Last active
May 15, 2020 03:32
-
-
Save JustinaPetr/095817ced545c40154a8635282a35bde to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from rasa.nlu.components import Component | |
from rasa.nlu import utils | |
from rasa.nlu.model import Metadata | |
import nltk | |
from nltk.classify import NaiveBayesClassifier | |
import os | |
import typing | |
from typing import Any, Optional, Text, Dict | |
SENTIMENT_MODEL_FILE_NAME = "sentiment_classifier.pkl" | |
class SentimentAnalyzer(Component): | |
"""A custom sentiment analysis component""" | |
name = "sentiment" | |
provides = ["entities"] | |
requires = ["tokens"] | |
defaults = {} | |
language_list = ["en"] | |
print('initialised the class') | |
def __init__(self, component_config=None): | |
super(SentimentAnalyzer, self).__init__(component_config) | |
def train(self, training_data, cfg, **kwargs): | |
"""Load the sentiment polarity labels from the text | |
file, retrieve training tokens and after formatting | |
data train the classifier.""" | |
with open('labels.txt', 'r') as f: | |
labels = f.read().splitlines() | |
training_data = training_data.training_examples #list of Message objects | |
tokens = [list(map(lambda x: x.text, t.get('tokens'))) for t in training_data] | |
processed_tokens = [self.preprocessing(t) for t in tokens] | |
labeled_data = [(t, x) for t,x in zip(processed_tokens, labels)] | |
self.clf = NaiveBayesClassifier.train(labeled_data) | |
def convert_to_rasa(self, value, confidence): | |
"""Convert model output into the Rasa NLU compatible output format.""" | |
entity = {"value": value, | |
"confidence": confidence, | |
"entity": "sentiment", | |
"extractor": "sentiment_extractor"} | |
return entity | |
def preprocessing(self, tokens): | |
"""Create bag-of-words representation of the training examples.""" | |
return ({word: True for word in tokens}) | |
def process(self, message, **kwargs): | |
"""Retrieve the tokens of the new message, pass it to the classifier | |
and append prediction results to the message class.""" | |
if not self.clf: | |
# component is either not trained or didn't | |
# receive enough training data | |
entity = None | |
else: | |
tokens = [t.text for t in message.get("tokens")] | |
tb = self.preprocessing(tokens) | |
pred = self.clf.prob_classify(tb) | |
sentiment = pred.max() | |
confidence = pred.prob(sentiment) | |
entity = self.convert_to_rasa(sentiment, confidence) | |
message.set("entities", [entity], add_to_output=True) | |
def persist(self, file_name, model_dir): | |
"""Persist this model into the passed directory.""" | |
classifier_file = os.path.join(model_dir, SENTIMENT_MODEL_FILE_NAME) | |
utils.json_pickle(classifier_file, self) | |
return {"classifier_file": SENTIMENT_MODEL_FILE_NAME} | |
@classmethod | |
def load(cls, | |
meta: Dict[Text, Any], | |
model_dir=None, | |
model_metadata=None, | |
cached_component=None, | |
**kwargs): | |
file_name = meta.get("classifier_file") | |
classifier_file = os.path.join(model_dir, file_name) | |
return utils.json_unpickle(classifier_file) | |
Hi, I have read How to Enhance Rasa NLU Models with Custom Components, this tutorial is useful for me, thanks to your work!
I use the default to train, but the entities of Hello stupid bot is pos.
May you share the nlu.md please?
Thank you very much, looking forward to your reply, good day.
Input: Hello stupid bot
Output: neg with confidence of 0.333...
Python: 3.6.4
rasa: 1.18
rasa-sdk: 1.1.1
I find after train()
and before persist()
, the clf has been correctly trained.
So the problem is the utils.json_pickle
in persist()
.
I change it to
with open(classifier_file, 'wb') as f:
pickle.dump(self, f, pickle.HIGHEST_PROTOCOL)
and the load()
with open(classifier_file, 'rb') as f:
return pickle.load(f)
it works!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
hi JustinaPetr
"training_data" what kind of format does it follow, can you little elaborated on that?
thanks