Skip to content

Instantly share code, notes, and snippets.

Brandon Miller zznop

Block or report user

Report or block zznop

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
View call-table-enum.py
import ida_segment
import ida_bytes
import idautils
import idaapi
import idc
import re
__author__ = 'zznop'
__copyright__ = 'Copyright 2019, zznop'
__email__ = 'zznop0x90@gmail.com'
View megadrive-loader.py
# megadrive-loader.py
# zznop 2019
#
# Load ROM as a flat binary, set processor to 68000,
# and run the script
import idc
import idautils
import ida_bytes
import ida_funcs
@zznop
zznop / mem-loader.asm
Last active Aug 20, 2019
Fun little loader shellcode that executes an ELF in-memory using an anonymous file descriptor (inspired by https://x-c3ll.github.io/posts/fileless-memfd_create/)
View mem-loader.asm
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Copyright (C), zznop, zznop0x90@gmail.com
;;;
;;; This software may be modified and distributed under the terms
;;; of the MIT license. See the LICENSE file for details.
;;;
;;; DESCRIPTION
;;;
;;; This PoC shellcode is meant to be compiled as a blob and prepended to a ELF
@zznop
zznop / d8.js
Created May 8, 2018 — forked from itszn/d8.js
Plaid CTF 2018 d8 exploit
View d8.js
/* Plaid CTF 2018 v8 Exploit. Exploit begins around line 240 */
/* ### Utils, thanks saelo ### */
//
// Tiny module that provides big (64bit) integers.
//
// Copyright (c) 2016 Samuel Groß
//
View uninit-vuln.c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
void take_int(int j)
{
if (j == 1337)
printf("How could this be? j was never initialized!\n");
}
View recursion-example-2.c
int is_odd(int number)
{
return number == 0 ? 0 : is_even(abs(number) - 1);
}
int is_even(int number)
{
return number == 0 ? 1 : is_odd(abs(number) - 1);
}
View recursion-example-1.c
uint32_t factorial(uint32_t number)
{
if (number &lt;= 1)
{
return 1;
}
return number * factorial(number -1);
}
View keybase.md

Keybase proof

I hereby claim:

  • I am zznop on github.
  • I am zznop (https://keybase.io/zznop) on keybase.
  • I have a public key ASBbxPpeB6WStkXl4MEHA016MFr8cqqBJGpV6OxAhl53MAo

To claim this, I am signing this object:

You can’t perform that action at this time.