/get_aligned_ids_nocs Secret
Last active
August 10, 2022 03:41
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def get_aligned_ids_nocs(masks, output_indices, class_ids, class_ids_predicted, scores, scores_predicted, depth): | |
mask_out = [] | |
for p in range(masks.shape[-1]): | |
mask = np.logical_and(masks[:, :, p], depth > 0) | |
mask_out.append(mask) | |
mask_out = np.array(mask_out) | |
index_centers = [] | |
for m in range(mask_out.shape[0]): | |
pos = np.where(mask_out[m,:,:]) | |
center_x = np.average(pos[0]) | |
center_y = np.average(pos[1]) | |
index_centers.append([center_x, center_y]) | |
new_masks = [] | |
new_ids = [] | |
new_scores = [] | |
index_centers = np.array(index_centers) | |
if np.any(np.isnan(index_centers)): | |
index_centers = index_centers[~np.any(np.isnan(index_centers), axis=1)] | |
mask_out = np.array(mask_out) | |
for l in range(len(output_indices)): | |
point = output_indices[l] | |
if len(output_indices) == 0: | |
continue | |
distances = np.linalg.norm(index_centers-point, axis=1) | |
min_index = np.argmin(distances) | |
if distances[min_index]<28: | |
new_masks.append(mask_out[min_index, :,:]) | |
new_ids.append(class_ids[min_index]) | |
new_scores.append(scores[min_index]) | |
else: | |
new_masks.append(None) | |
new_ids.append(class_ids_predicted[l]) | |
new_scores.append(scores_predicted[l]) | |
masks = np.array(new_masks) | |
class_ids = np.array(new_ids) | |
scores = np.array(new_scores) | |
return masks, class_ids, scores | |
def get_ids_from_seg(seg_output, output_indices): | |
category_seg_output = np.ascontiguousarray(seg_output.seg_pred.cpu().numpy()) | |
category_seg_output = np.argmax(category_seg_output[0], axis=0) | |
class_ids_predicted = [] | |
for k in range(len(output_indices)): | |
center = output_indices[k] | |
class_ids_predicted.append(category_seg_output[center[0], center[1]]) | |
return class_ids_predicted | |
#Usage: | |
class_ids = np.array(mrcnn_result['class_ids']) | |
#We use this incase our model predicts an erroneous center and mask rcnn has no class id for it so our model is penalized for a wrong detection here. | |
class_ids_predicted = get_ids_from_seg(seg_output, output_indices) | |
scores = np.array(mrcnn_result['scores']) | |
# scores_out is scores from compute_pointclouds_and_poses | |
depth = np.array(depth, dtype=np.float32)*255.0 | |
masks, class_ids, scores = get_aligned_masks_nocs(mrcnn_result['masks'], output_indices, class_ids, class_ids_predicted, scores, scores_out, depth) | |
result['pred_class_ids'] = class_ids |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment