Created
March 8, 2020 19:21
-
-
Save Dilaz/395354387adb02a4beeb73fc280e3070 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
def encode_input(num): | |
return [int(i) for i in tuple(bin(num)[2:].zfill(8))] | |
def encode_fizzbuzz(num): | |
if num % 3 == 0 and num % 5 == 0: | |
# Fizzbuzz | |
return [1, 0, 0, 0] | |
elif num % 3 == 0: | |
# Fizz | |
return [0, 1, 0, 0] | |
elif num % 5 == 0: | |
# Buzz | |
return [0, 0, 1, 0] | |
else: | |
# Number | |
return [0, 0, 0, 1] | |
def decode_fizzbuzz(result, num): | |
return ['FizzBuzz', 'Fizz', 'Buzz', num][max(range(len(result)), key=lambda x: result[x])] | |
def main(): | |
x = [] | |
y = [] | |
model = tf.keras.Sequential([ | |
tf.keras.layers.Dense(64, input_dim=8, activation='relu'), | |
tf.keras.layers.Dense(128, activation='relu'), | |
tf.keras.layers.Dense(4, activation='softmax') | |
]) | |
model.compile(tf.keras.optimizers.Adam(learning_rate=0.001), | |
loss='categorical_crossentropy') | |
for i in range(100): | |
x.append(encode_input(i)) | |
y.append(encode_fizzbuzz(i)) | |
print(x,y) | |
model.fit(x=x, y=y, | |
verbose=2, shuffle=True, epochs=1000) | |
correct = 0 | |
wrong = 0 | |
for i in range(1, 101): | |
result = model.predict([encode_input(i)]) | |
output = decode_fizzbuzz(result[0], i) | |
print(output, end=' ') | |
if output == decode_fizzbuzz(encode_fizzbuzz(i), i): | |
correct += 1 | |
else: | |
wrong += 1 | |
print('') | |
print('Total correct:', correct) | |
print('Wrong:', wrong) | |
print('Correct percentage:', correct / (correct + wrong) * 100, '%') | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment