Skip to content

Instantly share code, notes, and snippets.

@zeux
Created February 18, 2019 04:03
Show Gist options
  • Star 3 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save zeux/1171b770c105b11c3bde128e1d3a16ec to your computer and use it in GitHub Desktop.
Save zeux/1171b770c105b11c3bde128e1d3a16ec to your computer and use it in GitHub Desktop.
SIMD sloppy simplifier for "Flavors of SIMD" blog post
// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
#include "meshoptimizer.h"
#include <assert.h>
#include <float.h>
#include <math.h>
#include <string.h>
#ifndef TRACE
#define TRACE 0
#endif
#if TRACE
#include <stdio.h>
#endif
#include <immintrin.h>
// This work is based on:
// Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. 1997
// Michael Garland. Quadric-based polygonal surface simplification. 1999
// Peter Lindstrom. Out-of-Core Simplification of Large Polygonal Models. 2000
// Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat Pomeranets, Markus Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects. 2003
namespace meshopt
{
struct EdgeAdjacency
{
unsigned int* counts;
unsigned int* offsets;
unsigned int* data;
};
static void buildEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
{
size_t face_count = index_count / 3;
// allocate arrays
adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
adjacency.data = allocator.allocate<unsigned int>(index_count);
// fill edge counts
memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
for (size_t i = 0; i < index_count; ++i)
{
assert(indices[i] < vertex_count);
adjacency.counts[indices[i]]++;
}
// fill offset table
unsigned int offset = 0;
for (size_t i = 0; i < vertex_count; ++i)
{
adjacency.offsets[i] = offset;
offset += adjacency.counts[i];
}
assert(offset == index_count);
// fill edge data
for (size_t i = 0; i < face_count; ++i)
{
unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
adjacency.data[adjacency.offsets[a]++] = b;
adjacency.data[adjacency.offsets[b]++] = c;
adjacency.data[adjacency.offsets[c]++] = a;
}
// fix offsets that have been disturbed by the previous pass
for (size_t i = 0; i < vertex_count; ++i)
{
assert(adjacency.offsets[i] >= adjacency.counts[i]);
adjacency.offsets[i] -= adjacency.counts[i];
}
}
struct PositionHasher
{
const float* vertex_positions;
size_t vertex_stride_float;
size_t hash(unsigned int index) const
{
// MurmurHash2
const unsigned int m = 0x5bd1e995;
const int r = 24;
unsigned int h = 0;
const unsigned int* key = reinterpret_cast<const unsigned int*>(vertex_positions + index * vertex_stride_float);
for (size_t i = 0; i < 3; ++i)
{
unsigned int k = key[i];
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
}
return h;
}
bool equal(unsigned int lhs, unsigned int rhs) const
{
return memcmp(vertex_positions + lhs * vertex_stride_float, vertex_positions + rhs * vertex_stride_float, sizeof(float) * 3) == 0;
}
};
static size_t hashBuckets2(size_t count)
{
size_t buckets = 1;
while (buckets < count)
buckets *= 2;
return buckets;
}
template <typename T, typename Hash>
static T* hashLookup2(T* table, size_t buckets, const Hash& hash, const T& key, const T& empty)
{
assert(buckets > 0);
assert((buckets & (buckets - 1)) == 0);
size_t hashmod = buckets - 1;
size_t bucket = hash.hash(key) & hashmod;
for (size_t probe = 0; probe <= hashmod; ++probe)
{
T& item = table[bucket];
if (item == empty)
return &item;
if (hash.equal(item, key))
return &item;
// hash collision, quadratic probing
bucket = (bucket + probe + 1) & hashmod;
}
assert(false && "Hash table is full");
return 0;
}
static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator)
{
PositionHasher hasher = {vertex_positions_data, vertex_positions_stride / sizeof(float)};
size_t table_size = hashBuckets2(vertex_count);
unsigned int* table = allocator.allocate<unsigned int>(table_size);
memset(table, -1, table_size * sizeof(unsigned int));
// build forward remap: for each vertex, which other (canonical) vertex does it map to?
// we use position equivalence for this, and remap vertices to other existing vertices
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int index = unsigned(i);
unsigned int* entry = hashLookup2(table, table_size, hasher, index, ~0u);
if (*entry == ~0u)
*entry = index;
remap[index] = *entry;
}
// build wedge table: for each vertex, which other vertex is the next wedge that also maps to the same vertex?
// entries in table form a (cyclic) wedge loop per vertex; for manifold vertices, wedge[i] == remap[i] == i
for (size_t i = 0; i < vertex_count; ++i)
wedge[i] = unsigned(i);
for (size_t i = 0; i < vertex_count; ++i)
if (remap[i] != i)
{
unsigned int r = remap[i];
wedge[i] = wedge[r];
wedge[r] = unsigned(i);
}
}
enum VertexKind
{
Kind_Manifold, // not on an attribute seam, not on any boundary
Kind_Border, // not on an attribute seam, has exactly two open edges
Kind_Seam, // on an attribute seam with exactly two attribute seam edges
Kind_Locked, // none of the above; these vertices can't move
Kind_Count
};
// manifold vertices can collapse on anything except locked
// border/seam vertices can only be collapsed onto border/seam respectively
const unsigned char kCanCollapse[Kind_Count][Kind_Count] = {
{1, 1, 1, 1},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 0},
};
// if a vertex is manifold or seam, adjoining edges are guaranteed to have an opposite edge
// note that for seam edges, the opposite edge isn't present in the attribute-based topology
// but is present if you consider a position-only mesh variant
const unsigned char kHasOpposite[Kind_Count][Kind_Count] = {
{1, 1, 1, 1},
{1, 0, 1, 0},
{1, 1, 1, 1},
{1, 0, 1, 0},
};
static bool hasEdge(const EdgeAdjacency& adjacency, unsigned int a, unsigned int b)
{
unsigned int count = adjacency.counts[a];
const unsigned int* data = adjacency.data + adjacency.offsets[a];
for (size_t i = 0; i < count; ++i)
if (data[i] == b)
return true;
return false;
}
static unsigned int findWedgeEdge(const EdgeAdjacency& adjacency, const unsigned int* wedge, unsigned int a, unsigned int b)
{
unsigned int v = a;
do
{
if (hasEdge(adjacency, v, b))
return v;
v = wedge[v];
} while (v != a);
return ~0u;
}
static size_t countOpenEdges(const EdgeAdjacency& adjacency, unsigned int vertex, unsigned int* last = 0)
{
size_t result = 0;
unsigned int count = adjacency.counts[vertex];
const unsigned int* data = adjacency.data + adjacency.offsets[vertex];
for (size_t i = 0; i < count; ++i)
if (!hasEdge(adjacency, data[i], vertex))
{
result++;
if (last)
*last = data[i];
}
return result;
}
static void classifyVertices(unsigned char* result, unsigned int* loop, size_t vertex_count, const EdgeAdjacency& adjacency, const unsigned int* remap, const unsigned int* wedge)
{
for (size_t i = 0; i < vertex_count; ++i)
loop[i] = ~0u;
for (size_t i = 0; i < vertex_count; ++i)
{
if (remap[i] == i)
{
if (wedge[i] == i)
{
// no attribute seam, need to check if it's manifold
unsigned int v = 0;
size_t edges = countOpenEdges(adjacency, unsigned(i), &v);
// note: we classify any vertices with no open edges as manifold
// this is technically incorrect - if 4 triangles share an edge, we'll classify vertices as manifold
// it's unclear if this is a problem in practice
// also note that we classify vertices as border if they have *one* open edge, not two
// this is because we only have half-edges - so a border vertex would have one incoming and one outgoing edge
if (edges == 0)
{
result[i] = Kind_Manifold;
}
else if (edges == 1)
{
result[i] = Kind_Border;
loop[i] = v;
}
else
{
result[i] = Kind_Locked;
}
}
else if (wedge[wedge[i]] == i)
{
// attribute seam; need to distinguish between Seam and Locked
unsigned int a = 0;
size_t a_count = countOpenEdges(adjacency, unsigned(i), &a);
unsigned int b = 0;
size_t b_count = countOpenEdges(adjacency, wedge[i], &b);
// seam should have one open half-edge for each vertex, and the edges need to "connect" - point to the same vertex post-remap
if (a_count == 1 && b_count == 1)
{
unsigned int ao = findWedgeEdge(adjacency, wedge, a, wedge[i]);
unsigned int bo = findWedgeEdge(adjacency, wedge, b, unsigned(i));
if (ao != ~0u && bo != ~0u)
{
result[i] = Kind_Seam;
loop[i] = a;
loop[wedge[i]] = b;
}
else
{
result[i] = Kind_Locked;
}
}
else
{
result[i] = Kind_Locked;
}
}
else
{
// more than one vertex maps to this one; we don't have classification available
result[i] = Kind_Locked;
}
}
else
{
assert(remap[i] < i);
result[i] = result[remap[i]];
}
}
}
struct Vector3
{
float x, y, z;
};
#ifdef _MSC_VER
__declspec(noinline)
#endif
static void rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride)
{
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
for (size_t i = 0; i < vertex_count; ++i)
{
const float* v = vertex_positions_data + i * vertex_stride_float;
result[i].x = v[0];
result[i].y = v[1];
result[i].z = v[2];
for (int j = 0; j < 3; ++j)
{
float vj = v[j];
minv[j] = minv[j] > vj ? vj : minv[j];
maxv[j] = maxv[j] < vj ? vj : maxv[j];
}
}
float extent = 0.f;
extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]);
extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]);
extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]);
float scale = extent == 0 ? 0.f : 1.f / extent;
for (size_t i = 0; i < vertex_count; ++i)
{
result[i].x = (result[i].x - minv[0]) * scale;
result[i].y = (result[i].y - minv[1]) * scale;
result[i].z = (result[i].z - minv[2]) * scale;
}
}
struct Quadric
{
float a00, a11, a22;
float pad0;
float a10, a21, a20;
float pad1;
float b0, b1, b2, c;
};
struct Collapse
{
unsigned int v0;
unsigned int v1;
union {
unsigned int bidi;
float error;
unsigned int errorui;
};
};
static float normalize(Vector3& v)
{
float length = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
if (length > 0)
{
v.x /= length;
v.y /= length;
v.z /= length;
}
return length;
}
static void quadricAdd(Quadric& Q, const Quadric& R)
{
Q.a00 += R.a00;
Q.a10 += R.a10;
Q.a11 += R.a11;
Q.a20 += R.a20;
Q.a21 += R.a21;
Q.a22 += R.a22;
Q.b0 += R.b0;
Q.b1 += R.b1;
Q.b2 += R.b2;
Q.c += R.c;
}
static void quadricMul(Quadric& Q, float s)
{
Q.a00 *= s;
Q.a10 *= s;
Q.a11 *= s;
Q.a20 *= s;
Q.a21 *= s;
Q.a22 *= s;
Q.b0 *= s;
Q.b1 *= s;
Q.b2 *= s;
Q.c *= s;
}
static float quadricError(const Quadric& Q, const Vector3& v)
{
float rx = Q.b0;
float ry = Q.b1;
float rz = Q.b2;
rx += Q.a10 * v.y;
ry += Q.a21 * v.z;
rz += Q.a20 * v.x;
rx *= 2;
ry *= 2;
rz *= 2;
rx += Q.a00 * v.x;
ry += Q.a11 * v.y;
rz += Q.a22 * v.z;
float r = Q.c;
r += rx * v.x;
r += ry * v.y;
r += rz * v.z;
return fabsf(r);
}
static void quadricFromPlane(Quadric& Q, float a, float b, float c, float d)
{
Q.a00 = a * a;
Q.a10 = b * a;
Q.a11 = b * b;
Q.a20 = c * a;
Q.a21 = c * b;
Q.a22 = c * c;
Q.b0 = d * a;
Q.b1 = d * b;
Q.b2 = d * c;
Q.c = d * d;
}
inline
static void quadricFromTriangle(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight)
{
Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x};
float area = normalize(normal);
float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z;
quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance);
quadricMul(Q, area * weight);
}
static void quadricFromTriangleEdge(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight)
{
Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
float length = normalize(p10);
Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
float p20p = p20.x * p10.x + p20.y * p10.y + p20.z * p10.z;
Vector3 normal = {p20.x - p10.x * p20p, p20.y - p10.y * p20p, p20.z - p10.z * p20p};
normalize(normal);
float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z;
quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance);
quadricMul(Q, length * length * weight);
}
static void fillFaceQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap)
{
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int i0 = indices[i + 0];
unsigned int i1 = indices[i + 1];
unsigned int i2 = indices[i + 2];
Quadric Q;
quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], 1.f);
quadricAdd(vertex_quadrics[remap[i0]], Q);
quadricAdd(vertex_quadrics[remap[i1]], Q);
quadricAdd(vertex_quadrics[remap[i2]], Q);
}
}
static void fillEdgeQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop)
{
for (size_t i = 0; i < index_count; i += 3)
{
static const int next[3] = {1, 2, 0};
for (int e = 0; e < 3; ++e)
{
unsigned int i0 = indices[i + e];
unsigned int i1 = indices[i + next[e]];
unsigned char k0 = vertex_kind[i0];
unsigned char k1 = vertex_kind[i1];
// check that i0 and i1 are border/seam and are on the same edge loop
// loop[] tracks half edges so we only need to check i0->i1
if (k0 != k1 || (k0 != Kind_Border && k0 != Kind_Seam) || loop[i0] != i1)
continue;
unsigned int i2 = indices[i + next[next[e]]];
// we try hard to maintain border edge geometry; seam edges can move more freely
// due to topological restrictions on collapses, seam quadrics slightly improves collapse structure but aren't critical
const float kEdgeWeightSeam = 1.f;
const float kEdgeWeightBorder = 10.f;
float edgeWeight = (k0 == Kind_Seam) ? kEdgeWeightSeam : kEdgeWeightBorder;
Quadric Q;
quadricFromTriangleEdge(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], edgeWeight);
quadricAdd(vertex_quadrics[remap[i0]], Q);
quadricAdd(vertex_quadrics[remap[i1]], Q);
}
}
}
static size_t pickEdgeCollapses(Collapse* collapses, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop)
{
size_t collapse_count = 0;
for (size_t i = 0; i < index_count; i += 3)
{
static const int next[3] = {1, 2, 0};
for (int e = 0; e < 3; ++e)
{
unsigned int i0 = indices[i + e];
unsigned int i1 = indices[i + next[e]];
// this can happen either when input has a zero-length edge, or when we perform collapses for complex
// topology w/seams and collapse a manifold vertex that connects to both wedges onto one of them
// we leave edges like this alone since they may be important for preserving mesh integrity
if (remap[i0] == remap[i1])
continue;
unsigned char k0 = vertex_kind[i0];
unsigned char k1 = vertex_kind[i1];
// the edge has to be collapsible in at least one direction
if (!(kCanCollapse[k0][k1] | kCanCollapse[k1][k0]))
continue;
// manifold and seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges
if (kHasOpposite[k0][k1] && remap[i1] > remap[i0])
continue;
// two vertices are on a border or a seam, but there's no direct edge between them
// this indicates that they belong to two different edge loops and we should not collapse this edge
// loop[] tracks half edges so we only need to check i0->i1
if (k0 == k1 && (k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1)
continue;
// edge can be collapsed in either direction - we will pick the one with minimum error
// note: we evaluate error later during collapse ranking, here we just tag the edge as bidirectional
if (kCanCollapse[k0][k1] & kCanCollapse[k1][k0])
{
Collapse c = {i0, i1, {/* bidi= */ 1}};
collapses[collapse_count++] = c;
}
else
{
// edge can only be collapsed in one direction
unsigned int e0 = kCanCollapse[k0][k1] ? i0 : i1;
unsigned int e1 = kCanCollapse[k0][k1] ? i1 : i0;
Collapse c = {e0, e1, {/* bidi= */ 0}};
collapses[collapse_count++] = c;
}
}
}
return collapse_count;
}
static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const Vector3* vertex_positions, const Quadric* vertex_quadrics, const unsigned int* remap)
{
for (size_t i = 0; i < collapse_count; ++i)
{
Collapse& c = collapses[i];
unsigned int i0 = c.v0;
unsigned int i1 = c.v1;
// most edges are bidirectional which means we need to evaluate errors for two collapses
// to keep this code branchless we just use the same edge for unidirectional edges
unsigned int j0 = c.bidi ? i1 : i0;
unsigned int j1 = c.bidi ? i0 : i1;
float ei = quadricError(vertex_quadrics[remap[i0]], vertex_positions[i1]);
float ej = quadricError(vertex_quadrics[remap[j0]], vertex_positions[j1]);
// pick edge direction with minimal error
c.v0 = ei <= ej ? i0 : j0;
c.v1 = ei <= ej ? i1 : j1;
c.error = ei <= ej ? ei : ej;
}
}
#if TRACE > 1
static void dumpEdgeCollapses(const Collapse* collapses, size_t collapse_count, const unsigned char* vertex_kind)
{
size_t ckinds[Kind_Count][Kind_Count] = {};
float cerrors[Kind_Count][Kind_Count] = {};
for (int k0 = 0; k0 < Kind_Count; ++k0)
for (int k1 = 0; k1 < Kind_Count; ++k1)
cerrors[k0][k1] = FLT_MAX;
for (size_t i = 0; i < collapse_count; ++i)
{
unsigned int i0 = collapses[i].v0;
unsigned int i1 = collapses[i].v1;
unsigned char k0 = vertex_kind[i0];
unsigned char k1 = vertex_kind[i1];
ckinds[k0][k1]++;
cerrors[k0][k1] = (collapses[i].error < cerrors[k0][k1]) ? collapses[i].error : cerrors[k0][k1];
}
for (int k0 = 0; k0 < Kind_Count; ++k0)
for (int k1 = 0; k1 < Kind_Count; ++k1)
if (ckinds[k0][k1])
printf("collapses %d -> %d: %d, min error %e\n", k0, k1, int(ckinds[k0][k1]), cerrors[k0][k1]);
}
static void dumpLockedCollapses(const unsigned int* indices, size_t index_count, const unsigned char* vertex_kind)
{
size_t locked_collapses[Kind_Count][Kind_Count] = {};
for (size_t i = 0; i < index_count; i += 3)
{
static const int next[3] = {1, 2, 0};
for (int e = 0; e < 3; ++e)
{
unsigned int i0 = indices[i + e];
unsigned int i1 = indices[i + next[e]];
unsigned char k0 = vertex_kind[i0];
unsigned char k1 = vertex_kind[i1];
locked_collapses[k0][k1] += !kCanCollapse[k0][k1] && !kCanCollapse[k1][k0];
}
}
for (int k0 = 0; k0 < Kind_Count; ++k0)
for (int k1 = 0; k1 < Kind_Count; ++k1)
if (locked_collapses[k0][k1])
printf("locked collapses %d -> %d: %d\n", k0, k1, int(locked_collapses[k0][k1]));
}
#endif
static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapses, size_t collapse_count)
{
const int sort_bits = 11;
// fill histogram for counting sort
unsigned int histogram[1 << sort_bits];
memset(histogram, 0, sizeof(histogram));
for (size_t i = 0; i < collapse_count; ++i)
{
// skip sign bit since error is non-negative
unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits);
histogram[key]++;
}
// compute offsets based on histogram data
size_t histogram_sum = 0;
for (size_t i = 0; i < 1 << sort_bits; ++i)
{
size_t count = histogram[i];
histogram[i] = unsigned(histogram_sum);
histogram_sum += count;
}
assert(histogram_sum == collapse_count);
// compute sort order based on offsets
for (size_t i = 0; i < collapse_count; ++i)
{
// skip sign bit since error is non-negative
unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits);
sort_order[histogram[key]++] = unsigned(i);
}
}
static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, Quadric* vertex_quadrics, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, size_t triangle_collapse_goal, float error_limit)
{
size_t edge_collapses = 0;
size_t triangle_collapses = 0;
for (size_t i = 0; i < collapse_count; ++i)
{
const Collapse& c = collapses[collapse_order[i]];
if (c.error > error_limit)
break;
if (triangle_collapses >= triangle_collapse_goal)
break;
unsigned int i0 = c.v0;
unsigned int i1 = c.v1;
unsigned int r0 = remap[i0];
unsigned int r1 = remap[i1];
// we don't collapse vertices that had source or target vertex involved in a collapse
// it's important to not move the vertices twice since it complicates the tracking/remapping logic
// it's important to not move other vertices towards a moved vertex to preserve error since we don't re-rank collapses mid-pass
if (collapse_locked[r0] | collapse_locked[r1])
continue;
assert(collapse_remap[r0] == r0);
assert(collapse_remap[r1] == r1);
quadricAdd(vertex_quadrics[r1], vertex_quadrics[r0]);
if (vertex_kind[i0] == Kind_Seam)
{
// remap v0 to v1 and seam pair of v0 to seam pair of v1
unsigned int s0 = wedge[i0];
unsigned int s1 = wedge[i1];
assert(s0 != i0 && s1 != i1);
assert(wedge[s0] == i0 && wedge[s1] == i1);
collapse_remap[i0] = i1;
collapse_remap[s0] = s1;
}
else
{
assert(wedge[i0] == i0);
collapse_remap[i0] = i1;
}
collapse_locked[r0] = 1;
collapse_locked[r1] = 1;
// border edges collapse 1 triangle, other edges collapse 2 or more
triangle_collapses += (vertex_kind[i0] == Kind_Border) ? 1 : 2;
edge_collapses++;
}
return edge_collapses;
}
static size_t remapIndexBuffer(unsigned int* indices, size_t index_count, const unsigned int* collapse_remap)
{
size_t write = 0;
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int v0 = collapse_remap[indices[i + 0]];
unsigned int v1 = collapse_remap[indices[i + 1]];
unsigned int v2 = collapse_remap[indices[i + 2]];
// we never move the vertex twice during a single pass
assert(collapse_remap[v0] == v0);
assert(collapse_remap[v1] == v1);
assert(collapse_remap[v2] == v2);
if (v0 != v1 && v0 != v2 && v1 != v2)
{
indices[write + 0] = v0;
indices[write + 1] = v1;
indices[write + 2] = v2;
write += 3;
}
}
return write;
}
static void remapEdgeLoops(unsigned int* loop, size_t vertex_count, const unsigned int* collapse_remap)
{
for (size_t i = 0; i < vertex_count; ++i)
{
if (loop[i] != ~0u)
{
unsigned int l = loop[i];
unsigned int r = collapse_remap[l];
// i == r is a special case when the seam edge is collapsed in a direction opposite to where loop goes
loop[i] = (i == r) ? loop[l] : r;
}
}
}
struct CellHasher
{
const unsigned int* vertex_ids;
size_t hash(unsigned int i) const
{
unsigned int h = vertex_ids[i];
// MurmurHash2 finalizer
h ^= h >> 13;
h *= 0x5bd1e995;
h ^= h >> 15;
return h;
}
bool equal(unsigned int lhs, unsigned int rhs) const
{
return vertex_ids[lhs] == vertex_ids[rhs];
}
};
struct TriangleHasher
{
unsigned int* indices;
size_t hash(unsigned int i) const
{
const unsigned int* tri = indices + i * 3;
// Optimized Spatial Hashing for Collision Detection of Deformable Objects
return (tri[0] * 73856093) ^ (tri[1] * 19349663) ^ (tri[2] * 83492791);
}
bool equal(unsigned int lhs, unsigned int rhs) const
{
const unsigned int* lt = indices + lhs * 3;
const unsigned int* rt = indices + rhs * 3;
return lt[0] == rt[0] && lt[1] == rt[1] && lt[2] == rt[2];
}
};
#define _MM_TRANSPOSE8_LANE4_PS(row0, row1, row2, row3) \
do { \
__m256 __t0, __t1, __t2, __t3; \
__t0 = _mm256_unpacklo_ps(row0, row1); \
__t1 = _mm256_unpackhi_ps(row0, row1); \
__t2 = _mm256_unpacklo_ps(row2, row3); \
__t3 = _mm256_unpackhi_ps(row2, row3); \
row0 = _mm256_shuffle_ps(__t0, __t2, _MM_SHUFFLE(1, 0, 1, 0)); \
row1 = _mm256_shuffle_ps(__t0, __t2, _MM_SHUFFLE(3, 2, 3, 2)); \
row2 = _mm256_shuffle_ps(__t1, __t3, _MM_SHUFFLE(1, 0, 1, 0)); \
row3 = _mm256_shuffle_ps(__t1, __t3, _MM_SHUFFLE(3, 2, 3, 2)); \
} while (0)
#ifdef _MSC_VER
__declspec(noinline)
#endif
static void computeVertexIds(unsigned int* vertex_ids, const Vector3* vertex_positions, size_t vertex_count, int grid_size)
{
assert(grid_size >= 1 && grid_size <= 1024);
float cell_scale = float(grid_size - 1);
__m256 scale = _mm256_set1_ps(cell_scale);
__m256 half = _mm256_set1_ps(0.5f);
for (size_t i = 0; i < (vertex_count & ~7); i += 8)
{
__m256 vx = _mm256_loadu2_m128(&vertex_positions[i + 4].x, &vertex_positions[i + 0].x);
__m256 vy = _mm256_loadu2_m128(&vertex_positions[i + 5].x, &vertex_positions[i + 1].x);
__m256 vz = _mm256_loadu2_m128(&vertex_positions[i + 6].x, &vertex_positions[i + 2].x);
__m256 vw = _mm256_loadu2_m128(&vertex_positions[i + 7].x, &vertex_positions[i + 3].x);
_MM_TRANSPOSE8_LANE4_PS(vx, vy, vz, vw);
__m256i xi = _mm256_cvttps_epi32(_mm256_add_ps(_mm256_mul_ps(vx, scale), half));
__m256i yi = _mm256_cvttps_epi32(_mm256_add_ps(_mm256_mul_ps(vy, scale), half));
__m256i zi = _mm256_cvttps_epi32(_mm256_add_ps(_mm256_mul_ps(vz, scale), half));
__m256i id = _mm256_or_si256(zi, _mm256_or_si256(_mm256_slli_epi32(xi, 20), _mm256_slli_epi32(yi, 10)));
_mm256_storeu_si256((__m256i*)&vertex_ids[i], id);
}
for (size_t i = vertex_count & ~7; i < vertex_count; ++i)
{
const Vector3& v = vertex_positions[i];
int xi = int(v.x * cell_scale + 0.5f);
int yi = int(v.y * cell_scale + 0.5f);
int zi = int(v.z * cell_scale + 0.5f);
vertex_ids[i] = (xi << 20) | (yi << 10) | zi;
}
}
#ifdef _MSC_VER
__declspec(noinline)
#endif
static size_t countTriangles(const unsigned int* vertex_ids, const unsigned int* indices, size_t index_count)
{
size_t result = 0;
size_t triangle_count = index_count / 3;
for (size_t i = 0; i < (triangle_count & ~7); i += 8)
{
__m256 tri0 = _mm256_loadu2_m128((const float*)&indices[(i + 4) * 3 + 0], (const float*)&indices[(i + 0) * 3 + 0]);
__m256 tri1 = _mm256_loadu2_m128((const float*)&indices[(i + 5) * 3 + 0], (const float*)&indices[(i + 1) * 3 + 0]);
__m256 tri2 = _mm256_loadu2_m128((const float*)&indices[(i + 6) * 3 + 0], (const float*)&indices[(i + 2) * 3 + 0]);
__m256 tri3 = _mm256_loadu2_m128((const float*)&indices[(i + 7) * 3 + 0], (const float*)&indices[(i + 3) * 3 + 0]);
_MM_TRANSPOSE8_LANE4_PS(tri0, tri1, tri2, tri3);
__m256i i0 = _mm256_castps_si256(tri0);
__m256i i1 = _mm256_castps_si256(tri1);
__m256i i2 = _mm256_castps_si256(tri2);
__m256i id0 = _mm256_i32gather_epi32((const int*)vertex_ids, i0, 4);
__m256i id1 = _mm256_i32gather_epi32((const int*)vertex_ids, i1, 4);
__m256i id2 = _mm256_i32gather_epi32((const int*)vertex_ids, i2, 4);
__m256i deg = _mm256_or_si256(
_mm256_cmpeq_epi32(id1, id2),
_mm256_or_si256(_mm256_cmpeq_epi32(id0, id1), _mm256_cmpeq_epi32(id0, id2)));
result += 8 - _mm_popcnt_u32(_mm256_movemask_epi8(deg)) / 4;
}
for (size_t i = triangle_count & ~7; i < triangle_count; ++i)
{
unsigned int id0 = vertex_ids[indices[i * 3 + 0]];
unsigned int id1 = vertex_ids[indices[i * 3 + 1]];
unsigned int id2 = vertex_ids[indices[i * 3 + 2]];
result += (id0 != id1) & (id0 != id2) & (id1 != id2);
}
return result;
}
#ifdef _MSC_VER
__declspec(noinline)
#endif
static size_t fillVertexCells(unsigned int* table, size_t table_size, unsigned int* vertex_cells, const unsigned int* vertex_ids, size_t vertex_count)
{
CellHasher hasher = {vertex_ids};
memset(table, -1, table_size * sizeof(unsigned int));
size_t result = 0;
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int* entry = hashLookup2(table, table_size, hasher, unsigned(i), ~0u);
if (*entry == ~0u)
{
*entry = unsigned(i);
vertex_cells[i] = unsigned(result++);
}
else
{
vertex_cells[i] = vertex_cells[*entry];
}
}
return result;
}
#ifdef _MSC_VER
__declspec(noinline)
#endif
static void fillCellQuadrics(Quadric* cell_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* vertex_cells)
{
const int yzx = _MM_SHUFFLE(3, 0, 2, 1);
const int zxy = _MM_SHUFFLE(3, 1, 0, 2);
const int dp_xyz = 0x7f;
size_t triangle_count = index_count / 3;
for (size_t i = 0; i < (triangle_count & ~1); i += 2)
{
unsigned int i00 = indices[(i + 0) * 3 + 0], i01 = indices[(i + 0) * 3 + 1], i02 = indices[(i + 0) * 3 + 2];
unsigned int i10 = indices[(i + 1) * 3 + 0], i11 = indices[(i + 1) * 3 + 1], i12 = indices[(i + 1) * 3 + 2];
__m256 p0 = _mm256_loadu2_m128(&vertex_positions[i10].x, &vertex_positions[i00].x);
__m256 p1 = _mm256_loadu2_m128(&vertex_positions[i11].x, &vertex_positions[i01].x);
__m256 p2 = _mm256_loadu2_m128(&vertex_positions[i12].x, &vertex_positions[i02].x);
__m256 p10 = _mm256_sub_ps(p1, p0);
__m256 p20 = _mm256_sub_ps(p2, p0);
__m256 normal = _mm256_sub_ps(
_mm256_mul_ps(_mm256_shuffle_ps(p10, p10, yzx), _mm256_shuffle_ps(p20, p20, zxy)),
_mm256_mul_ps(_mm256_shuffle_ps(p10, p10, zxy), _mm256_shuffle_ps(p20, p20, yzx)));
__m256 areasq = _mm256_dp_ps(normal, normal, dp_xyz); // SSE4.1
__m256 area = _mm256_sqrt_ps(areasq);
normal = _mm256_and_ps(_mm256_div_ps(normal, area), _mm256_cmp_ps(area, _mm256_setzero_ps(), _CMP_NEQ_OQ));
__m256 distance = _mm256_dp_ps(normal, p0, dp_xyz); // SSE4.1
__m256 negdistance = _mm256_sub_ps(_mm256_setzero_ps(), distance);
__m256 normalnegdist = _mm256_blend_ps(normal, negdistance, 0x88); // SSE4.1
__m256 Qx = _mm256_mul_ps(normal, normal);
__m256 Qy = _mm256_mul_ps(_mm256_shuffle_ps(normal, normal, _MM_SHUFFLE(3, 2, 2, 1)), _mm256_shuffle_ps(normal, normal, _MM_SHUFFLE(3, 0, 1, 0)));
__m256 Qz = _mm256_mul_ps(negdistance, normalnegdist);
unsigned int c00 = vertex_cells[i00], c01 = vertex_cells[i01], c02 = vertex_cells[i02];
unsigned int c10 = vertex_cells[i10], c11 = vertex_cells[i11], c12 = vertex_cells[i12];
bool single_cell = (c00 == c01) & (c00 == c02) & (c10 == c11) & (c10 == c12);
if (single_cell)
{
area = _mm256_mul_ps(area, _mm256_set1_ps(3.f));
Qx = _mm256_mul_ps(Qx, area);
Qy = _mm256_mul_ps(Qy, area);
Qz = _mm256_mul_ps(Qz, area);
Quadric& q00 = cell_quadrics[c00];
Quadric& q10 = cell_quadrics[c10];
__m256 q0x = _mm256_loadu2_m128(&q10.a00, &q00.a00);
__m256 q0y = _mm256_loadu2_m128(&q10.a10, &q00.a10);
__m256 q0z = _mm256_loadu2_m128(&q10.b0, &q00.b0);
_mm256_storeu2_m128(&q10.a00, &q00.a00, _mm256_add_ps(q0x, Qx));
_mm256_storeu2_m128(&q10.a10, &q00.a10, _mm256_add_ps(q0y, Qy));
_mm256_storeu2_m128(&q10.b0, &q00.b0, _mm256_add_ps(q0z, Qz));
}
else
{
Qx = _mm256_mul_ps(Qx, area);
Qy = _mm256_mul_ps(Qy, area);
Qz = _mm256_mul_ps(Qz, area);
Quadric& q00 = cell_quadrics[c00];
Quadric& q01 = cell_quadrics[c01];
Quadric& q02 = cell_quadrics[c02];
Quadric& q10 = cell_quadrics[c10];
Quadric& q11 = cell_quadrics[c11];
Quadric& q12 = cell_quadrics[c12];
__m256 q0x = _mm256_loadu2_m128(&q10.a00, &q00.a00);
__m256 q0y = _mm256_loadu2_m128(&q10.a10, &q00.a10);
__m256 q0z = _mm256_loadu2_m128(&q10.b0, &q00.b0);
__m256 q1x = _mm256_loadu2_m128(&q11.a00, &q01.a00);
__m256 q1y = _mm256_loadu2_m128(&q11.a10, &q01.a10);
__m256 q1z = _mm256_loadu2_m128(&q11.b0, &q01.b0);
__m256 q2x = _mm256_loadu2_m128(&q12.a00, &q02.a00);
__m256 q2y = _mm256_loadu2_m128(&q12.a10, &q02.a10);
__m256 q2z = _mm256_loadu2_m128(&q12.b0, &q02.b0);
_mm256_storeu2_m128(&q10.a00, &q00.a00, _mm256_add_ps(q0x, Qx));
_mm256_storeu2_m128(&q10.a10, &q00.a10, _mm256_add_ps(q0y, Qy));
_mm256_storeu2_m128(&q10.b0, &q00.b0, _mm256_add_ps(q0z, Qz));
_mm256_storeu2_m128(&q11.a00, &q01.a00, _mm256_add_ps(q1x, Qx));
_mm256_storeu2_m128(&q11.a10, &q01.a10, _mm256_add_ps(q1y, Qy));
_mm256_storeu2_m128(&q11.b0, &q01.b0, _mm256_add_ps(q1z, Qz));
_mm256_storeu2_m128(&q12.a00, &q02.a00, _mm256_add_ps(q2x, Qx));
_mm256_storeu2_m128(&q12.a10, &q02.a10, _mm256_add_ps(q2y, Qy));
_mm256_storeu2_m128(&q12.b0, &q02.b0, _mm256_add_ps(q2z, Qz));
}
}
for (size_t i = (triangle_count & ~1); i < triangle_count; ++i)
{
unsigned int i0 = indices[i * 3 + 0], i1 = indices[i * 3 + 1], i2 = indices[i * 3 + 2];
unsigned int c0 = vertex_cells[i0], c1 = vertex_cells[i1], c2 = vertex_cells[i2];
Quadric Q;
quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], 1.f);
quadricAdd(cell_quadrics[c0], Q);
quadricAdd(cell_quadrics[c1], Q);
quadricAdd(cell_quadrics[c2], Q);
}
}
#ifdef _MSC_VER
__declspec(noinline)
#endif
static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t cell_count, const unsigned int* vertex_cells, const Quadric* cell_quadrics, const Vector3* vertex_positions, size_t vertex_count)
{
memset(cell_remap, -1, cell_count * sizeof(unsigned int));
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int cell = vertex_cells[i];
float error = quadricError(cell_quadrics[cell], vertex_positions[i]);
if (cell_remap[cell] == ~0u || cell_errors[cell] > error)
{
cell_remap[cell] = unsigned(i);
cell_errors[cell] = error;
}
}
}
#ifdef _MSC_VER
__declspec(noinline)
#endif
static size_t filterTriangles(unsigned int* destination, unsigned int* tritable, size_t tritable_size, const unsigned int* indices, size_t index_count, const unsigned int* vertex_cells, const unsigned int* cell_remap)
{
TriangleHasher hasher = {destination};
memset(tritable, -1, tritable_size * sizeof(unsigned int));
size_t result = 0;
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int c0 = vertex_cells[indices[i + 0]];
unsigned int c1 = vertex_cells[indices[i + 1]];
unsigned int c2 = vertex_cells[indices[i + 2]];
if (c0 != c1 && c0 != c2 && c1 != c2)
{
unsigned int a = cell_remap[c0];
unsigned int b = cell_remap[c1];
unsigned int c = cell_remap[c2];
if (b < a && b < c)
{
unsigned int t = a;
a = b, b = c, c = t;
}
else if (c < a && c < b)
{
unsigned int t = c;
c = b, b = a, a = t;
}
destination[result * 3 + 0] = a;
destination[result * 3 + 1] = b;
destination[result * 3 + 2] = c;
unsigned int* entry = hashLookup2(tritable, tritable_size, hasher, unsigned(result), ~0u);
if (*entry == ~0u)
*entry = unsigned(result++);
}
}
return result * 3;
}
} // namespace meshopt
#if TRACE
unsigned char* meshopt_simplifyDebugKind = 0;
unsigned int* meshopt_simplifyDebugLoop = 0;
#endif
size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error)
{
using namespace meshopt;
assert(index_count % 3 == 0);
assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
assert(target_index_count <= index_count);
meshopt_Allocator allocator;
unsigned int* result = destination;
// build adjacency information
EdgeAdjacency adjacency = {};
buildEdgeAdjacency(adjacency, indices, index_count, vertex_count, allocator);
// build position remap that maps each vertex to the one with identical position
unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
unsigned int* wedge = allocator.allocate<unsigned int>(vertex_count);
buildPositionRemap(remap, wedge, vertex_positions_data, vertex_count, vertex_positions_stride, allocator);
// classify vertices; vertex kind determines collapse rules, see kCanCollapse
unsigned char* vertex_kind = allocator.allocate<unsigned char>(vertex_count);
unsigned int* loop = allocator.allocate<unsigned int>(vertex_count);
classifyVertices(vertex_kind, loop, vertex_count, adjacency, remap, wedge);
#if TRACE
size_t unique_positions = 0;
for (size_t i = 0; i < vertex_count; ++i)
unique_positions += remap[i] == i;
printf("position remap: %d vertices => %d positions\n", int(vertex_count), int(unique_positions));
size_t kinds[Kind_Count] = {};
for (size_t i = 0; i < vertex_count; ++i)
kinds[vertex_kind[i]] += remap[i] == i;
printf("kinds: manifold %d, border %d, seam %d, locked %d\n",
int(kinds[Kind_Manifold]), int(kinds[Kind_Border]), int(kinds[Kind_Seam]), int(kinds[Kind_Locked]));
#endif
Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
Quadric* vertex_quadrics = allocator.allocate<Quadric>(vertex_count);
memset(vertex_quadrics, 0, vertex_count * sizeof(Quadric));
fillFaceQuadrics(vertex_quadrics, indices, index_count, vertex_positions, remap);
fillEdgeQuadrics(vertex_quadrics, indices, index_count, vertex_positions, remap, vertex_kind, loop);
if (result != indices)
memcpy(result, indices, index_count * sizeof(unsigned int));
#if TRACE
size_t pass_count = 0;
float worst_error = 0;
#endif
Collapse* edge_collapses = allocator.allocate<Collapse>(index_count);
unsigned int* collapse_order = allocator.allocate<unsigned int>(index_count);
unsigned int* collapse_remap = allocator.allocate<unsigned int>(vertex_count);
unsigned char* collapse_locked = allocator.allocate<unsigned char>(vertex_count);
size_t result_count = index_count;
while (result_count > target_index_count)
{
size_t edge_collapse_count = pickEdgeCollapses(edge_collapses, result, result_count, remap, vertex_kind, loop);
// no edges can be collapsed any more due to topology restrictions
if (edge_collapse_count == 0)
break;
rankEdgeCollapses(edge_collapses, edge_collapse_count, vertex_positions, vertex_quadrics, remap);
#if TRACE > 1
dumpEdgeCollapses(edge_collapses, edge_collapse_count, vertex_kind);
#endif
sortEdgeCollapses(collapse_order, edge_collapses, edge_collapse_count);
// most collapses remove 2 triangles; use this to establish a bound on the pass in terms of error limit
// note that edge_collapse_goal is an estimate; triangle_collapse_goal will be used to actually limit collapses
size_t triangle_collapse_goal = (result_count - target_index_count) / 3;
size_t edge_collapse_goal = triangle_collapse_goal / 2;
// we limit the error in each pass based on the error of optimal last collapse; since many collapses will be locked
// as they will share vertices with other successfull collapses, we need to increase the acceptable error by this factor
const float kPassErrorBound = 1.5f;
float error_goal = edge_collapse_goal < edge_collapse_count ? edge_collapses[collapse_order[edge_collapse_goal]].error * kPassErrorBound : FLT_MAX;
float error_limit = error_goal > target_error ? target_error : error_goal;
for (size_t i = 0; i < vertex_count; ++i)
collapse_remap[i] = unsigned(i);
memset(collapse_locked, 0, vertex_count);
size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, vertex_quadrics, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, triangle_collapse_goal, error_limit);
// no edges can be collapsed any more due to hitting the error limit or triangle collapse limit
if (collapses == 0)
break;
remapEdgeLoops(loop, vertex_count, collapse_remap);
size_t new_count = remapIndexBuffer(result, result_count, collapse_remap);
assert(new_count < result_count);
#if TRACE
float pass_error = 0.f;
for (size_t i = 0; i < edge_collapse_count; ++i)
{
Collapse& c = edge_collapses[collapse_order[i]];
if (collapse_remap[c.v0] == c.v1)
pass_error = c.error;
}
pass_count++;
worst_error = (worst_error < pass_error) ? pass_error : worst_error;
printf("pass %d: triangles: %d -> %d, collapses: %d/%d (goal: %d), error: %e (limit %e goal %e)\n", int(pass_count), int(result_count / 3), int(new_count / 3), int(collapses), int(edge_collapse_count), int(edge_collapse_goal), pass_error, error_limit, error_goal);
#endif
result_count = new_count;
}
#if TRACE
printf("passes: %d, worst error: %e\n", int(pass_count), worst_error);
#endif
#if TRACE > 1
dumpLockedCollapses(result, result_count, vertex_kind);
#endif
#if TRACE
if (meshopt_simplifyDebugKind)
memcpy(meshopt_simplifyDebugKind, vertex_kind, vertex_count);
if (meshopt_simplifyDebugLoop)
memcpy(meshopt_simplifyDebugLoop, loop, vertex_count * sizeof(unsigned int));
#endif
return result_count;
}
size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count)
{
using namespace meshopt;
assert(index_count % 3 == 0);
assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
assert(target_index_count <= index_count);
// we expect to get ~2 triangles/vertex in the output
size_t target_cell_count = target_index_count / 6;
if (target_cell_count == 0)
return 0;
meshopt_Allocator allocator;
Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
// find the optimal grid size using guided binary search
#if TRACE
printf("source: %d vertices, %d triangles\n", int(vertex_count), int(index_count / 3));
printf("target: %d cells, %d triangles\n", int(target_cell_count), int(target_index_count / 3));
#endif
unsigned int* vertex_ids = allocator.allocate<unsigned int>(vertex_count);
// invariant: # of triangles in min_grid <= target_count
int min_grid = 0;
int max_grid = 1025;
size_t min_triangles = 0;
size_t max_triangles = index_count / 3;
const int kInterpolationPasses = 5;
for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass)
{
assert(min_triangles < target_index_count / 3);
assert(max_grid - min_grid > 1);
int grid_size = 0;
if (pass == 0)
{
// instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size...
grid_size = int(sqrtf(float(target_cell_count)) + 0.5f);
grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid) ? max_grid - 1 : grid_size;
}
else if (pass <= kInterpolationPasses)
{
float k = (float(target_index_count / 3) - float(min_triangles)) / (float(max_triangles) - float(min_triangles));
grid_size = int(float(min_grid) * (1 - k) + float(max_grid) * k + 0.5f);
grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid) ? max_grid - 1 : grid_size;
}
else
{
grid_size = (min_grid + max_grid) / 2;
assert(grid_size > min_grid && grid_size < max_grid);
}
computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size);
size_t triangles = countTriangles(vertex_ids, indices, index_count);
#if TRACE
printf("pass %d (%s): grid size %d, triangles %d, %s\n",
pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary",
grid_size, int(triangles),
(triangles <= target_index_count / 3) ? "under" : "over");
#endif
if (triangles <= target_index_count / 3)
{
min_grid = grid_size;
min_triangles = triangles;
}
else
{
max_grid = grid_size;
max_triangles = triangles;
}
if (triangles == target_index_count / 3 || max_grid - min_grid <= 1)
break;
}
if (min_triangles == 0)
return 0;
// build vertex->cell association by mapping all vertices with the same quantized position to the same cell
size_t table_size = hashBuckets2(vertex_count);
unsigned int* table = allocator.allocate<unsigned int>(table_size);
unsigned int* vertex_cells = allocator.allocate<unsigned int>(vertex_count);
computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid);
size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count);
// build a quadric for each target cell
Quadric* cell_quadrics = allocator.allocate<Quadric>(cell_count);
memset(cell_quadrics, 0, cell_count * sizeof(Quadric));
fillCellQuadrics(cell_quadrics, indices, index_count, vertex_positions, vertex_cells);
// for each target cell, find the vertex with the minimal error
unsigned int* cell_remap = allocator.allocate<unsigned int>(cell_count);
float* cell_errors = allocator.allocate<float>(cell_count);
fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count);
// collapse triangles!
// note that we need to filter out triangles that we've already output because we very frequently generate redundant triangles between cells :(
size_t tritable_size = hashBuckets2(min_triangles);
unsigned int* tritable = allocator.allocate<unsigned int>(tritable_size);
size_t write = filterTriangles(destination, tritable, tritable_size, indices, index_count, vertex_cells, cell_remap);
assert(write <= target_index_count);
#if TRACE
printf("result: %d cells, %d triangles (%d unfiltered)\n", int(cell_count), int(write / 3), int(min_triangles));
#endif
return write;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment