Skip to content

Instantly share code, notes, and snippets.

@zjuyk
Created July 23, 2021 15:32
Show Gist options
  • Save zjuyk/92f1c3776be2c87e06b34e5ba5151ada to your computer and use it in GitHub Desktop.
Save zjuyk/92f1c3776be2c87e06b34e5ba5151ada to your computer and use it in GitHub Desktop.
提取图片主要颜色脚本
import matplotlib.image as img
import pandas as pd
from scipy.cluster.vq import whiten, kmeans
target_image = img.imread("path/to/target_image")
r = []
g = []
b = []
for row in target_image:
for temp_r, temp_g, temp_b in row:
r.append(temp_r)
g.append(temp_g)
b.append(temp_b)
image_df = pd.DataFrame({'red': r,
'green': g,
'blue': b})
# scale image information
image_df['scaled_color_red'] = whiten(image_df['red'])
image_df['scaled_color_blue'] = whiten(image_df['blue'])
image_df['scaled_color_green'] = whiten(image_df['green'])
cluster_centers, _ = kmeans(image_df[['scaled_color_red',
'scaled_color_blue',
'scaled_color_green']], 3)
dominant_colors = []
# Get standard deviations of each color
red_std, green_std, blue_std = image_df[['red',
'green',
'blue']].std()
for cluster_center in cluster_centers:
red_scaled, green_scaled, blue_scaled = cluster_center
# Convert each standardized value to scaled value
dominant_colors.append((
red_scaled * red_std,
green_scaled * green_std,
blue_scaled * blue_std
))
print(dominant_colors)
@zjuyk
Copy link
Author

zjuyk commented Jul 23, 2021

使用的是 scipy 的 kmeans 函数,对于比较大的图片可能要算上蛮久

@zjuyk
Copy link
Author

zjuyk commented Jul 23, 2021

实际上可以先对图片大小进行压缩,例如压缩到 200x200的尺寸,颜色信息相差也不会很大

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment