );
var ty = THREE.Shape.Utils.b3( t, cpy0, cpy1, cpy2, cpy );
pts.push( new THREE.Vector2( tx, ty ) );
}
}
break;
}
}
}
return { offset: glyph.ha*scale, points:pts, path:path};
}
};
/**
* This code is a quick port of code written in C++ which was submitted to
* flipcode.com by John W. Ratcliff // July 22, 2000
* See original code and more information here:
* http://www.flipcode.com/archives/Efficient_Polygon_Triangulation.shtml
*
* ported to actionscript by Zevan Rosser
* www.actionsnippet.com
*
* ported to javascript by Joshua Koo
* http://www.lab4games.net/zz85/blog
*
*/
( function( namespace ) {
var EPSILON = 0.0000000001;
// takes in an contour array and returns
var process = function( contour, indices ) {
var n = contour.length;
if ( n < 3 ) return null;
var result = [],
verts = [],
vertIndices = [];
/* we want a counter-clockwise polygon in verts */
var u, v, w;
if ( area( contour ) > 0.0 ) {
for ( v = 0; v < n; v++ ) verts[ v ] = v;
} else {
for ( v = 0; v < n; v++ ) verts[ v ] = ( n - 1 ) - v;
}
var nv = n;
/* remove nv - 2 vertices, creating 1 triangle every time */
var count = 2 * nv; /* error detection */
for( v = nv - 1; nv > 2; ) {
/* if we loop, it is probably a non-simple polygon */
if ( ( count-- ) <= 0 ) {
//** Triangulate: ERROR - probable bad polygon!
//throw ( "Warning, unable to triangulate polygon!" );
//return null;
// Sometimes warning is fine, especially polygons are triangulated in reverse.
console.log( "Warning, unable to triangulate polygon!" );
if ( indices ) return vertIndices;
return result;
}
/* three consecutive vertices in current polygon, <u,v,w> */
u = v; if ( nv <= u ) u = 0; /* previous */
v = u + 1; if ( nv <= v ) v = 0; /* new v */
w = v + 1; if ( nv <= w ) w = 0; /* next */
if ( snip( contour, u, v, w, nv, verts ) ) {
var a, b, c, s, t;
/* true names of the vertices */
a = verts[ u ];
b = verts[ v ];
c = verts[ w ];
/* output Triangle */
/*
result.push( contour[ a ] );
result.push( contour[ b ] );
result.push( contour[ c ] );
*/
result.push( [ contour[ a ],
contour[ b ],
contour[ c ] ] );
vertIndices.push( [ verts[ u ], verts[ v ], verts[ w ] ] );
/* remove v from the remaining polygon */
for( s = v, t = v + 1; t < nv; s++, t++ ) {
verts[ s ] = verts[ t ];
}
nv--;
/* reset error detection counter */
count = 2 * nv;
}
}
if ( indices ) return vertIndices;
return result;
};
// calculate area of the contour polygon
var area = function ( contour ) {
var n = contour.length;
var a = 0.0;
for( var p = n - 1, q = 0; q < n; p = q++ ) {
a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;
}
return a * 0.5;
};
// see if p is inside triangle abc
var insideTriangle = function( ax, ay,
bx, by,
cx, cy,
px, py ) {
var aX, aY, bX, bY;
var cX, cY, apx, apy;
var bpx, bpy, cpx, cpy;
var cCROSSap, bCROSScp, aCROSSbp;
aX = cx - bx; aY = cy - by;
bX = ax - cx; bY = ay - cy;
cX = bx - ax; cY = by - ay;
apx= px -ax; apy= py - ay;
bpx= px - bx; bpy= py - by;
cpx= px - cx; cpy= py - cy;
aCROSSbp = aX*bpy - aY*bpx;
cCROSSap = cX*apy - cY*apx;
bCROSScp = bX*cpy - bY*cpx;
return ( (aCROSSbp >= 0.0) && (bCROSScp >= 0.0) && (cCROSSap >= 0.0) );
};
var snip = function ( contour, u, v, w, n, verts ) {
var p;
var ax, ay, bx, by;
var cx, cy, px, py;
ax = contour[ verts[ u ] ].x;
ay = contour[ verts[ u ] ].y;
bx = contour[ verts[ v ] ].x;
by = contour[ verts[ v ] ].y;
cx = contour[ verts[ w ] ].x;
cy = contour[ verts[ w ] ].y;
if ( EPSILON > (((bx-ax)*(cy-ay)) - ((by-ay)*(cx-ax))) ) return false;
for ( p = 0; p < n; p++ ) {
if( (p == u) || (p == v) || (p == w) ) continue;
px = contour[ verts[ p ] ].x
py = contour[ verts[ p ] ].y
if ( insideTriangle( ax, ay, bx, by, cx, cy, px, py ) ) return false;
}
return true;
};
namespace.Triangulate = process;
namespace.Triangulate.area = area;
return namespace;
})(THREE.FontUtils);
// To use the typeface.js face files, hook up the API
self._typeface_js = { faces: THREE.FontUtils.faces, loadFace: THREE.FontUtils.loadFace };
/**
* @author oosmoxiecode
* @author mr.doob / http://mrdoob.com/
* based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3DLite/src/away3dlite/primitives/Torus.as?r=2888
*/
THREE.TorusGeometry = function ( radius, tube, segmentsR, segmentsT, arc ) {
THREE.Geometry.call( this );
var scope = this;
this.radius = radius || 100;
this.tube = tube || 40;
this.segmentsR = segmentsR || 8;
this.segmentsT = segmentsT || 6;
this.arc = arc || Math.PI * 2;
var center = new THREE.Vector3(), uvs = [], normals = [];
for ( var j = 0; j <= this.segmentsR; j ++ ) {
for ( var i = 0; i <= this.segmentsT; i ++ ) {
var u = i / this.segmentsT * this.arc;
var v = j / this.segmentsR * Math.PI * 2;
center.x = this.radius * Math.cos( u );
center.y = this.radius * Math.sin( u );
var vertex = new THREE.Vector3();
vertex.x = ( this.radius + this.tube * Math.cos( v ) ) * Math.cos( u );
vertex.y = ( this.radius + this.tube * Math.cos( v ) ) * Math.sin( u );
vertex.z = this.tube * Math.sin( v );
this.vertices.push( vertex );
uvs.push( new THREE.UV( i / this.segmentsT, 1 - j / this.segmentsR ) );
normals.push( vertex.clone().subSelf( center ).normalize() );
}
}
for ( var j = 1; j <= this.segmentsR; j ++ ) {
for ( var i = 1; i <= this.segmentsT; i ++ ) {
var a = ( this.segmentsT + 1 ) * j + i - 1;
var b = ( this.segmentsT + 1 ) * ( j - 1 ) + i - 1;
var c = ( this.segmentsT + 1 ) * ( j - 1 ) + i;
var d = ( this.segmentsT + 1 ) * j + i;
var face = new THREE.Face4( a, b, c, d, [ normals[ a ], normals[ b ], normals[ c ], normals[ d ] ] );
face.normal.addSelf( normals[ a ] );
face.normal.addSelf( normals[ b ] );
face.normal.addSelf( normals[ c ] );
face.normal.addSelf( normals[ d ] );
face.normal.normalize();
this.faces.push( face );
this.faceVertexUvs[ 0 ].push( [ uvs[ a ].clone(), uvs[ b ].clone(), uvs[ c ].clone(), uvs[ d ].clone() ] );
}
}
this.computeCentroids();
};
THREE.TorusGeometry.prototype = new THREE.Geometry();
THREE.TorusGeometry.prototype.constructor = THREE.TorusGeometry;
/**
* @author oosmoxiecode
* based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3D/src/away3d/primitives/TorusKnot.as?spec=svn2473&r=2473
*/
THREE.TorusKnotGeometry = function ( radius, tube, segmentsR, segmentsT, p, q, heightScale ) {
THREE.Geometry.call( this );
var scope = this;
this.radius = radius || 200;
this.tube = tube || 40;
this.segmentsR = segmentsR || 64;
this.segmentsT = segmentsT || 8;
this.p = p || 2;
this.q = q || 3;
this.heightScale = heightScale || 1;
this.grid = new Array(this.segmentsR);
var tang = new THREE.Vector3();
var n = new THREE.Vector3();
var bitan = new THREE.Vector3();
for ( var i = 0; i < this.segmentsR; ++ i ) {
this.grid[ i ] = new Array( this.segmentsT );
for ( var j = 0; j < this.segmentsT; ++ j ) {
var u = i / this.segmentsR * 2 * this.p * Math.PI;
var v = j / this.segmentsT * 2 * Math.PI;
var p1 = getPos( u, v, this.q, this.p, this.radius, this.heightScale );
var p2 = getPos( u + 0.01, v, this.q, this.p, this.radius, this.heightScale );
var cx, cy;
tang.sub( p2, p1 );
n.add( p2, p1 );
bitan.cross( tang, n );
n.cross( bitan, tang );
bitan.normalize();
n.normalize();
cx = - this.tube * Math.cos( v ); // TODO: Hack: Negating it so it faces outside.
cy = this.tube * Math.sin( v );
p1.x += cx * n.x + cy * bitan.x;
p1.y += cx * n.y + cy * bitan.y;
p1.z += cx * n.z + cy * bitan.z;
this.grid[ i ][ j ] = vert( p1.x, p1.y, p1.z );
}
}
for ( var i = 0; i < this.segmentsR; ++ i ) {
for ( var j = 0; j < this.segmentsT; ++ j ) {
var ip = ( i + 1 ) % this.segmentsR;
var jp = ( j + 1 ) % this.segmentsT;
var a = this.grid[ i ][ j ];
var b = this.grid[ ip ][ j ];
var c = this.grid[ ip ][ jp ];
var d = this.grid[ i ][ jp ];
var uva = new THREE.UV( i / this.segmentsR, j / this.segmentsT );
var uvb = new THREE.UV( ( i + 1 ) / this.segmentsR, j / this.segmentsT );
var uvc = new THREE.UV( ( i + 1 ) / this.segmentsR, ( j + 1 ) / this.segmentsT );
var uvd = new THREE.UV( i / this.segmentsR, ( j + 1 ) / this.segmentsT );
this.faces.push( new THREE.Face4( a, b, c, d ) );
this.faceVertexUvs[ 0 ].push( [ uva,uvb,uvc, uvd ] );
}
}
this.computeCentroids();
this.computeFaceNormals();
this.computeVertexNormals();
function vert( x, y, z ) {
return scope.vertices.push( new THREE.Vector3( x, y, z ) ) - 1;
}
function getPos( u, v, in_q, in_p, radius, heightScale ) {
var cu = Math.cos( u );
var cv = Math.cos( v );
var su = Math.sin( u );
var quOverP = in_q / in_p * u;
var cs = Math.cos( quOverP );
var tx = radius * ( 2 + cs ) * 0.5 * cu;
var ty = radius * ( 2 + cs ) * su * 0.5;
var tz = heightScale * radius * Math.sin( quOverP ) * 0.5;
return new THREE.Vector3( tx, ty, tz );
}
};
THREE.TorusKnotGeometry.prototype = new THREE.Geometry();
THREE.TorusKnotGeometry.prototype.constructor = THREE.TorusKnotGeometry;
/**
* @author WestLangley / https://github.com/WestLangley
* @author zz85 / https://github.com/zz85
* @author miningold / https://github.com/miningold
*
* Modified from the TorusKnotGeometry by @oosmoxiecode
*
* Creates a tube which extrudes along a 3d spline
*
* Uses parallel transport frames as described in
* http://www.cs.indiana.edu/pub/techreports/TR425.pdf
*/
THREE.TubeGeometry = function( path, segments, radius, segmentsRadius, closed, debug ) {
THREE.Geometry.call( this );
this.path = path;
this.segments = segments || 64;
this.radius = radius || 1;
this.segmentsRadius = segmentsRadius || 8;
this.closed = closed || false;
if ( debug ) this.debug = new THREE.Object3D();
this.grid = [];
var scope = this,
tangent,
normal,
binormal,
numpoints = this.segments + 1,
x, y, z,
tx, ty, tz,
u, v,
cx, cy,
pos, pos2 = new THREE.Vector3(),
i, j,
ip, jp,
a, b, c, d,
uva, uvb, uvc, uvd;
var frames = new THREE.TubeGeometry.FrenetFrames(path, segments, closed),
tangents = frames.tangents,
normals = frames.normals,
binormals = frames.binormals;
// proxy internals
this.tangents = tangents;
this.normals = normals;
this.binormals = binormals;
function vert( x, y, z ) {
return scope.vertices.push( new THREE.Vector3( x, y, z ) ) - 1;
}
// consruct the grid
for ( i = 0; i < numpoints; i++ ) {
this.grid[ i ] = [];
u = i / ( numpoints - 1 );
pos = path.getPointAt( u );
tangent = tangents[ i ];
normal = normals[ i ];
binormal = binormals[ i ];
if ( this.debug ) {
this.debug.add(new THREE.ArrowHelper(tangent, pos, radius, 0x0000ff));
this.debug.add(new THREE.ArrowHelper(normal, pos, radius, 0xff0000));
this.debug.add(new THREE.ArrowHelper(binormal, pos, radius, 0x00ff00));
}
for ( j = 0; j < this.segmentsRadius; j++ ) {
v = j / this.segmentsRadius * 2 * Math.PI;
cx = -this.radius * Math.cos( v ); // TODO: Hack: Negating it so it faces outside.
cy = this.radius * Math.sin( v );
pos2.copy( pos );
pos2.x += cx * normal.x + cy * binormal.x;
pos2.y += cx * normal.y + cy * binormal.y;
pos2.z += cx * normal.z + cy * binormal.z;
this.grid[ i ][ j ] = vert( pos2.x, pos2.y, pos2.z );
}
}
// construct the mesh
for ( i = 0; i < this.segments; i++ ) {
for ( j = 0; j < this.segmentsRadius; j++ ) {
ip = ( closed ) ? (i + 1) % this.segments : i + 1;
jp = (j + 1) % this.segmentsRadius;
a = this.grid[ i ][ j ]; // *** NOT NECESSARILY PLANAR ! ***
b = this.grid[ ip ][ j ];
c = this.grid[ ip ][ jp ];
d = this.grid[ i ][ jp ];
uva = new THREE.UV( i / this.segments, j / this.segmentsRadius );
uvb = new THREE.UV( ( i + 1 ) / this.segments, j / this.segmentsRadius );
uvc = new THREE.UV( ( i + 1 ) / this.segments, ( j + 1 ) / this.segmentsRadius );
uvd = new THREE.UV( i / this.segments, ( j + 1 ) / this.segmentsRadius );
this.faces.push( new THREE.Face4( a, b, c, d ) );
this.faceVertexUvs[ 0 ].push( [ uva, uvb, uvc, uvd ] );
}
}
this.computeCentroids();
this.computeFaceNormals();
this.computeVertexNormals();
};
THREE.TubeGeometry.prototype = new THREE.Geometry();
THREE.TubeGeometry.prototype.constructor = THREE.TubeGeometry;
// For computing of Frenet frames, exposing the tangents, normals and binormals the spline
THREE.TubeGeometry.FrenetFrames = function(path, segments, closed) {
var
tangent = new THREE.Vector3(),
normal = new THREE.Vector3(),
binormal = new THREE.Vector3(),
tangents = [],
normals = [],
binormals = [],
vec = new THREE.Vector3(),
mat = new THREE.Matrix4(),
numpoints = segments + 1,
theta,
epsilon = 0.0001,
smallest,
tx, ty, tz,
i, u, v;
// expose internals
this.tangents = tangents;
this.normals = normals;
this.binormals = binormals;
// compute the tangent vectors for each segment on the path
for ( i = 0; i < numpoints; i++ ) {
u = i / ( numpoints - 1 );
tangents[ i ] = path.getTangentAt( u );
tangents[ i ].normalize();
}
initialNormal3();
function initialNormal1(lastBinormal) {
// fixed start binormal. Has dangers of 0 vectors
normals[ 0 ] = new THREE.Vector3();
binormals[ 0 ] = new THREE.Vector3();
if (lastBinormal===undefined) lastBinormal = new THREE.Vector3( 0, 0, 1 );
normals[ 0 ].cross( lastBinormal, tangents[ 0 ] ).normalize();
binormals[ 0 ].cross( tangents[ 0 ], normals[ 0 ] ).normalize();
}
function initialNormal2() {
// This uses the Frenet-Serret formula for deriving binormal
var t2 = path.getTangentAt( epsilon );
normals[ 0 ] = new THREE.Vector3().sub( t2, tangents[ 0 ] ).normalize();
binormals[ 0 ] = new THREE.Vector3().cross( tangents[ 0 ], normals[ 0 ] );
normals[ 0 ].cross( binormals[ 0 ], tangents[ 0 ] ).normalize(); // last binormal x tangent
binormals[ 0 ].cross( tangents[ 0 ], normals[ 0 ] ).normalize();
}
function initialNormal3() {
// select an initial normal vector perpenicular to the first tangent vector,
// and in the direction of the smallest tangent xyz component
normals[ 0 ] = new THREE.Vector3();
binormals[ 0 ] = new THREE.Vector3();
smallest = Number.MAX_VALUE;
tx = Math.abs( tangents[ 0 ].x );
ty = Math.abs( tangents[ 0 ].y );
tz = Math.abs( tangents[ 0 ].z );
if ( tx <= smallest ) {
smallest = tx;
normal.set( 1, 0, 0 );
}
if ( ty <= smallest ) {
smallest = ty;
normal.set( 0, 1, 0 );
}
if ( tz <= smallest ) {
normal.set( 0, 0, 1 );
}
vec.cross( tangents[ 0 ], normal ).normalize();
normals[ 0 ].cross( tangents[ 0 ], vec );
binormals[ 0 ].cross( tangents[ 0 ], normals[ 0 ] );
}
// compute the slowly-varying normal and binormal vectors for each segment on the path
for ( i = 1; i < numpoints; i++ ) {
normals[ i ] = normals[ i-1 ].clone();
binormals[ i ] = binormals[ i-1 ].clone();
vec.cross( tangents[ i-1 ], tangents[ i ] );
if ( vec.length() > epsilon ) {
vec.normalize();
theta = Math.acos( tangents[ i-1 ].dot( tangents[ i ] ) );
mat.makeRotationAxis( vec, theta ).multiplyVector3( normals[ i ] );
}
binormals[ i ].cross( tangents[ i ], normals[ i ] );
}
// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
if ( closed ) {
theta = Math.acos( normals[ 0 ].dot( normals[ numpoints-1 ] ) );
theta /= ( numpoints - 1 );
if ( tangents[ 0 ].dot( vec.cross( normals[ 0 ], normals[ numpoints-1 ] ) ) > 0 ) {
theta = -theta;
}
for ( i = 1; i < numpoints; i++ ) {
// twist a little...
mat.makeRotationAxis( tangents[ i ], theta * i ).multiplyVector3( normals[ i ] );
binormals[ i ].cross( tangents[ i ], normals[ i ] );
}
}
};
/**
* @author clockworkgeek / https://github.com/clockworkgeek
* @author timothypratley / https://github.com/timothypratley
*/
THREE.PolyhedronGeometry = function ( vertices, faces, radius, detail ) {
THREE.Geometry.call( this );
radius = radius || 1;
detail = detail || 0;
var that = this;
for ( var i = 0, l = vertices.length; i < l; i ++ ) {
prepare( new THREE.Vector3( vertices[ i ][ 0 ], vertices[ i ][ 1 ], vertices[ i ][ 2 ] ) );
}
var midpoints = [], p = this.vertices;
for ( var i = 0, l = faces.length; i < l; i ++ ) {
make( p[ faces[ i ][ 0 ] ], p[ faces[ i ][ 1 ] ], p[ faces[ i ][ 2 ] ], detail );
}
this.mergeVertices();
// Apply radius
for ( var i = 0, l = this.vertices.length; i < l; i ++ ) {
this.vertices[ i ].multiplyScalar( radius );
}
/**
* Project vector onto sphere's surface
*/
function prepare( vector ) {
var vertex = vector.normalize().clone();
vertex.index = that.vertices.push( vertex ) - 1;
// Texture coords are equivalent to map coords, calculate angle and convert to fraction of a circle.
var u = azimuth( vector ) / 2 / Math.PI + 0.5;
var v = inclination( vector ) / Math.PI + 0.5;
vertex.uv = new THREE.UV( u, v );
return vertex;
}
/**
* Approximate a curved face with recursively sub-divided triangles.
*/
function make( v1, v2, v3, detail ) {
if ( detail < 1 ) {
var face = new THREE.Face3( v1.index, v2.index, v3.index, [ v1.clone(), v2.clone(), v3.clone() ] );
face.centroid.addSelf( v1 ).addSelf( v2 ).addSelf( v3 ).divideScalar( 3 );
face.normal = face.centroid.clone().normalize();
that.faces.push( face );
var azi = azimuth( face.centroid );
that.faceVertexUvs[ 0 ].push( [
correctUV( v1.uv, v1, azi ),
correctUV( v2.uv, v2, azi ),
correctUV( v3.uv, v3, azi )
] );
}
else {
detail -= 1;
// split triangle into 4 smaller triangles
make( v1, midpoint( v1, v2 ), midpoint( v1, v3 ), detail ); // top quadrant
make( midpoint( v1, v2 ), v2, midpoint( v2, v3 ), detail ); // left quadrant
make( midpoint( v1, v3 ), midpoint( v2, v3 ), v3, detail ); // right quadrant
make( midpoint( v1, v2 ), midpoint( v2, v3 ), midpoint( v1, v3 ), detail ); // center quadrant
}
}
function midpoint( v1, v2 ) {
if ( !midpoints[ v1.index ] ) midpoints[ v1.index ] = [];
if ( !midpoints[ v2.index ] ) midpoints[ v2.index ] = [];
var mid = midpoints[ v1.index ][ v2.index ];
if ( mid === undefined ) {
// generate mean point and project to surface with prepare()
midpoints[ v1.index ][ v2.index ] = midpoints[ v2.index ][ v1.index ] = mid = prepare(
new THREE.Vector3().add( v1, v2 ).divideScalar( 2 )
);
}
return mid;
}
/**
* Angle around the Y axis, counter-clockwise when looking from above.
*/
function azimuth( vector ) {
return Math.atan2( vector.z, -vector.x );
}
/**
* Angle above the XZ plane.
*/
function inclination( vector ) {
return Math.atan2( -vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );
}
/**
* Texture fixing helper. Spheres have some odd behaviours.
*/
function correctUV( uv, vector, azimuth ) {
if ( (azimuth < 0) && (uv.u === 1) ) uv = new THREE.UV( uv.u - 1, uv.v );
if ( (vector.x === 0) && (vector.z === 0) ) uv = new THREE.UV( azimuth / 2 / Math.PI + 0.5, uv.v );
return uv;
}
this.computeCentroids();
this.boundingSphere = { radius: radius };
};
THREE.PolyhedronGeometry.prototype = new THREE.Geometry();
THREE.PolyhedronGeometry.prototype.constructor = THREE.PolyhedronGeometry;
/**
* @author timothypratley / https://github.com/timothypratley
*/
THREE.IcosahedronGeometry = function ( radius, detail ) {
var t = ( 1 + Math.sqrt( 5 ) ) / 2;
var vertices = [
[ -1, t, 0 ], [ 1, t, 0 ], [ -1, -t, 0 ], [ 1, -t, 0 ],
[ 0, -1, t ], [ 0, 1, t ], [ 0, -1, -t ], [ 0, 1, -t ],
[ t, 0, -1 ], [ t, 0, 1 ], [ -t, 0, -1 ], [ -t, 0, 1 ]
];
var faces = [
[ 0, 11, 5 ], [ 0, 5, 1 ], [ 0, 1, 7 ], [ 0, 7, 10 ], [ 0, 10, 11 ],
[ 1, 5, 9 ], [ 5, 11, 4 ], [ 11, 10, 2 ], [ 10, 7, 6 ], [ 7, 1, 8 ],
[ 3, 9, 4 ], [ 3, 4, 2 ], [ 3, 2, 6 ], [ 3, 6, 8 ], [ 3, 8, 9 ],
[ 4, 9, 5 ], [ 2, 4, 11 ], [ 6, 2, 10 ], [ 8, 6, 7 ], [ 9, 8, 1 ]
];
THREE.PolyhedronGeometry.call( this, vertices, faces, radius, detail );
};
THREE.IcosahedronGeometry.prototype = new THREE.Geometry();
THREE.IcosahedronGeometry.prototype.constructor = THREE.IcosahedronGeometry;
/**
* @author timothypratley / https://github.com/timothypratley
*/
THREE.OctahedronGeometry = function ( radius, detail ) {
var vertices = [
[ 1, 0, 0 ], [ -1, 0, 0 ], [ 0, 1, 0 ], [ 0, -1, 0 ], [ 0, 0, 1 ], [ 0, 0, -1 ]
];
var faces = [
[ 0, 2, 4 ], [ 0, 4, 3 ], [ 0, 3, 5 ], [ 0, 5, 2 ], [ 1, 2, 5 ], [ 1, 5, 3 ], [ 1, 3, 4 ], [ 1, 4, 2 ]
];
THREE.PolyhedronGeometry.call( this, vertices, faces, radius, detail );
};
THREE.OctahedronGeometry.prototype = new THREE.Geometry();
THREE.OctahedronGeometry.prototype.constructor = THREE.OctahedronGeometry;
/**
* @author timothypratley / https://github.com/timothypratley
*/
THREE.TetrahedronGeometry = function ( radius, detail ) {
var vertices = [
[ 1, 1, 1 ], [ -1, -1, 1 ], [ -1, 1, -1 ], [ 1, -1, -1 ]
];
var faces = [
[ 2, 1, 0 ], [ 0, 3, 2 ], [ 1, 3, 0 ], [ 2, 3, 1 ]
];
THREE.PolyhedronGeometry.call( this, vertices, faces, radius, detail );
};
THREE.TetrahedronGeometry.prototype = new THREE.Geometry();
THREE.TetrahedronGeometry.prototype.constructor = THREE.TetrahedronGeometry;
/**
* @author zz85 / https://github.com/zz85
* Parametric Surfaces Geometry
* based on the brilliant article by @prideout http://prideout.net/blog/?p=44
*
* new THREE.ParametricGeometry( parametricFunction, uSements, ySegements, useTris );
*
*/
THREE.ParametricGeometry = function ( func, slices, stacks, useTris ) {
THREE.Geometry.call( this );
var verts = this.vertices;
var faces = this.faces;
var uvs = this.faceVertexUvs[ 0 ];
useTris = (useTris === undefined) ? false : useTris;
var i, il, j, p;
var u, v;
var stackCount = stacks + 1;
var sliceCount = slices + 1;
for ( i = 0; i <= stacks; i ++ ) {
v = i / stacks;
for ( j = 0; j <= slices; j ++ ) {
u = j / slices;
p = func( u, v );
verts.push( p );
}
}
var a, b, c, d;
var uva, uvb, uvc, uvd;
for ( i = 0; i < stacks; i ++ ) {
for ( j = 0; j < slices; j ++ ) {
a = i * sliceCount + j;
b = i * sliceCount + j + 1;
c = (i + 1) * sliceCount + j;
d = (i + 1) * sliceCount + j + 1;
uva = new THREE.UV( i / slices, j / stacks );
uvb = new THREE.UV( i / slices, ( j + 1 ) / stacks );
uvc = new THREE.UV( ( i + 1 ) / slices, j / stacks );
uvd = new THREE.UV( ( i + 1 ) / slices, ( j + 1 ) / stacks );
if ( useTris ) {
faces.push( new THREE.Face3( a, b, c ) );
faces.push( new THREE.Face3( b, d, c ) );
uvs.push( [ uva, uvb, uvc ] );
uvs.push( [ uvb, uvd, uvc ] );
} else {
faces.push( new THREE.Face4( a, b, d, c ) );
uvs.push( [ uva, uvb, uvc, uvd ] );
}
}
}
// console.log(this);
// magic bullet
// var diff = this.mergeVertices();
// console.log('removed ', diff, ' vertices by merging');
this.computeCentroids();
this.computeFaceNormals();
this.computeVertexNormals();
};
THREE.ParametricGeometry.prototype = new THREE.Geometry();
THREE.ParametricGeometry.prototype.constructor = THREE.ParametricGeometry;
/**
* @author sroucheray / http://sroucheray.org/
* @author mr.doob / http://mrdoob.com/
*/
THREE.AxisHelper = function () {
THREE.Object3D.call( this );
var lineGeometry = new THREE.Geometry();
lineGeometry.vertices.push( new THREE.Vector3() );
lineGeometry.vertices.push( new THREE.Vector3( 0, 100, 0 ) );
var coneGeometry = new THREE.CylinderGeometry( 0, 5, 25, 5, 1 );
var line, cone;
// x
line = new THREE.Line( lineGeometry, new THREE.LineBasicMaterial( { color : 0xff0000 } ) );
line.rotation.z = - Math.PI / 2;
this.add( line );
cone = new THREE.Mesh( coneGeometry, new THREE.MeshBasicMaterial( { color : 0xff0000 } ) );
cone.position.x = 100;
cone.rotation.z = - Math.PI / 2;
this.add( cone );
// y
line = new THREE.Line( lineGeometry, new THREE.LineBasicMaterial( { color : 0x00ff00 } ) );
this.add( line );
cone = new THREE.Mesh( coneGeometry, new THREE.MeshBasicMaterial( { color : 0x00ff00 } ) );
cone.position.y = 100;
this.add( cone );
// z
line = new THREE.Line( lineGeometry, new THREE.LineBasicMaterial( { color : 0x0000ff } ) );
line.rotation.x = Math.PI / 2;
this.add( line );
cone = new THREE.Mesh( coneGeometry, new THREE.MeshBasicMaterial( { color : 0x0000ff } ) );
cone.position.z = 100;
cone.rotation.x = Math.PI / 2;
this.add( cone );
};
THREE.AxisHelper.prototype = new THREE.Object3D();
THREE.AxisHelper.prototype.constructor = THREE.AxisHelper;
/**
* @author WestLangley / https://github.com/WestLangley
* @author zz85 / https://github.com/zz85
*
* Creates an arrow for visualizing directions
*
* Parameters:
* dir - Vector3
* origin - Vector3
* length - Number
* hex - color in hex value
*/
THREE.ArrowHelper = function ( dir, origin, length, hex ) {
THREE.Object3D.call( this );
if ( hex === undefined ) hex = 0xffff00;
if ( length === undefined ) length = 20;
var lineGeometry = new THREE.Geometry();
lineGeometry.vertices.push( new THREE.Vector3( 0, 0, 0 ) );
lineGeometry.vertices.push( new THREE.Vector3( 0, 1, 0 ) );
this.line = new THREE.Line( lineGeometry, new THREE.LineBasicMaterial( { color: hex } ) );
this.add( this.line );
var coneGeometry = new THREE.CylinderGeometry( 0, 0.05, 0.25, 5, 1 );
this.cone = new THREE.Mesh( coneGeometry, new THREE.MeshBasicMaterial( { color: hex } ) );
this.cone.position.set( 0, 1, 0 );
this.add( this.cone );
if ( origin instanceof THREE.Vector3 ) this.position = origin;
this.setDirection( dir );
this.setLength( length );
};
THREE.ArrowHelper.prototype = new THREE.Object3D();
THREE.ArrowHelper.prototype.constructor = THREE.ArrowHelper;
THREE.ArrowHelper.prototype.setDirection = function ( dir ) {
var axis = new THREE.Vector3( 0, 1, 0 ).crossSelf( dir );
var radians = Math.acos( new THREE.Vector3( 0, 1, 0 ).dot( dir.clone().normalize() ) );
this.matrix = new THREE.Matrix4().makeRotationAxis( axis.normalize(), radians );
this.rotation.getRotationFromMatrix( this.matrix, this.scale );
};
THREE.ArrowHelper.prototype.setLength = function ( length ) {
this.scale.set( length, length, length );
};
THREE.ArrowHelper.prototype.setColor = function ( hex ) {
this.line.material.color.setHex( hex );
this.cone.material.color.setHex( hex );
};
/**
* @author alteredq / http://alteredqualia.com/
*
* - shows frustum, line of sight and up of the camera
* - suitable for fast updates
* - based on frustum visualization in lightgl.js shadowmap example
* http://evanw.github.com/lightgl.js/tests/shadowmap.html
*/
THREE.CameraHelper = function ( camera ) {
THREE.Object3D.call( this );
var _this = this;
this.lineGeometry = new THREE.Geometry();
this.lineMaterial = new THREE.LineBasicMaterial( { color: 0xffffff, vertexColors: THREE.FaceColors } );
this.pointMap = {};
// colors
var hexFrustum = 0xffaa00,
hexCone = 0xff0000,
hexUp = 0x00aaff,
hexTarget = 0xffffff,
hexCross = 0x333333;
// near
addLine( "n1", "n2", hexFrustum );
addLine( "n2", "n4", hexFrustum );
addLine( "n4", "n3", hexFrustum );
addLine( "n3", "n1", hexFrustum );
// far
addLine( "f1", "f2", hexFrustum );
addLine( "f2", "f4", hexFrustum );
addLine( "f4", "f3", hexFrustum );
addLine( "f3", "f1", hexFrustum );
// sides
addLine( "n1", "f1", hexFrustum );
addLine( "n2", "f2", hexFrustum );
addLine( "n3", "f3", hexFrustum );
addLine( "n4", "f4", hexFrustum );
// cone
addLine( "p", "n1", hexCone );
addLine( "p", "n2", hexCone );
addLine( "p", "n3", hexCone );
addLine( "p", "n4", hexCone );
// up
addLine( "u1", "u2", hexUp );
addLine( "u2", "u3", hexUp );
addLine( "u3", "u1", hexUp );
// target
addLine( "c", "t", hexTarget );
addLine( "p", "c", hexCross );
// cross
addLine( "cn1", "cn2", hexCross );
addLine( "cn3", "cn4", hexCross );
addLine( "cf1", "cf2", hexCross );
addLine( "cf3", "cf4", hexCross );
this.camera = camera;
function addLine( a, b, hex ) {
addPoint( a, hex );
addPoint( b, hex );
}
function addPoint( id, hex ) {
_this.lineGeometry.vertices.push( new THREE.Vector3() );
_this.lineGeometry.colors.push( new THREE.Color( hex ) );
if ( _this.pointMap[ id ] === undefined ) _this.pointMap[ id ] = [];
_this.pointMap[ id ].push( _this.lineGeometry.vertices.length - 1 );
}
this.update( camera );
this.lines = new THREE.Line( this.lineGeometry, this.lineMaterial, THREE.LinePieces );
this.add( this.lines );
};
THREE.CameraHelper.prototype = new THREE.Object3D();
THREE.CameraHelper.prototype.constructor = THREE.CameraHelper;
THREE.CameraHelper.prototype.update = function () {
var camera = this.camera;
var w = 1;
var h = 1;
var _this = this;
// we need just camera projection matrix
// world matrix must be identity
THREE.CameraHelper.__c.projectionMatrix.copy( camera.projectionMatrix );
// center / target
setPoint( "c", 0, 0, -1 );
setPoint( "t", 0, 0, 1 );
// near
setPoint( "n1", -w, -h, -1 );
setPoint( "n2", w, -h, -1 );
setPoint( "n3", -w, h, -1 );
setPoint( "n4", w, h, -1 );
// far
setPoint( "f1", -w, -h, 1 );
setPoint( "f2", w, -h, 1 );
setPoint( "f3", -w, h, 1 );
setPoint( "f4", w, h, 1 );
// up
setPoint( "u1", w * 0.7, h * 1.1, -1 );
setPoint( "u2", -w * 0.7, h * 1.1, -1 );
setPoint( "u3", 0, h * 2, -1 );
// cross
setPoint( "cf1", -w, 0, 1 );
setPoint( "cf2", w, 0, 1 );
setPoint( "cf3", 0, -h, 1 );
setPoint( "cf4", 0, h, 1 );
setPoint( "cn1", -w, 0, -1 );
setPoint( "cn2", w, 0, -1 );
setPoint( "cn3", 0, -h, -1 );
setPoint( "cn4", 0, h, -1 );
function setPoint( point, x, y, z ) {
THREE.CameraHelper.__v.set( x, y, z );
THREE.CameraHelper.__projector.unprojectVector( THREE.CameraHelper.__v, THREE.CameraHelper.__c );
var points = _this.pointMap[ point ];
if ( points !== undefined ) {
for ( var i = 0, il = points.length; i < il; i ++ ) {
var j = points[ i ];
_this.lineGeometry.vertices[ j ].copy( THREE.CameraHelper.__v );
}
}
}
this.lineGeometry.verticesNeedUpdate = true;
};
THREE.CameraHelper.__projector = new THREE.Projector();
THREE.CameraHelper.__v = new THREE.Vector3();
THREE.CameraHelper.__c = new THREE.Camera();
/*
* @author zz85 / http://twitter.com/blurspline / http://www.lab4games.net/zz85/blog
*
* Subdivision Geometry Modifier
* using Catmull-Clark Subdivision Surfaces
* for creating smooth geometry meshes
*
* Note: a modifier modifies vertices and faces of geometry,
* so use THREE.GeometryUtils.clone() if orignal geoemtry needs to be retained
*
* Readings:
* http://en.wikipedia.org/wiki/Catmull%E2%80%93Clark_subdivision_surface
* http://www.rorydriscoll.com/2008/08/01/catmull-clark-subdivision-the-basics/
* http://xrt.wikidot.com/blog:31
* "Subdivision Surfaces in Character Animation"
*
* Supports:
* Closed and Open geometries.
*
* TODO:
* crease vertex and "semi-sharp" features
* selective subdivision
*/
THREE.SubdivisionModifier = function( subdivisions ) {
this.subdivisions = (subdivisions === undefined ) ? 1 : subdivisions;
// Settings
this.useOldVertexColors = false;
this.supportUVs = true;
this.debug = false;
};
//THREE.SubdivisionModifier.prototype = new THREE.Modifier();
THREE.SubdivisionModifier.prototype.constructor = THREE.SubdivisionModifier;
// Applies the "modify" pattern
THREE.SubdivisionModifier.prototype.modify = function ( geometry ) {
var repeats = this.subdivisions;
while ( repeats-- > 0 ) {
this.smooth( geometry );
}
};
// Performs an iteration of Catmull-Clark Subdivision
THREE.SubdivisionModifier.prototype.smooth = function ( oldGeometry ) {
//debug( 'running smooth' );
// New set of vertices, faces and uvs
var newVertices = [], newFaces = [], newUVs = [];
function v( x, y, z ) {
newVertices.push( new THREE.Vector3( x, y, z ) );
}
var scope = this;
function debug() {
if (scope.debug) console.log.apply(console, arguments);
}
function warn() {
if (console)
console.log.apply(console, arguments);
}
function f4( a, b, c, d, oldFace, orders, facei ) {
// TODO move vertex selection over here!
var newFace = new THREE.Face4( a, b, c, d, null, oldFace.color, oldFace.material );
if (scope.useOldVertexColors) {
newFace.vertexColors = [];
var color, tmpColor, order;
for (var i=0;i<4;i++) {
order = orders[i];
color = new THREE.Color(),
color.setRGB(0,0,0);
for (var j=0, jl=0; j<order.length;j++) {
tmpColor = oldFace.vertexColors[order[j]-1];
color.r += tmpColor.r;
color.g += tmpColor.g;
color.b += tmpColor.b;
}
color.r /= order.length;
color.g /= order.length;
color.b /= order.length;
newFace.vertexColors[i] = color;
}
}
newFaces.push( newFace );
if (scope.supportUVs) {
var aUv = [
getUV(a, ''),
getUV(b, facei),
getUV(c, facei),
getUV(d, facei)
];
if (!aUv[0]) debug('a :( ', a+':'+facei);
else if (!aUv[1]) debug('b :( ', b+':'+facei);
else if (!aUv[2]) debug('c :( ', c+':'+facei);
else if (!aUv[3]) debug('d :( ', d+':'+facei);
else
newUVs.push( aUv );
}
}
function edge_hash( a, b ) {
return Math.min( a, b ) + "_" + Math.max( a, b );
}
function computeEdgeFaces( geometry ) {
var i, il, v1, v2, j, k,
face, faceIndices, faceIndex,
edge,
hash,
edgeFaceMap = {};
function mapEdgeHash( hash, i ) {
if ( edgeFaceMap[ hash ] === undefined ) {
edgeFaceMap[ hash ] = [];
}
edgeFaceMap[ hash ].push( i );
}
// construct vertex -> face map
for( i = 0, il = geometry.faces.length; i < il; i ++ ) {
face = geometry.faces[ i ];
if ( face instanceof THREE.Face3 ) {
hash = edge_hash( face.a, face.b );
mapEdgeHash( hash, i );
hash = edge_hash( face.b, face.c );
mapEdgeHash( hash, i );
hash = edge_hash( face.c, face.a );
mapEdgeHash( hash, i );
} else if ( face instanceof THREE.Face4 ) {
hash = edge_hash( face.a, face.b );
mapEdgeHash( hash, i );
hash = edge_hash( face.b, face.c );
mapEdgeHash( hash, i );
hash = edge_hash( face.c, face.d );
mapEdgeHash( hash, i );
hash = edge_hash( face.d, face.a );
mapEdgeHash( hash, i );
}
}
// extract faces
// var edges = [];
//
// var numOfEdges = 0;
// for (i in edgeFaceMap) {
// numOfEdges++;
//
// edge = edgeFaceMap[i];
// edges.push(edge);
//
// }
//debug('edgeFaceMap', edgeFaceMap, 'geometry.edges',geometry.edges, 'numOfEdges', numOfEdges);
return edgeFaceMap;
}
var originalPoints = oldGeometry.vertices;
var originalFaces = oldGeometry.faces;
var newPoints = originalPoints.concat(); // Vertices
var facePoints = [], edgePoints = {};
var sharpEdges = {}, sharpVertices = [], sharpFaces = [];
var uvForVertices = {}; // Stored in {vertex}:{old face} format
var originalVerticesLength = originalPoints.length;
function getUV(vertexNo, oldFaceNo) {
var j,jl;
var key = vertexNo+':'+oldFaceNo;
var theUV = uvForVertices[key];
if (!theUV) {
if (vertexNo>=originalVerticesLength && vertexNo < (originalVerticesLength + originalFaces.length)) {
debug('face pt');
} else {
debug('edge pt');
}
warn('warning, UV not found for', key);
return null;
}
return theUV;
// Original faces -> Vertex Nos.
// new Facepoint -> Vertex Nos.
// edge Points
}
function addUV(vertexNo, oldFaceNo, value) {
var key = vertexNo+':'+oldFaceNo;
if (!(key in uvForVertices)) {
uvForVertices[key] = value;
} else {
warn('dup vertexNo', vertexNo, 'oldFaceNo', oldFaceNo, 'value', value, 'key', key, uvForVertices[key]);
}
}
// Step 1
// For each face, add a face point
// Set each face point to be the centroid of all original points for the respective face.
// debug(oldGeometry);
var i, il, j, jl, face;
// For Uvs
var uvs = oldGeometry.faceVertexUvs[0];
var abcd = 'abcd', vertice;
debug('originalFaces, uvs, originalVerticesLength', originalFaces.length, uvs.length, originalVerticesLength);
if (scope.supportUVs)
for (i=0, il = uvs.length; i<il; i++ ) {
for (j=0,jl=uvs[i].length;j<jl;j++) {
vertice = originalFaces[i][abcd.charAt(j)];
addUV(vertice, i, uvs[i][j]);
}
}
if (uvs.length == 0) scope.supportUVs = false;
// Additional UVs check, if we index original
var uvCount = 0;
for (var u in uvForVertices) {
uvCount++;
}
if (!uvCount) {
scope.supportUVs = false;
debug('no uvs');
}
debug('-- Original Faces + Vertices UVs completed', uvForVertices, 'vs', uvs.length);
var avgUv ;
for (i=0, il = originalFaces.length; i<il ;i++) {
face = originalFaces[ i ];
facePoints.push( face.centroid );
newPoints.push( face.centroid );
if (!scope.supportUVs) continue;
// Prepare subdivided uv
avgUv = new THREE.UV();
if ( face instanceof THREE.Face3 ) {
avgUv.u = getUV( face.a, i ).u + getUV( face.b, i ).u + getUV( face.c, i ).u;
avgUv.v = getUV( face.a, i ).v + getUV( face.b, i ).v + getUV( face.c, i ).v;
avgUv.u /= 3;
avgUv.v /= 3;
} else if ( face instanceof THREE.Face4 ) {
avgUv.u = getUV( face.a, i ).u + getUV( face.b, i ).u + getUV( face.c, i ).u + getUV( face.d, i ).u;
avgUv.v = getUV( face.a, i ).v + getUV( face.b, i ).v + getUV( face.c, i ).v + getUV( face.d, i ).v;
avgUv.u /= 4;
avgUv.v /= 4;
}
addUV(originalVerticesLength + i, '', avgUv);
}
debug('-- added UVs for new Faces', uvForVertices);
// Step 2
// For each edge, add an edge point.
// Set each edge point to be the average of the two neighbouring face points and its two original endpoints.
var edgeFaceMap = computeEdgeFaces ( oldGeometry ); // Edge Hash -> Faces Index
var edge, faceIndexA, faceIndexB, avg;
// debug('edgeFaceMap', edgeFaceMap);
var edgeCount = 0;
var edgeVertex, edgeVertexA, edgeVertexB;
////
var vertexEdgeMap = {}; // Gives edges connecting from each vertex
var vertexFaceMap = {}; // Gives faces connecting from each vertex
function addVertexEdgeMap(vertex, edge) {
if (vertexEdgeMap[vertex]===undefined) {
vertexEdgeMap[vertex] = [];
}
vertexEdgeMap[vertex].push(edge);
}
function addVertexFaceMap(vertex, face, edge) {
if (vertexFaceMap[vertex]===undefined) {
vertexFaceMap[vertex] = {};
}
vertexFaceMap[vertex][face] = edge;
// vertexFaceMap[vertex][face] = null;
}
// Prepares vertexEdgeMap and vertexFaceMap
for (i in edgeFaceMap) { // This is for every edge
edge = edgeFaceMap[i];
edgeVertex = i.split('_');
edgeVertexA = edgeVertex[0];
edgeVertexB = edgeVertex[1];
// Maps an edgeVertex to connecting edges
addVertexEdgeMap(edgeVertexA, [edgeVertexA, edgeVertexB] );
addVertexEdgeMap(edgeVertexB, [edgeVertexA, edgeVertexB] );
for (j=0,jl=edge.length;j<jl;j++) {
face = edge[j];
addVertexFaceMap(edgeVertexA, face, i);
addVertexFaceMap(edgeVertexB, face, i);
}
if (edge.length < 2) {
// edge is "sharp";
sharpEdges[i] = true;
sharpVertices[edgeVertexA] = true;
sharpVertices[edgeVertexB] = true;
}
}
debug('vertexEdgeMap',vertexEdgeMap, 'vertexFaceMap', vertexFaceMap);
for (i in edgeFaceMap) {
edge = edgeFaceMap[i];
faceIndexA = edge[0]; // face index a
faceIndexB = edge[1]; // face index b
edgeVertex = i.split('_');
edgeVertexA = edgeVertex[0];
edgeVertexB = edgeVertex[1];
avg = new THREE.Vector3();
//debug(i, faceIndexB,facePoints[faceIndexB]);
if (sharpEdges[i]) {
//debug('warning, ', i, 'edge has only 1 connecting face', edge);
// For a sharp edge, average the edge end points.
avg.addSelf(originalPoints[edgeVertexA]);
avg.addSelf(originalPoints[edgeVertexB]);
avg.multiplyScalar(0.5);
sharpVertices[newPoints.length] = true;
} else {
avg.addSelf(facePoints[faceIndexA]);
avg.addSelf(facePoints[faceIndexB]);
avg.addSelf(originalPoints[edgeVertexA]);
avg.addSelf(originalPoints[edgeVertexB]);
avg.multiplyScalar(0.25);
}
edgePoints[i] = originalVerticesLength + originalFaces.length + edgeCount;
newPoints.push( avg );
edgeCount ++;
if (!scope.supportUVs) {
continue;
}
// debug('faceIndexAB', faceIndexA, faceIndexB, sharpEdges[i]);
// Prepare subdivided uv
avgUv = new THREE.UV();
avgUv.u = getUV(edgeVertexA, faceIndexA).u + getUV(edgeVertexB, faceIndexA).u;
avgUv.v = getUV(edgeVertexA, faceIndexA).v + getUV(edgeVertexB, faceIndexA).v;
avgUv.u /= 2;
avgUv.v /= 2;
addUV(edgePoints[i], faceIndexA, avgUv);
if (!sharpEdges[i]) {
avgUv = new THREE.UV();
avgUv.u = getUV(edgeVertexA, faceIndexB).u + getUV(edgeVertexB, faceIndexB).u;
avgUv.v = getUV(edgeVertexA, faceIndexB).v + getUV(edgeVertexB, faceIndexB).v;
avgUv.u /= 2;
avgUv.v /= 2;
addUV(edgePoints[i], faceIndexB, avgUv);
}
}
debug('-- Step 2 done');
// Step 3
// For each face point, add an edge for every edge of the face,
// connecting the face point to each edge point for the face.
var facePt, currentVerticeIndex;
var hashAB, hashBC, hashCD, hashDA, hashCA;
var abc123 = ['123', '12', '2', '23'];
var bca123 = ['123', '23', '3', '31'];
var cab123 = ['123', '31', '1', '12'];
var abc1234 = ['1234', '12', '2', '23'];
var bcd1234 = ['1234', '23', '3', '34'];
var cda1234 = ['1234', '34', '4', '41'];
var dab1234 = ['1234', '41', '1', '12'];
for (i=0, il = facePoints.length; i<il ;i++) { // for every face
facePt = facePoints[i];
face = originalFaces[i];
currentVerticeIndex = originalVerticesLength+ i;
if ( face instanceof THREE.Face3 ) {
// create 3 face4s
hashAB = edge_hash( face.a, face.b );
hashBC = edge_hash( face.b, face.c );
hashCA = edge_hash( face.c, face.a );
f4( currentVerticeIndex, edgePoints[hashAB], face.b, edgePoints[hashBC], face, abc123, i );
f4( currentVerticeIndex, edgePoints[hashBC], face.c, edgePoints[hashCA], face, bca123, i );
f4( currentVerticeIndex, edgePoints[hashCA], face.a, edgePoints[hashAB], face, cab123, i );
} else if ( face instanceof THREE.Face4 ) {
// create 4 face4s
hashAB = edge_hash( face.a, face.b );
hashBC = edge_hash( face.b, face.c );
hashCD = edge_hash( face.c, face.d );
hashDA = edge_hash( face.d, face.a );
f4( currentVerticeIndex, edgePoints[hashAB], face.b, edgePoints[hashBC], face, abc1234, i );
f4( currentVerticeIndex, edgePoints[hashBC], face.c, edgePoints[hashCD], face, bcd1234, i );
f4( currentVerticeIndex, edgePoints[hashCD], face.d, edgePoints[hashDA], face, cda1234, i );
f4( currentVerticeIndex, edgePoints[hashDA], face.a, edgePoints[hashAB], face, dab1234, i );
} else {
debug('face should be a face!', face);
}
}
newVertices = newPoints;
// debug('original ', oldGeometry.vertices.length, oldGeometry.faces.length );
// debug('new points', newPoints.length, 'faces', newFaces.length );
// Step 4
// For each original point P,
// take the average F of all n face points for faces touching P,
// and take the average R of all n edge midpoints for edges touching P,
// where each edge midpoint is the average of its two endpoint vertices.
// Move each original point to the point
var F = new THREE.Vector3();
var R = new THREE.Vector3();
var n;
for (i=0, il = originalPoints.length; i<il; i++) {
// (F + 2R + (n-3)P) / n
if (vertexEdgeMap[i]===undefined) continue;
F.set(0,0,0);
R.set(0,0,0);
var newPos = new THREE.Vector3(0,0,0);
var f =0;
for (j in vertexFaceMap[i]) {
F.addSelf(facePoints[j]);
f++;
}
var sharpEdgeCount = 0;
n = vertexEdgeMap[i].length;
for (j=0;j<n;j++) {
if (
sharpEdges[
edge_hash(vertexEdgeMap[i][j][0],vertexEdgeMap[i][j][1])
]) {
sharpEdgeCount++;
}
}
if ( sharpEdgeCount==2 ) {
continue;
// Do not move vertex if there's 2 connecting sharp edges.
}
/*
if (sharpEdgeCount>2) {
// TODO
}
*/
F.divideScalar(f);
for (j=0; j<n;j++) {
edge = vertexEdgeMap[i][j];
var midPt = originalPoints[edge[0]].clone().addSelf(originalPoints[edge[1]]).divideScalar(2);
R.addSelf(midPt);
// R.addSelf(originalPoints[edge[0]]);
// R.addSelf(originalPoints[edge[1]]);
}
R.divideScalar(n);
newPos.addSelf(originalPoints[i]);
newPos.multiplyScalar(n - 3);
newPos.addSelf(F);
newPos.addSelf(R.multiplyScalar(2));
newPos.divideScalar(n);
newVertices[i] = newPos;
}
var newGeometry = oldGeometry; // Let's pretend the old geometry is now new :P
newGeometry.vertices = newVertices;
newGeometry.faces = newFaces;
newGeometry.faceVertexUvs[ 0 ] = newUVs;
delete newGeometry.__tmpVertices; // makes __tmpVertices undefined :P
newGeometry.computeCentroids();
newGeometry.computeFaceNormals();
newGeometry.computeVertexNormals();
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.ImmediateRenderObject = function ( ) {
THREE.Object3D.call( this );
this.render = function( renderCallback ) {
};
};
THREE.ImmediateRenderObject.prototype = new THREE.Object3D();
THREE.ImmediateRenderObject.prototype.constructor = THREE.ImmediateRenderObject;
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.LensFlare = function ( texture, size, distance, blending, color ) {
THREE.Object3D.call( this );
this.lensFlares = [];
this.positionScreen = new THREE.Vector3();
this.customUpdateCallback = undefined;
if( texture !== undefined ) {
this.add( texture, size, distance, blending, color );
}
};
THREE.LensFlare.prototype = new THREE.Object3D();
THREE.LensFlare.prototype.constructor = THREE.LensFlare;
THREE.LensFlare.prototype.supr = THREE.Object3D.prototype;
/*
* Add: adds another flare
*/
THREE.LensFlare.prototype.add = function ( texture, size, distance, blending, color, opacity ) {
if( size === undefined ) size = -1;
if( distance === undefined ) distance = 0;
if( opacity === undefined ) opacity = 1;
if( color === undefined ) color = new THREE.Color( 0xffffff );
if( blending === undefined ) blending = THREE.NormalBlending;
distance = Math.min( distance, Math.max( 0, distance ) );
this.lensFlares.push( { texture: texture, // THREE.Texture
size: size, // size in pixels (-1 = use texture.width)
distance: distance, // distance (0-1) from light source (0=at light source)
x: 0, y: 0, z: 0, // screen position (-1 => 1) z = 0 is ontop z = 1 is back
scale: 1, // scale
rotation: 1, // rotation
opacity: opacity, // opacity
color: color, // color
blending: blending } ); // blending
};
/*
* Update lens flares update positions on all flares based on the screen position
* Set myLensFlare.customUpdateCallback to alter the flares in your project specific way.
*/
THREE.LensFlare.prototype.updateLensFlares = function () {
var f, fl = this.lensFlares.length;
var flare;
var vecX = -this.positionScreen.x * 2;
var vecY = -this.positionScreen.y * 2;
for( f = 0; f < fl; f ++ ) {
flare = this.lensFlares[ f ];
flare.x = this.positionScreen.x + vecX * flare.distance;
flare.y = this.positionScreen.y + vecY * flare.distance;
flare.wantedRotation = flare.x * Math.PI * 0.25;
flare.rotation += ( flare.wantedRotation - flare.rotation ) * 0.25;
}
};
/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.MorphBlendMesh = function( geometry, material ) {
THREE.Mesh.call( this, geometry, material );
this.animationsMap = {};
this.animationsList = [];
// prepare default animation
// (all frames played together in 1 second)
var numFrames = this.geometry.morphTargets.length;
var name = "__default";
var startFrame = 0;
var endFrame = numFrames - 1;
var fps = numFrames / 1;
this.createAnimation( name, startFrame, endFrame, fps );
this.setAnimationWeight( name, 1 );
};
THREE.MorphBlendMesh.prototype = new THREE.Mesh();
THREE.MorphBlendMesh.prototype.constructor = THREE.MorphBlendMesh;
THREE.MorphBlendMesh.prototype.createAnimation = function ( name, start, end, fps ) {
var animation = {
startFrame: start,
endFrame: end,
length: end - start + 1,
fps: fps,
duration: ( end - start ) / fps,
lastFrame: 0,
currentFrame: 0,
active: false,
time: 0,
direction: 1,
weight: 1,
directionBackwards: false,
mirroredLoop: false
};
this.animationsMap[ name ] = animation;
this.animationsList.push( animation );
};
THREE.MorphBlendMesh.prototype.autoCreateAnimations = function ( fps ) {
var pattern = /([a-z]+)(\d+)/;
var firstAnimation, frameRanges = {};
var geometry = this.geometry;
for ( var i = 0, il = geometry.morphTargets.length; i < il; i ++ ) {
var morph = geometry.morphTargets[ i ];
var chunks = morph.name.match( pattern );
if ( chunks && chunks.length > 1 ) {
var name = chunks[ 1 ];
var num = chunks[ 2 ];
if ( ! frameRanges[ name ] ) frameRanges[ name ] = { start: Infinity, end: -Infinity };
var range = frameRanges[ name ];
if ( i < range.start ) range.start = i;
if ( i > range.end ) range.end = i;
if ( ! firstAnimation ) firstAnimation = name;
}
}
for ( var name in frameRanges ) {
var range = frameRanges[ name ];
this.createAnimation( name, range.start, range.end, fps );
}
this.firstAnimation = firstAnimation;
};
THREE.MorphBlendMesh.prototype.setAnimationDirectionForward = function ( name ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.direction = 1;
animation.directionBackwards = false;
}
};
THREE.MorphBlendMesh.prototype.setAnimationDirectionBackward = function ( name ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.direction = -1;
animation.directionBackwards = true;
}
};
THREE.MorphBlendMesh.prototype.setAnimationFPS = function ( name, fps ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.fps = fps;
animation.duration = ( animation.end - animation.start ) / animation.fps;
}
};
THREE.MorphBlendMesh.prototype.setAnimationDuration = function ( name, duration ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.duration = duration;
animation.fps = ( animation.end - animation.start ) / animation.duration;
}
};
THREE.MorphBlendMesh.prototype.setAnimationWeight = function ( name, weight ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.weight = weight;
}
};
THREE.MorphBlendMesh.prototype.setAnimationTime = function ( name, time ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.time = time;
}
};
THREE.MorphBlendMesh.prototype.getAnimationTime = function ( name ) {
var time = 0;
var animation = this.animationsMap[ name ];
if ( animation ) {
time = animation.time;
}
return time;
};
THREE.MorphBlendMesh.prototype.getAnimationDuration = function ( name ) {
var duration = -1;
var animation = this.animationsMap[ name ];
if ( animation ) {
duration = animation.duration;
}
return duration;
};
THREE.MorphBlendMesh.prototype.playAnimation = function ( name ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.time = 0;
animation.active = true;
} else {
console.warn( "animation[" + name + "] undefined" );
}
};
THREE.MorphBlendMesh.prototype.stopAnimation = function ( name ) {
var animation = this.animationsMap[ name ];
if ( animation ) {
animation.active = false;
}
};
THREE.MorphBlendMesh.prototype.update = function ( delta ) {
for ( var i = 0, il = this.animationsList.length; i < il; i ++ ) {
var animation = this.animationsList[ i ];
if ( ! animation.active ) continue;
var frameTime = animation.duration / animation.length;
animation.time += animation.direction * delta;
if ( animation.mirroredLoop ) {
if ( animation.time > animation.duration || animation.time < 0 ) {
animation.direction *= -1;
if ( animation.time > animation.duration ) {
animation.time = animation.duration;
animation.directionBackwards = true;
}
if ( animation.time < 0 ) {
animation.time = 0;
animation.directionBackwards = false;
}
}
} else {
animation.time = animation.time % animation.duration;
if ( animation.time < 0 ) animation.time += animation.duration;
}
var keyframe = animation.startFrame + THREE.Math.clamp( Math.floor( animation.time / frameTime ), 0, animation.length - 1 );
var weight = animation.weight;
if ( keyframe !== animation.currentFrame ) {
this.morphTargetInfluences[ animation.lastFrame ] = 0;
this.morphTargetInfluences[ animation.currentFrame ] = 1 * weight;
this.morphTargetInfluences[ keyframe ] = 0;
animation.lastFrame = animation.currentFrame;
animation.currentFrame = keyframe;
}
var mix = ( animation.time % frameTime ) / frameTime;
if ( animation.directionBackwards ) mix = 1 - mix;
this.morphTargetInfluences[ animation.currentFrame ] = mix * weight;
this.morphTargetInfluences[ animation.lastFrame ] = ( 1 - mix ) * weight;
}
};
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.LensFlarePlugin = function ( ) {
var _gl, _renderer, _lensFlare = {};
this.init = function ( renderer ) {
_gl = renderer.context;
_renderer = renderer;
_lensFlare.vertices = new Float32Array( 8 + 8 );
_lensFlare.faces = new Uint16Array( 6 );
var i = 0;
_lensFlare.vertices[ i++ ] = -1; _lensFlare.vertices[ i++ ] = -1; // vertex
_lensFlare.vertices[ i++ ] = 0; _lensFlare.vertices[ i++ ] = 0; // uv... etc.
_lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = -1;
_lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 0;
_lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 1;
_lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 1;
_lensFlare.vertices[ i++ ] = -1; _lensFlare.vertices[ i++ ] = 1;
_lensFlare.vertices[ i++ ] = 0; _lensFlare.vertices[ i++ ] = 1;
i = 0;
_lensFlare.faces[ i++ ] = 0; _lensFlare.faces[ i++ ] = 1; _lensFlare.faces[ i++ ] = 2;
_lensFlare.faces[ i++ ] = 0; _lensFlare.faces[ i++ ] = 2; _lensFlare.faces[ i++ ] = 3;
// buffers
_lensFlare.vertexBuffer = _gl.createBuffer();
_lensFlare.elementBuffer = _gl.createBuffer();
_gl.bindBuffer( _gl.ARRAY_BUFFER, _lensFlare.vertexBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, _lensFlare.vertices, _gl.STATIC_DRAW );
_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _lensFlare.elementBuffer );
_gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, _lensFlare.faces, _gl.STATIC_DRAW );
// textures
_lensFlare.tempTexture = _gl.createTexture();
_lensFlare.occlusionTexture = _gl.createTexture();
_gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.tempTexture );
_gl.texImage2D( _gl.TEXTURE_2D, 0, _gl.RGB, 16, 16, 0, _gl.RGB, _gl.UNSIGNED_BYTE, null );
_gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE );
_gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE );
_gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MAG_FILTER, _gl.NEAREST );
_gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MIN_FILTER, _gl.NEAREST );
_gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.occlusionTexture );
_gl.texImage2D( _gl.TEXTURE_2D, 0, _gl.RGBA, 16, 16, 0, _gl.RGBA, _gl.UNSIGNED_BYTE, null );
_gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE );
_gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE );
_gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MAG_FILTER, _gl.NEAREST );
_gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MIN_FILTER, _gl.NEAREST );
if ( _gl.getParameter( _gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ) <= 0 ) {
_lensFlare.hasVertexTexture = false;
_lensFlare.program = createProgram( THREE.ShaderFlares[ "lensFlare" ] );
} else {
_lensFlare.hasVertexTexture = true;
_lensFlare.program = createProgram( THREE.ShaderFlares[ "lensFlareVertexTexture" ] );
}
_lensFlare.attributes = {};
_lensFlare.uniforms = {};
_lensFlare.attributes.vertex = _gl.getAttribLocation ( _lensFlare.program, "position" );
_lensFlare.attributes.uv = _gl.getAttribLocation ( _lensFlare.program, "uv" );
_lensFlare.uniforms.renderType = _gl.getUniformLocation( _lensFlare.program, "renderType" );
_lensFlare.uniforms.map = _gl.getUniformLocation( _lensFlare.program, "map" );
_lensFlare.uniforms.occlusionMap = _gl.getUniformLocation( _lensFlare.program, "occlusionMap" );
_lensFlare.uniforms.opacity = _gl.getUniformLocation( _lensFlare.program, "opacity" );
_lensFlare.uniforms.color = _gl.getUniformLocation( _lensFlare.program, "color" );
_lensFlare.uniforms.scale = _gl.getUniformLocation( _lensFlare.program, "scale" );
_lensFlare.uniforms.rotation = _gl.getUniformLocation( _lensFlare.program, "rotation" );
_lensFlare.uniforms.screenPosition = _gl.getUniformLocation( _lensFlare.program, "screenPosition" );
_lensFlare.attributesEnabled = false;
};
/*
* Render lens flares
* Method: renders 16x16 0xff00ff-colored points scattered over the light source area,
* reads these back and calculates occlusion.
* Then _lensFlare.update_lensFlares() is called to re-position and
* update transparency of flares. Then they are rendered.
*
*/
this.render = function ( scene, camera, viewportWidth, viewportHeight ) {
var flares = scene.__webglFlares,
nFlares = flares.length;
if ( ! nFlares ) return;
var tempPosition = new THREE.Vector3();
var invAspect = viewportHeight / viewportWidth,
halfViewportWidth = viewportWidth * 0.5,
halfViewportHeight = viewportHeight * 0.5;
var size = 16 / viewportHeight,
scale = new THREE.Vector2( size * invAspect, size );
var screenPosition = new THREE.Vector3( 1, 1, 0 ),
screenPositionPixels = new THREE.Vector2( 1, 1 );
var uniforms = _lensFlare.uniforms,
attributes = _lensFlare.attributes;
// set _lensFlare program and reset blending
_gl.useProgram( _lensFlare.program );
if ( ! _lensFlare.attributesEnabled ) {
_gl.enableVertexAttribArray( _lensFlare.attributes.vertex );
_gl.enableVertexAttribArray( _lensFlare.attributes.uv );
_lensFlare.attributesEnabled = true;
}
// loop through all lens flares to update their occlusion and positions
// setup gl and common used attribs/unforms
_gl.uniform1i( uniforms.occlusionMap, 0 );
_gl.uniform1i( uniforms.map, 1 );
_gl.bindBuffer( _gl.ARRAY_BUFFER, _lensFlare.vertexBuffer );
_gl.vertexAttribPointer( attributes.vertex, 2, _gl.FLOAT, false, 2 * 8, 0 );
_gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 2 * 8, 8 );
_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _lensFlare.elementBuffer );
_gl.disable( _gl.CULL_FACE );
_gl.depthMask( false );
var i, j, jl, flare, sprite;
for ( i = 0; i < nFlares; i ++ ) {
size = 16 / viewportHeight;
scale.set( size * invAspect, size );
// calc object screen position
flare = flares[ i ];
tempPosition.set( flare.matrixWorld.elements[12], flare.matrixWorld.elements[13], flare.matrixWorld.elements[14] );
camera.matrixWorldInverse.multiplyVector3( tempPosition );
camera.projectionMatrix.multiplyVector3( tempPosition );
// setup arrays for gl programs
screenPosition.copy( tempPosition )
screenPositionPixels.x = screenPosition.x * halfViewportWidth + halfViewportWidth;
screenPositionPixels.y = screenPosition.y * halfViewportHeight + halfViewportHeight;
// screen cull
if ( _lensFlare.hasVertexTexture || (
screenPositionPixels.x > 0 &&
screenPositionPixels.x < viewportWidth &&
screenPositionPixels.y > 0 &&
screenPositionPixels.y < viewportHeight ) ) {
// save current RGB to temp texture
_gl.activeTexture( _gl.TEXTURE1 );
_gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.tempTexture );
_gl.copyTexImage2D( _gl.TEXTURE_2D, 0, _gl.RGB, screenPositionPixels.x - 8, screenPositionPixels.y - 8, 16, 16, 0 );
// render pink quad
_gl.uniform1i( uniforms.renderType, 0 );
_gl.uniform2f( uniforms.scale, scale.x, scale.y );
_gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z );
_gl.disable( _gl.BLEND );
_gl.enable( _gl.DEPTH_TEST );
_gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 );
// copy result to occlusionMap
_gl.activeTexture( _gl.TEXTURE0 );
_gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.occlusionTexture );
_gl.copyTexImage2D( _gl.TEXTURE_2D, 0, _gl.RGBA, screenPositionPixels.x - 8, screenPositionPixels.y - 8, 16, 16, 0 );
// restore graphics
_gl.uniform1i( uniforms.renderType, 1 );
_gl.disable( _gl.DEPTH_TEST );
_gl.activeTexture( _gl.TEXTURE1 );
_gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.tempTexture );
_gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 );
// update object positions
flare.positionScreen.copy( screenPosition )
if ( flare.customUpdateCallback ) {
flare.customUpdateCallback( flare );
} else {
flare.updateLensFlares();
}
// render flares
_gl.uniform1i( uniforms.renderType, 2 );
_gl.enable( _gl.BLEND );
for ( j = 0, jl = flare.lensFlares.length; j < jl; j ++ ) {
sprite = flare.lensFlares[ j ];
if ( sprite.opacity > 0.001 && sprite.scale > 0.001 ) {
screenPosition.x = sprite.x;
screenPosition.y = sprite.y;
screenPosition.z = sprite.z;
size = sprite.size * sprite.scale / viewportHeight;
scale.x = size * invAspect;
scale.y = size;
_gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z );
_gl.uniform2f( uniforms.scale, scale.x, scale.y );
_gl.uniform1f( uniforms.rotation, sprite.rotation );
_gl.uniform1f( uniforms.opacity, sprite.opacity );
_gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b );
_renderer.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst );
_renderer.setTexture( sprite.texture, 1 );
_gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 );
}
}
}
}
// restore gl
_gl.enable( _gl.CULL_FACE );
_gl.enable( _gl.DEPTH_TEST );
_gl.depthMask( true );
};
function createProgram ( shader ) {
var program = _gl.createProgram();
var fragmentShader = _gl.createShader( _gl.FRAGMENT_SHADER );
var vertexShader = _gl.createShader( _gl.VERTEX_SHADER );
_gl.shaderSource( fragmentShader, shader.fragmentShader );
_gl.shaderSource( vertexShader, shader.vertexShader );
_gl.compileShader( fragmentShader );
_gl.compileShader( vertexShader );
_gl.attachShader( program, fragmentShader );
_gl.attachShader( program, vertexShader );
_gl.linkProgram( program );
return program;
};
};/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.ShadowMapPlugin = function ( ) {
var _gl,
_renderer,
_depthMaterial, _depthMaterialMorph,
_frustum = new THREE.Frustum(),
_projScreenMatrix = new THREE.Matrix4(),
_min = new THREE.Vector3(),
_max = new THREE.Vector3();
this.init = function ( renderer ) {
_gl = renderer.context;
_renderer = renderer;
var depthShader = THREE.ShaderLib[ "depthRGBA" ];
var depthUniforms = THREE.UniformsUtils.clone( depthShader.uniforms );
_depthMaterial = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms } );
_depthMaterialMorph = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms, morphTargets: true } );
_depthMaterial._shadowPass = true;
_depthMaterialMorph._shadowPass = true;
};
this.render = function ( scene, camera ) {
if ( ! ( _renderer.shadowMapEnabled && _renderer.shadowMapAutoUpdate ) ) return;
this.update( scene, camera );
};
this.update = function ( scene, camera ) {
var i, il, j, jl, n,
shadowMap, shadowMatrix, shadowCamera,
program, buffer, material,
webglObject, object, light,
renderList,
lights = [],
k = 0,
fog = null;
// set GL state for depth map
_gl.clearColor( 1, 1, 1, 1 );
_gl.disable( _gl.BLEND );
_gl.enable( _gl.CULL_FACE );
if ( _renderer.shadowMapCullFrontFaces ) {
_gl.cullFace( _gl.FRONT );
} else {
_gl.cullFace( _gl.BACK );
}
_renderer.setDepthTest( true );
// preprocess lights
// - skip lights that are not casting shadows
// - create virtual lights for cascaded shadow maps
for ( i = 0, il = scene.__lights.length; i < il; i ++ ) {
light = scene.__lights[ i ];
if ( ! light.castShadow ) continue;
if ( ( light instanceof THREE.DirectionalLight ) && light.shadowCascade ) {
for ( n = 0; n < light.shadowCascadeCount; n ++ ) {
var virtualLight;
if ( ! light.shadowCascadeArray[ n ] ) {
virtualLight = createVirtualLight( light, n );
virtualLight.originalCamera = camera;
var gyro = new THREE.Gyroscope();
gyro.position = light.shadowCascadeOffset;
gyro.add( virtualLight );
gyro.add( virtualLight.target );
camera.add( gyro );
light.shadowCascadeArray[ n ] = virtualLight;
console.log( "Created virtualLight", virtualLight );
} else {
virtualLight = light.shadowCascadeArray[ n ];
}
updateVirtualLight( light, n );
lights[ k ] = virtualLight;
k ++;
}
} else {
lights[ k ] = light;
k ++;
}
}
// render depth map
for ( i = 0, il = lights.length; i < il; i ++ ) {
light = lights[ i ];
if ( ! light.shadowMap ) {
var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat };
light.shadowMap = new THREE.WebGLRenderTarget( light.shadowMapWidth, light.shadowMapHeight, pars );
light.shadowMapSize = new THREE.Vector2( light.shadowMapWidth, light.shadowMapHeight );
light.shadowMatrix = new THREE.Matrix4();
}
if ( ! light.shadowCamera ) {
if ( light instanceof THREE.SpotLight ) {
light.shadowCamera = new THREE.PerspectiveCamera( light.shadowCameraFov, light.shadowMapWidth / light.shadowMapHeight, light.shadowCameraNear, light.shadowCameraFar );
} else if ( light instanceof THREE.DirectionalLight ) {
light.shadowCamera = new THREE.OrthographicCamera( light.shadowCameraLeft, light.shadowCameraRight, light.shadowCameraTop, light.shadowCameraBottom, light.shadowCameraNear, light.shadowCameraFar );
} else {
console.error( "Unsupported light type for shadow" );
continue;
}
scene.add( light.shadowCamera );
if ( _renderer.autoUpdateScene ) scene.updateMatrixWorld();
}
if ( light.shadowCameraVisible && ! light.cameraHelper ) {
light.cameraHelper = new THREE.CameraHelper( light.shadowCamera );
light.shadowCamera.add( light.cameraHelper );
}
if ( light.isVirtual && virtualLight.originalCamera == camera ) {
updateShadowCamera( camera, light );
}
shadowMap = light.shadowMap;
shadowMatrix = light.shadowMatrix;
shadowCamera = light.shadowCamera;
shadowCamera.position.copy( light.matrixWorld.getPosition() );
shadowCamera.lookAt( light.target.matrixWorld.getPosition() );
shadowCamera.updateMatrixWorld();
shadowCamera.matrixWorldInverse.getInverse( shadowCamera.matrixWorld );
if ( light.cameraHelper ) light.cameraHelper.lines.visible = light.shadowCameraVisible;
if ( light.shadowCameraVisible ) light.cameraHelper.update();
// compute shadow matrix
shadowMatrix.set( 0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0 );
shadowMatrix.multiplySelf( shadowCamera.projectionMatrix );
shadowMatrix.multiplySelf( shadowCamera.matrixWorldInverse );
// update camera matrices and frustum
if ( ! shadowCamera._viewMatrixArray ) shadowCamera._viewMatrixArray = new Float32Array( 16 );
if ( ! shadowCamera._projectionMatrixArray ) shadowCamera._projectionMatrixArray = new Float32Array( 16 );
shadowCamera.matrixWorldInverse.flattenToArray( shadowCamera._viewMatrixArray );
shadowCamera.projectionMatrix.flattenToArray( shadowCamera._projectionMatrixArray );
_projScreenMatrix.multiply( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse );
_frustum.setFromMatrix( _projScreenMatrix );
// render shadow map
_renderer.setRenderTarget( shadowMap );
_renderer.clear();
// set object matrices & frustum culling
renderList = scene.__webglObjects;
for ( j = 0, jl = renderList.length; j < jl; j ++ ) {
webglObject = renderList[ j ];
object = webglObject.object;
webglObject.render = false;
if ( object.visible && object.castShadow ) {
if ( ! ( object instanceof THREE.Mesh ) || ! ( object.frustumCulled ) || _frustum.contains( object ) ) {
object._modelViewMatrix.multiply( shadowCamera.matrixWorldInverse, object.matrixWorld);
webglObject.render = true;
}
}
}
// render regular objects
for ( j = 0, jl = renderList.length; j < jl; j ++ ) {
webglObject = renderList[ j ];
if ( webglObject.render ) {
object = webglObject.object;
buffer = webglObject.buffer;
// culling is overriden globally for all objects
// while rendering depth map
//_renderer.setObjectFaces( object );
if ( object.customDepthMaterial ) {
material = object.customDepthMaterial;
} else if ( object.geometry.morphTargets.length ) {
material = _depthMaterialMorph;
} else {
material = _depthMaterial;
}
if ( buffer instanceof THREE.BufferGeometry ) {
_renderer.renderBufferDirect( shadowCamera, scene.__lights, fog, material, buffer, object );
} else {
_renderer.renderBuffer( shadowCamera, scene.__lights, fog, material, buffer, object );
}
}
}
// set matrices and render immediate objects
renderList = scene.__webglObjectsImmediate;
for ( j = 0, jl = renderList.length; j < jl; j ++ ) {
webglObject = renderList[ j ];
object = webglObject.object;
if ( object.visible && object.castShadow ) {
object._modelViewMatrix.multiply( shadowCamera.matrixWorldInverse, object.matrixWorld);
_renderer.renderImmediateObject( shadowCamera, scene.__lights, fog, _depthMaterial, object );
}
}
}
// restore GL state
var clearColor = _renderer.getClearColor(),
clearAlpha = _renderer.getClearAlpha();
_gl.clearColor( clearColor.r, clearColor.g, clearColor.b, clearAlpha );
_gl.enable( _gl.BLEND );
if ( _renderer.shadowMapCullFrontFaces ) {
_gl.cullFace( _gl.BACK );
}
};
function createVirtualLight( light, cascade ) {
var virtualLight = new THREE.DirectionalLight();
virtualLight.isVirtual = true;
virtualLight.onlyShadow = true;
virtualLight.castShadow = true;
virtualLight.shadowCameraNear = light.shadowCameraNear;
virtualLight.shadowCameraFar = light.shadowCameraFar;
virtualLight.shadowCameraLeft = light.shadowCameraLeft;
virtualLight.shadowCameraRight = light.shadowCameraRight;
virtualLight.shadowCameraBottom = light.shadowCameraBottom;
virtualLight.shadowCameraTop = light.shadowCameraTop;
virtualLight.shadowCameraVisible = light.shadowCameraVisible;
virtualLight.shadowDarkness = light.shadowDarkness;
virtualLight.shadowBias = light.shadowCascadeBias[ cascade ];
virtualLight.shadowMapWidth = light.shadowCascadeWidth[ cascade ];
virtualLight.shadowMapHeight = light.shadowCascadeHeight[ cascade ];
virtualLight.pointsWorld = [];
virtualLight.pointsFrustum = [];
var pointsWorld = virtualLight.pointsWorld,
pointsFrustum = virtualLight.pointsFrustum;
for ( var i = 0; i < 8; i ++ ) {
pointsWorld[ i ] = new THREE.Vector3();
pointsFrustum[ i ] = new THREE.Vector3();
}
var nearZ = light.shadowCascadeNearZ[ cascade ];
var farZ = light.shadowCascadeFarZ[ cascade ];
pointsFrustum[ 0 ].set( -1, -1, nearZ );
pointsFrustum[ 1 ].set( 1, -1, nearZ );
pointsFrustum[ 2 ].set( -1, 1, nearZ );
pointsFrustum[ 3 ].set( 1, 1, nearZ );
pointsFrustum[ 4 ].set( -1, -1, farZ );
pointsFrustum[ 5 ].set( 1, -1, farZ );
pointsFrustum[ 6 ].set( -1, 1, farZ );
pointsFrustum[ 7 ].set( 1, 1, farZ );
return virtualLight;
}
// Synchronize virtual light with the original light
function updateVirtualLight( light, cascade ) {
var virtualLight = light.shadowCascadeArray[ cascade ];
virtualLight.position.copy( light.position );
virtualLight.target.position.copy( light.target.position );
virtualLight.lookAt( virtualLight.target );
virtualLight.shadowCameraVisible = light.shadowCameraVisible;
virtualLight.shadowDarkness = light.shadowDarkness;
virtualLight.shadowBias = light.shadowCascadeBias[ cascade ];
var nearZ = light.shadowCascadeNearZ[ cascade ];
var farZ = light.shadowCascadeFarZ[ cascade ];
var pointsFrustum = virtualLight.pointsFrustum;
pointsFrustum[ 0 ].z = nearZ;
pointsFrustum[ 1 ].z = nearZ;
pointsFrustum[ 2 ].z = nearZ;
pointsFrustum[ 3 ].z = nearZ;
pointsFrustum[ 4 ].z = farZ;
pointsFrustum[ 5 ].z = farZ;
pointsFrustum[ 6 ].z = farZ;
pointsFrustum[ 7 ].z = farZ;
}
// Fit shadow camera's ortho frustum to camera frustum
function updateShadowCamera( camera, light ) {
var shadowCamera = light.shadowCamera,
pointsFrustum = light.pointsFrustum,
pointsWorld = light.pointsWorld;
_min.set( Infinity, Infinity, Infinity );
_max.set( -Infinity, -Infinity, -Infinity );
for ( var i = 0; i < 8; i ++ ) {
var p = pointsWorld[ i ];
p.copy( pointsFrustum[ i ] );
THREE.ShadowMapPlugin.__projector.unprojectVector( p, camera );
shadowCamera.matrixWorldInverse.multiplyVector3( p );
if ( p.x < _min.x ) _min.x = p.x;
if ( p.x > _max.x ) _max.x = p.x;
if ( p.y < _min.y ) _min.y = p.y;
if ( p.y > _max.y ) _max.y = p.y;
if ( p.z < _min.z ) _min.z = p.z;
if ( p.z > _max.z ) _max.z = p.z;
}
shadowCamera.left = _min.x;
shadowCamera.right = _max.x;
shadowCamera.top = _max.y;
shadowCamera.bottom = _min.y;
// can't really fit near/far
//shadowCamera.near = _min.z;
//shadowCamera.far = _max.z;
shadowCamera.updateProjectionMatrix();
}
};
THREE.ShadowMapPlugin.__projector = new THREE.Projector();
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
THREE.SpritePlugin = function ( ) {
var _gl, _renderer, _sprite = {};
this.init = function ( renderer ) {
_gl = renderer.context;
_renderer = renderer;
_sprite.vertices = new Float32Array( 8 + 8 );
_sprite.faces = new Uint16Array( 6 );
var i = 0;
_sprite.vertices[ i++ ] = -1; _sprite.vertices[ i++ ] = -1; // vertex 0
_sprite.vertices[ i++ ] = 0; _sprite.vertices[ i++ ] = 1; // uv 0
_sprite.vertices[ i++ ] = 1; _sprite.vertices[ i++ ] = -1; // vertex 1
_sprite.vertices[ i++ ] = 1; _sprite.vertices[ i++ ] = 1; // uv 1
_sprite.vertices[ i++ ] = 1; _sprite.vertices[ i++ ] = 1; // vertex 2
_sprite.vertices[ i++ ] = 1; _sprite.vertices[ i++ ] = 0; // uv 2
_sprite.vertices[ i++ ] = -1; _sprite.vertices[ i++ ] = 1; // vertex 3
_sprite.vertices[ i++ ] = 0; _sprite.vertices[ i++ ] = 0; // uv 3
i = 0;
_sprite.faces[ i++ ] = 0; _sprite.faces[ i++ ] = 1; _sprite.faces[ i++ ] = 2;
_sprite.faces[ i++ ] = 0; _sprite.faces[ i++ ] = 2; _sprite.faces[ i++ ] = 3;
_sprite.vertexBuffer = _gl.createBuffer();
_sprite.elementBuffer = _gl.createBuffer();
_gl.bindBuffer( _gl.ARRAY_BUFFER, _sprite.vertexBuffer );
_gl.bufferData( _gl.ARRAY_BUFFER, _sprite.vertices, _gl.STATIC_DRAW );
_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _sprite.elementBuffer );
_gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, _sprite.faces, _gl.STATIC_DRAW );
_sprite.program = createProgram( THREE.ShaderSprite[ "sprite" ] );
_sprite.attributes = {};
_sprite.uniforms = {};
_sprite.attributes.position = _gl.getAttribLocation ( _sprite.program, "position" );
_sprite.attributes.uv = _gl.getAttribLocation ( _sprite.program, "uv" );
_sprite.uniforms.uvOffset = _gl.getUniformLocation( _sprite.program, "uvOffset" );
_sprite.uniforms.uvScale = _gl.getUniformLocation( _sprite.program, "uvScale" );
_sprite.uniforms.rotation = _gl.getUniformLocation( _sprite.program, "rotation" );
_sprite.uniforms.scale = _gl.getUniformLocation( _sprite.program, "scale" );
_sprite.uniforms.alignment = _gl.getUniformLocation( _sprite.program, "alignment" );
_sprite.uniforms.color = _gl.getUniformLocation( _sprite.program, "color" );
_sprite.uniforms.map = _gl.getUniformLocation( _sprite.program, "map" );
_sprite.uniforms.opacity = _gl.getUniformLocation( _sprite.program, "opacity" );
_sprite.uniforms.useScreenCoordinates = _gl.getUniformLocation( _sprite.program, "useScreenCoordinates" );
_sprite.uniforms.affectedByDistance = _gl.getUniformLocation( _sprite.program, "affectedByDistance" );
_sprite.uniforms.screenPosition = _gl.getUniformLocation( _sprite.program, "screenPosition" );
_sprite.uniforms.modelViewMatrix = _gl.getUniformLocation( _sprite.program, "modelViewMatrix" );
_sprite.uniforms.projectionMatrix = _gl.getUniformLocation( _sprite.program, "projectionMatrix" );
_sprite.attributesEnabled = false;
};
this.render = function ( scene, camera, viewportWidth, viewportHeight ) {
var sprites = scene.__webglSprites,
nSprites = sprites.length;
if ( ! nSprites ) return;
var attributes = _sprite.attributes,
uniforms = _sprite.uniforms;
var invAspect = viewportHeight / viewportWidth;
var halfViewportWidth = viewportWidth * 0.5,
halfViewportHeight = viewportHeight * 0.5;
var mergeWith3D = true;
// setup gl
_gl.useProgram( _sprite.program );
if ( ! _sprite.attributesEnabled ) {
_gl.enableVertexAttribArray( attributes.position );
_gl.enableVertexAttribArray( attributes.uv );
_sprite.attributesEnabled = true;
}
_gl.disable( _gl.CULL_FACE );
_gl.enable( _gl.BLEND );
_gl.depthMask( true );
_gl.bindBuffer( _gl.ARRAY_BUFFER, _sprite.vertexBuffer );
_gl.vertexAttribPointer( attributes.position, 2, _gl.FLOAT, false, 2 * 8, 0 );
_gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 2 * 8, 8 );
_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _sprite.elementBuffer );
_gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera._projectionMatrixArray );
_gl.activeTexture( _gl.TEXTURE0 );
_gl.uniform1i( uniforms.map, 0 );
// update positions and sort
var i, sprite, screenPosition, size, scale = [];
for( i = 0; i < nSprites; i ++ ) {
sprite = sprites[ i ];
if ( ! sprite.visible || sprite.opacity === 0 ) continue;
if( ! sprite.useScreenCoordinates ) {
sprite._modelViewMatrix.multiply( camera.matrixWorldInverse, sprite.matrixWorld);
sprite.z = - sprite._modelViewMatrix.elements[14];
} else {
sprite.z = - sprite.position.z;
}
}
sprites.sort( painterSort );
// render all sprites
for( i = 0; i < nSprites; i ++ ) {
sprite = sprites[ i ];
if ( ! sprite.visible || sprite.opacity === 0 ) continue;
if ( sprite.map && sprite.map.image && sprite.map.image.width ) {
if ( sprite.useScreenCoordinates ) {
_gl.uniform1i( uniforms.useScreenCoordinates, 1 );
_gl.uniform3f( uniforms.screenPosition, ( sprite.position.x - halfViewportWidth ) / halfViewportWidth,
( halfViewportHeight - sprite.position.y ) / halfViewportHeight,
Math.max( 0, Math.min( 1, sprite.position.z ) ) );
} else {
_gl.uniform1i( uniforms.useScreenCoordinates, 0 );
_gl.uniform1i( uniforms.affectedByDistance, sprite.affectedByDistance ? 1 : 0 );
_gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite._modelViewMatrix.elements);
}
size = sprite.map.image.width / ( sprite.scaleByViewport ? viewportHeight : 1 );
scale[ 0 ] = size * invAspect * sprite.scale.x;
scale[ 1 ] = size * sprite.scale.y;
_gl.uniform2f( uniforms.uvScale, sprite.uvScale.x, sprite.uvScale.y );
_gl.uniform2f( uniforms.uvOffset, sprite.uvOffset.x, sprite.uvOffset.y );
_gl.uniform2f( uniforms.alignment, sprite.alignment.x, sprite.alignment.y );
_gl.uniform1f( uniforms.opacity, sprite.opacity );
_gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b );
_gl.uniform1f( uniforms.rotation, sprite.rotation );
_gl.uniform2fv( uniforms.scale, scale );
if ( sprite.mergeWith3D && !mergeWith3D ) {
_gl.enable( _gl.DEPTH_TEST );
mergeWith3D = true;
} else if ( ! sprite.mergeWith3D && mergeWith3D ) {
_gl.disable( _gl.DEPTH_TEST );
mergeWith3D = false;
}
_renderer.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst );
_renderer.setTexture( sprite.map, 0 );
_gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 );
}
}
// restore gl
_gl.enable( _gl.CULL_FACE );
_gl.enable( _gl.DEPTH_TEST );
_gl.depthMask( true );
};
function createProgram ( shader ) {
var program = _gl.createProgram();
var fragmentShader = _gl.createShader( _gl.FRAGMENT_SHADER );
var vertexShader = _gl.createShader( _gl.VERTEX_SHADER );
_gl.shaderSource( fragmentShader, shader.fragmentShader );
_gl.shaderSource( vertexShader, shader.vertexShader );
_gl.compileShader( fragmentShader );
_gl.compileShader( vertexShader );
_gl.attachShader( program, fragmentShader );
_gl.attachShader( program, vertexShader );
_gl.linkProgram( program );
return program;
};
function painterSort ( a, b ) {
return b.z - a.z;
};
};/**
* @author alteredq / http://alteredqualia.com/
*/
THREE.DepthPassPlugin = function ( ) {
this.enabled = false;
this.renderTarget = null;
var _gl,
_renderer,
_depthMaterial, _depthMaterialMorph,
_frustum = new THREE.Frustum(),
_projScreenMatrix = new THREE.Matrix4();
this.init = function ( renderer ) {
_gl = renderer.context;
_renderer = renderer;
var depthShader = THREE.ShaderLib[ "depthRGBA" ];
var depthUniforms = THREE.UniformsUtils.clone( depthShader.uniforms );
_depthMaterial = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms } );
_depthMaterialMorph = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms, morphTargets: true } );
_depthMaterial._shadowPass = true;
_depthMaterialMorph._shadowPass = true;
};
this.render = function ( scene, camera ) {
if ( ! this.enabled ) return;
this.update( scene, camera );
};
this.update = function ( scene, camera ) {
var i, il, j, jl, n,
program, buffer, material,
webglObject, object, light,
renderList,
fog = null;
// set GL state for depth map
_gl.clearColor( 1, 1, 1, 1 );
_gl.disable( _gl.BLEND );
_renderer.setDepthTest( true );
// update scene
if ( _renderer.autoUpdateScene ) scene.updateMatrixWorld();
// update camera matrices and frustum
if ( ! camera._viewMatrixArray ) camera._viewMatrixArray = new Float32Array( 16 );
if ( ! camera._projectionMatrixArray ) camera._projectionMatrixArray = new Float32Array( 16 );
camera.matrixWorldInverse.getInverse( camera.matrixWorld );
camera.matrixWorldInverse.flattenToArray( camera._viewMatrixArray );
camera.projectionMatrix.flattenToArray( camera._projectionMatrixArray );
_projScreenMatrix.multiply( camera.projectionMatrix, camera.matrixWorldInverse );
_frustum.setFromMatrix( _projScreenMatrix );
// render depth map
_renderer.setRenderTarget( this.renderTarget );
_renderer.clear();
// set object matrices & frustum culling
renderList = scene.__webglObjects;
for ( j = 0, jl = renderList.length; j < jl; j ++ ) {
webglObject = renderList[ j ];
object = webglObject.object;
webglObject.render = false;
if ( object.visible ) {
if ( ! ( object instanceof THREE.Mesh ) || ! ( object.frustumCulled ) || _frustum.contains( object ) ) {
//object.matrixWorld.flattenToArray( object._objectMatrixArray );
object._modelViewMatrix.multiply( camera.matrixWorldInverse, object.matrixWorld);
webglObject.render = true;
}
}
}
// render regular objects
for ( j = 0, jl = renderList.length; j < jl; j ++ ) {
webglObject = renderList[ j ];
if ( webglObject.render ) {
object = webglObject.object;
buffer = webglObject.buffer;
_renderer.setObjectFaces( object );
if ( object.customDepthMaterial ) {
material = object.customDepthMaterial;
} else if ( object.geometry.morphTargets.length ) {
material = _depthMaterialMorph;
} else {
material = _depthMaterial;
}
if ( buffer instanceof THREE.BufferGeometry ) {
_renderer.renderBufferDirect( camera, scene.__lights, fog, material, buffer, object );
} else {
_renderer.renderBuffer( camera, scene.__lights, fog, material, buffer, object );
}
}
}
// set matrices and render immediate objects
renderList = scene.__webglObjectsImmediate;
for ( j = 0, jl = renderList.length; j < jl; j ++ ) {
webglObject = renderList[ j ];
object = webglObject.object;
if ( object.visible && object.castShadow ) {
/*
if ( object.matrixAutoUpdate ) {
object.matrixWorld.flattenToArray( object._objectMatrixArray );
}
*/
object._modelViewMatrix.multiply( camera.matrixWorldInverse, object.matrixWorld);
_renderer.renderImmediateObject( camera, scene.__lights, fog, _depthMaterial, object );
}
}
// restore GL state
var clearColor = _renderer.getClearColor(),
clearAlpha = _renderer.getClearAlpha();
_gl.clearColor( clearColor.r, clearColor.g, clearColor.b, clearAlpha );
_gl.enable( _gl.BLEND );
};
};
/**
* @author mikael emtinger / http://gomo.se/
*
*/
THREE.ShaderFlares = {
'lensFlareVertexTexture': {
vertexShader: [
"uniform vec3 screenPosition;",
"uniform vec2 scale;",
"uniform float rotation;",
"uniform int renderType;",
"uniform sampler2D occlusionMap;",
"attribute vec2 position;",
"attribute vec2 uv;",
"varying vec2 vUV;",
"varying float vVisibility;",
"void main() {",
"vUV = uv;",
"vec2 pos = position;",
"if( renderType == 2 ) {",
"vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) ) +",
"texture2D( occlusionMap, vec2( 0.5, 0.1 ) ) +",
"texture2D( occlusionMap, vec2( 0.9, 0.1 ) ) +",
"texture2D( occlusionMap, vec2( 0.9, 0.5 ) ) +",
"texture2D( occlusionMap, vec2( 0.9, 0.9 ) ) +",
"texture2D( occlusionMap, vec2( 0.5, 0.9 ) ) +",
"texture2D( occlusionMap, vec2( 0.1, 0.9 ) ) +",
"texture2D( occlusionMap, vec2( 0.1, 0.5 ) ) +",
"texture2D( occlusionMap, vec2( 0.5, 0.5 ) );",
"vVisibility = ( visibility.r / 9.0 ) *",
"( 1.0 - visibility.g / 9.0 ) *",
"( visibility.b / 9.0 ) *",
"( 1.0 - visibility.a / 9.0 );",
"pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;",
"pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;",
"}",
"gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );",
"}"
].join( "\n" ),
fragmentShader: [
"precision mediump float;",
"uniform sampler2D map;",
"uniform float opacity;",
"uniform int renderType;",
"uniform vec3 color;",
"varying vec2 vUV;",
"varying float vVisibility;",
"void main() {",
// pink square
"if( renderType == 0 ) {",
"gl_FragColor = vec4( 1.0, 0.0, 1.0, 0.0 );",
// restore
"} else if( renderType == 1 ) {",
"gl_FragColor = texture2D( map, vUV );",
// flare
"} else {",
"vec4 texture = texture2D( map, vUV );",
"texture.a *= opacity * vVisibility;",
"gl_FragColor = texture;",
"gl_FragColor.rgb *= color;",
"}",
"}"
].join( "\n" )
},
'lensFlare': {
vertexShader: [
"uniform vec3 screenPosition;",
"uniform vec2 scale;",
"uniform float rotation;",
"uniform int renderType;",
"attribute vec2 position;",
"attribute vec2 uv;",
"varying vec2 vUV;",
"void main() {",
"vUV = uv;",
"vec2 pos = position;",
"if( renderType == 2 ) {",
"pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;",
"pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;",
"}",
"gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );",
"}"
].join( "\n" ),
fragmentShader: [
"precision mediump float;",
"uniform sampler2D map;",
"uniform sampler2D occlusionMap;",
"uniform float opacity;",
"uniform int renderType;",
"uniform vec3 color;",
"varying vec2 vUV;",
"void main() {",
// pink square
"if( renderType == 0 ) {",
"gl_FragColor = vec4( texture2D( map, vUV ).rgb, 0.0 );",
// restore
"} else if( renderType == 1 ) {",
"gl_FragColor = texture2D( map, vUV );",
// flare
"} else {",
"float visibility = texture2D( occlusionMap, vec2( 0.5, 0.1 ) ).a +",
"texture2D( occlusionMap, vec2( 0.9, 0.5 ) ).a +",
"texture2D( occlusionMap, vec2( 0.5, 0.9 ) ).a +",
"texture2D( occlusionMap, vec2( 0.1, 0.5 ) ).a;",
"visibility = ( 1.0 - visibility / 4.0 );",
"vec4 texture = texture2D( map, vUV );",
"texture.a *= opacity * visibility;",
"gl_FragColor = texture;",
"gl_FragColor.rgb *= color;",
"}",
"}"
].join( "\n" )
}
};
/**
* @author mikael emtinger / http://gomo.se/
*
*/
THREE.ShaderSprite = {
'sprite': {
vertexShader: [
"uniform int useScreenCoordinates;",
"uniform int affectedByDistance;",
"uniform vec3 screenPosition;",
"uniform mat4 modelViewMatrix;",
"uniform mat4 projectionMatrix;",
"uniform float rotation;",
"uniform vec2 scale;",
"uniform vec2 alignment;",
"uniform vec2 uvOffset;",
"uniform vec2 uvScale;",
"attribute vec2 position;",
"attribute vec2 uv;",
"varying vec2 vUV;",
"void main() {",
"vUV = uvOffset + uv * uvScale;",
"vec2 alignedPosition = position + alignment;",
"vec2 rotatedPosition;",
"rotatedPosition.x = ( cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y ) * scale.x;",
"rotatedPosition.y = ( sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y ) * scale.y;",
"vec4 finalPosition;",
"if( useScreenCoordinates != 0 ) {",
"finalPosition = vec4( screenPosition.xy + rotatedPosition, screenPosition.z, 1.0 );",
"} else {",
"finalPosition = projectionMatrix * modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );",
"finalPosition.xy += rotatedPosition * ( affectedByDistance == 1 ? 1.0 : finalPosition.z );",
"}",
"gl_Position = finalPosition;",
"}"
].join( "\n" ),
fragmentShader: [
"precision mediump float;",
"uniform vec3 color;",
"uniform sampler2D map;",
"uniform float opacity;",
"varying vec2 vUV;",
"void main() {",
"vec4 texture = texture2D( map, vUV );",
"gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );",
"}"
].join( "\n" )
}
};
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment