/* | |
* 2014 OpenSimplex Noise in Java. | |
* by Kurt Spencer | |
* | |
* Updated Dec 2019 and Feb 2020: | |
* - New lattice-symmetric gradient sets | |
* - Optional alternate lattice orientation evaluators | |
* | |
* This implementation has been updated to slightly improve its output, but it is recommented to first | |
* try the newer OpenSimplex2S or OpenSimplex2F noise. These are located in the OpenSimplex2 repo: | |
* https://github.com/KdotJPG/OpenSimplex2 | |
* | |
* In the event that the output of this OpenSimplex continues to better fit your project's needs than | |
* either OpenSimplex2 variant, an updated backport of DigitalShadow's optimization is available here: | |
* https://github.com/KdotJPG/OpenSimplex2/blob/master/java/legacy/OpenSimplex.java | |
* | |
* This is mostly kept here for reference. In particular, the 4D code is very slow. | |
*/ | |
public class OpenSimplexNoise { | |
private static final double STRETCH_CONSTANT_2D = -0.211324865405187; // (1/Math.sqrt(2+1)-1)/2; | |
private static final double SQUISH_CONSTANT_2D = 0.366025403784439; // (Math.sqrt(2+1)-1)/2; | |
private static final double STRETCH_CONSTANT_3D = -1.0 / 6; // (1/Math.sqrt(3+1)-1)/3; | |
private static final double SQUISH_CONSTANT_3D = 1.0 / 3; // (Math.sqrt(3+1)-1)/3; | |
private static final double STRETCH_CONSTANT_4D = -0.138196601125011; // (1/Math.sqrt(4+1)-1)/4; | |
private static final double SQUISH_CONSTANT_4D = 0.309016994374947; // (Math.sqrt(4+1)-1)/4; | |
private static final long DEFAULT_SEED = 0; | |
private static final int PSIZE = 2048; | |
private static final int PMASK = 2047; | |
private short[] perm; | |
private Grad2[] permGrad2; | |
private Grad3[] permGrad3; | |
private Grad4[] permGrad4; | |
public OpenSimplexNoise() { | |
this(DEFAULT_SEED); | |
} | |
public OpenSimplexNoise(short[] perm) { | |
this.perm = perm; | |
permGrad2 = new Grad2[PSIZE]; | |
permGrad3 = new Grad3[PSIZE]; | |
permGrad4 = new Grad4[PSIZE]; | |
for (int i = 0; i < PSIZE; i++) { | |
permGrad2[i] = GRADIENTS_2D[perm[i]]; | |
permGrad3[i] = GRADIENTS_3D[perm[i]]; | |
permGrad4[i] = GRADIENTS_4D[perm[i]]; | |
} | |
} | |
public OpenSimplexNoise(long seed) { | |
perm = new short[PSIZE]; | |
permGrad2 = new Grad2[PSIZE]; | |
permGrad3 = new Grad3[PSIZE]; | |
permGrad4 = new Grad4[PSIZE]; | |
short[] source = new short[PSIZE]; | |
for (short i = 0; i < PSIZE; i++) | |
source[i] = i; | |
for (int i = PSIZE - 1; i >= 0; i--) { | |
seed = seed * 6364136223846793005L + 1442695040888963407L; | |
int r = (int)((seed + 31) % (i + 1)); | |
if (r < 0) | |
r += (i + 1); | |
perm[i] = source[r]; | |
permGrad2[i] = GRADIENTS_2D[perm[i]]; | |
permGrad3[i] = GRADIENTS_3D[perm[i]]; | |
permGrad4[i] = GRADIENTS_4D[perm[i]]; | |
source[r] = source[i]; | |
} | |
} | |
// 2D OpenSimplex Noise. | |
public double eval(double x, double y) { | |
// Place input coordinates onto grid. | |
double stretchOffset = (x + y) * STRETCH_CONSTANT_2D; | |
double xs = x + stretchOffset; | |
double ys = y + stretchOffset; | |
// Floor to get grid coordinates of rhombus (stretched square) super-cell origin. | |
int xsb = fastFloor(xs); | |
int ysb = fastFloor(ys); | |
// Compute grid coordinates relative to rhombus origin. | |
double xins = xs - xsb; | |
double yins = ys - ysb; | |
// Sum those together to get a value that determines which region we're in. | |
double inSum = xins + yins; | |
// Positions relative to origin point. | |
double squishOffsetIns = inSum * SQUISH_CONSTANT_2D; | |
double dx0 = xins + squishOffsetIns; | |
double dy0 = yins + squishOffsetIns; | |
// We'll be defining these inside the next block and using them afterwards. | |
double dx_ext, dy_ext; | |
int xsv_ext, ysv_ext; | |
double value = 0; | |
// Contribution (1,0) | |
double dx1 = dx0 - 1 - SQUISH_CONSTANT_2D; | |
double dy1 = dy0 - 0 - SQUISH_CONSTANT_2D; | |
double attn1 = 2 - dx1 * dx1 - dy1 * dy1; | |
if (attn1 > 0) { | |
attn1 *= attn1; | |
value += attn1 * attn1 * extrapolate(xsb + 1, ysb + 0, dx1, dy1); | |
} | |
// Contribution (0,1) | |
double dx2 = dx0 - 0 - SQUISH_CONSTANT_2D; | |
double dy2 = dy0 - 1 - SQUISH_CONSTANT_2D; | |
double attn2 = 2 - dx2 * dx2 - dy2 * dy2; | |
if (attn2 > 0) { | |
attn2 *= attn2; | |
value += attn2 * attn2 * extrapolate(xsb + 0, ysb + 1, dx2, dy2); | |
} | |
if (inSum <= 1) { // We're inside the triangle (2-Simplex) at (0,0) | |
double zins = 1 - inSum; | |
if (zins > xins || zins > yins) { // (0,0) is one of the closest two triangular vertices | |
if (xins > yins) { | |
xsv_ext = xsb + 1; | |
ysv_ext = ysb - 1; | |
dx_ext = dx0 - 1; | |
dy_ext = dy0 + 1; | |
} else { | |
xsv_ext = xsb - 1; | |
ysv_ext = ysb + 1; | |
dx_ext = dx0 + 1; | |
dy_ext = dy0 - 1; | |
} | |
} else { // (1,0) and (0,1) are the closest two vertices. | |
xsv_ext = xsb + 1; | |
ysv_ext = ysb + 1; | |
dx_ext = dx0 - 1 - 2 * SQUISH_CONSTANT_2D; | |
dy_ext = dy0 - 1 - 2 * SQUISH_CONSTANT_2D; | |
} | |
} else { // We're inside the triangle (2-Simplex) at (1,1) | |
double zins = 2 - inSum; | |
if (zins < xins || zins < yins) { // (0,0) is one of the closest two triangular vertices | |
if (xins > yins) { | |
xsv_ext = xsb + 2; | |
ysv_ext = ysb + 0; | |
dx_ext = dx0 - 2 - 2 * SQUISH_CONSTANT_2D; | |
dy_ext = dy0 + 0 - 2 * SQUISH_CONSTANT_2D; | |
} else { | |
xsv_ext = xsb + 0; | |
ysv_ext = ysb + 2; | |
dx_ext = dx0 + 0 - 2 * SQUISH_CONSTANT_2D; | |
dy_ext = dy0 - 2 - 2 * SQUISH_CONSTANT_2D; | |
} | |
} else { // (1,0) and (0,1) are the closest two vertices. | |
dx_ext = dx0; | |
dy_ext = dy0; | |
xsv_ext = xsb; | |
ysv_ext = ysb; | |
} | |
xsb += 1; | |
ysb += 1; | |
dx0 = dx0 - 1 - 2 * SQUISH_CONSTANT_2D; | |
dy0 = dy0 - 1 - 2 * SQUISH_CONSTANT_2D; | |
} | |
// Contribution (0,0) or (1,1) | |
double attn0 = 2 - dx0 * dx0 - dy0 * dy0; | |
if (attn0 > 0) { | |
attn0 *= attn0; | |
value += attn0 * attn0 * extrapolate(xsb, ysb, dx0, dy0); | |
} | |
// Extra Vertex | |
double attn_ext = 2 - dx_ext * dx_ext - dy_ext * dy_ext; | |
if (attn_ext > 0) { | |
attn_ext *= attn_ext; | |
value += attn_ext * attn_ext * extrapolate(xsv_ext, ysv_ext, dx_ext, dy_ext); | |
} | |
return value; | |
} | |
// 3D OpenSimplex Noise. | |
public double eval(double x, double y, double z) { | |
// Place input coordinates on simplectic honeycomb. | |
double stretchOffset = (x + y + z) * STRETCH_CONSTANT_3D; | |
double xs = x + stretchOffset; | |
double ys = y + stretchOffset; | |
double zs = z + stretchOffset; | |
return eval3_Base(xs, ys, zs); | |
} | |
// Not as good as in SuperSimplex/OpenSimplex2S, since there are more visible differences between different slices. | |
// The Z coordinate should always be the "different" coordinate in your use case. | |
public double eval3_XYBeforeZ(double x, double y, double z) | |
{ | |
// Combine rotation with skew transform. | |
double xy = x + y; | |
double s2 = xy * 0.211324865405187; | |
double zz = z * 0.288675134594813; | |
double xs = s2 - x + zz, ys = s2 - y + zz; | |
double zs = xy * 0.577350269189626 + zz; | |
return eval3_Base(xs, ys, zs); | |
} | |
// Similar to the above, except the Y coordinate should always be the "different" coordinate in your use case. | |
public double eval3_XZBeforeY(double x, double y, double z) | |
{ | |
// Combine rotation with skew transform. | |
double xz = x + z; | |
double s2 = xz * 0.211324865405187; | |
double yy = y * 0.288675134594813; | |
double xs = s2 - x + yy, zs = s2 - z + yy; | |
double ys = xz * 0.577350269189626 + yy; | |
return eval3_Base(xs, ys, zs); | |
} | |
// 3D OpenSimplex Noise (base which takes skewed coordinates directly). | |
private double eval3_Base(double xs, double ys, double zs) { | |
// Floor to get simplectic honeycomb coordinates of rhombohedron (stretched cube) super-cell origin. | |
int xsb = fastFloor(xs); | |
int ysb = fastFloor(ys); | |
int zsb = fastFloor(zs); | |
// Compute simplectic honeycomb coordinates relative to rhombohedral origin. | |
double xins = xs - xsb; | |
double yins = ys - ysb; | |
double zins = zs - zsb; | |
// Sum those together to get a value that determines which region we're in. | |
double inSum = xins + yins + zins; | |
// Positions relative to origin point. | |
double squishOffsetIns = inSum * SQUISH_CONSTANT_3D; | |
double dx0 = xins + squishOffsetIns; | |
double dy0 = yins + squishOffsetIns; | |
double dz0 = zins + squishOffsetIns; | |
// We'll be defining these inside the next block and using them afterwards. | |
double dx_ext0, dy_ext0, dz_ext0; | |
double dx_ext1, dy_ext1, dz_ext1; | |
int xsv_ext0, ysv_ext0, zsv_ext0; | |
int xsv_ext1, ysv_ext1, zsv_ext1; | |
double value = 0; | |
if (inSum <= 1) { // We're inside the tetrahedron (3-Simplex) at (0,0,0) | |
// Determine which two of (0,0,1), (0,1,0), (1,0,0) are closest. | |
byte aPoint = 0x01; | |
double aScore = xins; | |
byte bPoint = 0x02; | |
double bScore = yins; | |
if (aScore >= bScore && zins > bScore) { | |
bScore = zins; | |
bPoint = 0x04; | |
} else if (aScore < bScore && zins > aScore) { | |
aScore = zins; | |
aPoint = 0x04; | |
} | |
// Now we determine the two lattice points not part of the tetrahedron that may contribute. | |
// This depends on the closest two tetrahedral vertices, including (0,0,0) | |
double wins = 1 - inSum; | |
if (wins > aScore || wins > bScore) { // (0,0,0) is one of the closest two tetrahedral vertices. | |
byte c = (bScore > aScore ? bPoint : aPoint); // Our other closest vertex is the closest out of a and b. | |
if ((c & 0x01) == 0) { | |
xsv_ext0 = xsb - 1; | |
xsv_ext1 = xsb; | |
dx_ext0 = dx0 + 1; | |
dx_ext1 = dx0; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb + 1; | |
dx_ext0 = dx_ext1 = dx0 - 1; | |
} | |
if ((c & 0x02) == 0) { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy_ext1 = dy0; | |
if ((c & 0x01) == 0) { | |
ysv_ext1 -= 1; | |
dy_ext1 += 1; | |
} else { | |
ysv_ext0 -= 1; | |
dy_ext0 += 1; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy0 - 1; | |
} | |
if ((c & 0x04) == 0) { | |
zsv_ext0 = zsb; | |
zsv_ext1 = zsb - 1; | |
dz_ext0 = dz0; | |
dz_ext1 = dz0 + 1; | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz0 - 1; | |
} | |
} else { // (0,0,0) is not one of the closest two tetrahedral vertices. | |
byte c = (byte)(aPoint | bPoint); // Our two extra vertices are determined by the closest two. | |
if ((c & 0x01) == 0) { | |
xsv_ext0 = xsb; | |
xsv_ext1 = xsb - 1; | |
dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_3D; | |
dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb + 1; | |
dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D; | |
dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D; | |
} | |
if ((c & 0x02) == 0) { | |
ysv_ext0 = ysb; | |
ysv_ext1 = ysb - 1; | |
dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_3D; | |
dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D; | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D; | |
dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D; | |
} | |
if ((c & 0x04) == 0) { | |
zsv_ext0 = zsb; | |
zsv_ext1 = zsb - 1; | |
dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_3D; | |
dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D; | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D; | |
dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D; | |
} | |
} | |
// Contribution (0,0,0) | |
double attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0; | |
if (attn0 > 0) { | |
attn0 *= attn0; | |
value += attn0 * attn0 * extrapolate(xsb + 0, ysb + 0, zsb + 0, dx0, dy0, dz0); | |
} | |
// Contribution (1,0,0) | |
double dx1 = dx0 - 1 - SQUISH_CONSTANT_3D; | |
double dy1 = dy0 - 0 - SQUISH_CONSTANT_3D; | |
double dz1 = dz0 - 0 - SQUISH_CONSTANT_3D; | |
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1; | |
if (attn1 > 0) { | |
attn1 *= attn1; | |
value += attn1 * attn1 * extrapolate(xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1); | |
} | |
// Contribution (0,1,0) | |
double dx2 = dx0 - 0 - SQUISH_CONSTANT_3D; | |
double dy2 = dy0 - 1 - SQUISH_CONSTANT_3D; | |
double dz2 = dz1; | |
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2; | |
if (attn2 > 0) { | |
attn2 *= attn2; | |
value += attn2 * attn2 * extrapolate(xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2); | |
} | |
// Contribution (0,0,1) | |
double dx3 = dx2; | |
double dy3 = dy1; | |
double dz3 = dz0 - 1 - SQUISH_CONSTANT_3D; | |
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3; | |
if (attn3 > 0) { | |
attn3 *= attn3; | |
value += attn3 * attn3 * extrapolate(xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3); | |
} | |
} else if (inSum >= 2) { // We're inside the tetrahedron (3-Simplex) at (1,1,1) | |
// Determine which two tetrahedral vertices are the closest, out of (1,1,0), (1,0,1), (0,1,1) but not (1,1,1). | |
byte aPoint = 0x06; | |
double aScore = xins; | |
byte bPoint = 0x05; | |
double bScore = yins; | |
if (aScore <= bScore && zins < bScore) { | |
bScore = zins; | |
bPoint = 0x03; | |
} else if (aScore > bScore && zins < aScore) { | |
aScore = zins; | |
aPoint = 0x03; | |
} | |
// Now we determine the two lattice points not part of the tetrahedron that may contribute. | |
// This depends on the closest two tetrahedral vertices, including (1,1,1) | |
double wins = 3 - inSum; | |
if (wins < aScore || wins < bScore) { // (1,1,1) is one of the closest two tetrahedral vertices. | |
byte c = (bScore < aScore ? bPoint : aPoint); // Our other closest vertex is the closest out of a and b. | |
if ((c & 0x01) != 0) { | |
xsv_ext0 = xsb + 2; | |
xsv_ext1 = xsb + 1; | |
dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_3D; | |
dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb; | |
dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_3D; | |
} | |
if ((c & 0x02) != 0) { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D; | |
if ((c & 0x01) != 0) { | |
ysv_ext1 += 1; | |
dy_ext1 -= 1; | |
} else { | |
ysv_ext0 += 1; | |
dy_ext0 -= 1; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_3D; | |
} | |
if ((c & 0x04) != 0) { | |
zsv_ext0 = zsb + 1; | |
zsv_ext1 = zsb + 2; | |
dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D; | |
dz_ext1 = dz0 - 2 - 3 * SQUISH_CONSTANT_3D; | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb; | |
dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_3D; | |
} | |
} else { // (1,1,1) is not one of the closest two tetrahedral vertices. | |
byte c = (byte)(aPoint & bPoint); // Our two extra vertices are determined by the closest two. | |
if ((c & 0x01) != 0) { | |
xsv_ext0 = xsb + 1; | |
xsv_ext1 = xsb + 2; | |
dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D; | |
dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb; | |
dx_ext0 = dx0 - SQUISH_CONSTANT_3D; | |
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D; | |
} | |
if ((c & 0x02) != 0) { | |
ysv_ext0 = ysb + 1; | |
ysv_ext1 = ysb + 2; | |
dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D; | |
dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D; | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy0 - SQUISH_CONSTANT_3D; | |
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D; | |
} | |
if ((c & 0x04) != 0) { | |
zsv_ext0 = zsb + 1; | |
zsv_ext1 = zsb + 2; | |
dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D; | |
dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D; | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb; | |
dz_ext0 = dz0 - SQUISH_CONSTANT_3D; | |
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D; | |
} | |
} | |
// Contribution (1,1,0) | |
double dx3 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D; | |
double dy3 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D; | |
double dz3 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D; | |
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3; | |
if (attn3 > 0) { | |
attn3 *= attn3; | |
value += attn3 * attn3 * extrapolate(xsb + 1, ysb + 1, zsb + 0, dx3, dy3, dz3); | |
} | |
// Contribution (1,0,1) | |
double dx2 = dx3; | |
double dy2 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D; | |
double dz2 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D; | |
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2; | |
if (attn2 > 0) { | |
attn2 *= attn2; | |
value += attn2 * attn2 * extrapolate(xsb + 1, ysb + 0, zsb + 1, dx2, dy2, dz2); | |
} | |
// Contribution (0,1,1) | |
double dx1 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D; | |
double dy1 = dy3; | |
double dz1 = dz2; | |
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1; | |
if (attn1 > 0) { | |
attn1 *= attn1; | |
value += attn1 * attn1 * extrapolate(xsb + 0, ysb + 1, zsb + 1, dx1, dy1, dz1); | |
} | |
// Contribution (1,1,1) | |
dx0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D; | |
dy0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D; | |
dz0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D; | |
double attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0; | |
if (attn0 > 0) { | |
attn0 *= attn0; | |
value += attn0 * attn0 * extrapolate(xsb + 1, ysb + 1, zsb + 1, dx0, dy0, dz0); | |
} | |
} else { // We're inside the octahedron (Rectified 3-Simplex) in between. | |
double aScore; | |
byte aPoint; | |
boolean aIsFurtherSide; | |
double bScore; | |
byte bPoint; | |
boolean bIsFurtherSide; | |
// Decide between point (0,0,1) and (1,1,0) as closest | |
double p1 = xins + yins; | |
if (p1 > 1) { | |
aScore = p1 - 1; | |
aPoint = 0x03; | |
aIsFurtherSide = true; | |
} else { | |
aScore = 1 - p1; | |
aPoint = 0x04; | |
aIsFurtherSide = false; | |
} | |
// Decide between point (0,1,0) and (1,0,1) as closest | |
double p2 = xins + zins; | |
if (p2 > 1) { | |
bScore = p2 - 1; | |
bPoint = 0x05; | |
bIsFurtherSide = true; | |
} else { | |
bScore = 1 - p2; | |
bPoint = 0x02; | |
bIsFurtherSide = false; | |
} | |
// The closest out of the two (1,0,0) and (0,1,1) will replace the furthest out of the two decided above, if closer. | |
double p3 = yins + zins; | |
if (p3 > 1) { | |
double score = p3 - 1; | |
if (aScore <= bScore && aScore < score) { | |
aScore = score; | |
aPoint = 0x06; | |
aIsFurtherSide = true; | |
} else if (aScore > bScore && bScore < score) { | |
bScore = score; | |
bPoint = 0x06; | |
bIsFurtherSide = true; | |
} | |
} else { | |
double score = 1 - p3; | |
if (aScore <= bScore && aScore < score) { | |
aScore = score; | |
aPoint = 0x01; | |
aIsFurtherSide = false; | |
} else if (aScore > bScore && bScore < score) { | |
bScore = score; | |
bPoint = 0x01; | |
bIsFurtherSide = false; | |
} | |
} | |
// Where each of the two closest points are determines how the extra two vertices are calculated. | |
if (aIsFurtherSide == bIsFurtherSide) { | |
if (aIsFurtherSide) { // Both closest points on (1,1,1) side | |
// One of the two extra points is (1,1,1) | |
dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D; | |
dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D; | |
dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D; | |
xsv_ext0 = xsb + 1; | |
ysv_ext0 = ysb + 1; | |
zsv_ext0 = zsb + 1; | |
// Other extra point is based on the shared axis. | |
byte c = (byte)(aPoint & bPoint); | |
if ((c & 0x01) != 0) { | |
dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D; | |
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D; | |
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D; | |
xsv_ext1 = xsb + 2; | |
ysv_ext1 = ysb; | |
zsv_ext1 = zsb; | |
} else if ((c & 0x02) != 0) { | |
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D; | |
dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D; | |
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D; | |
xsv_ext1 = xsb; | |
ysv_ext1 = ysb + 2; | |
zsv_ext1 = zsb; | |
} else { | |
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D; | |
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D; | |
dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D; | |
xsv_ext1 = xsb; | |
ysv_ext1 = ysb; | |
zsv_ext1 = zsb + 2; | |
} | |
} else {// Both closest points on (0,0,0) side | |
// One of the two extra points is (0,0,0) | |
dx_ext0 = dx0; | |
dy_ext0 = dy0; | |
dz_ext0 = dz0; | |
xsv_ext0 = xsb; | |
ysv_ext0 = ysb; | |
zsv_ext0 = zsb; | |
// Other extra point is based on the omitted axis. | |
byte c = (byte)(aPoint | bPoint); | |
if ((c & 0x01) == 0) { | |
dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D; | |
dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D; | |
dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D; | |
xsv_ext1 = xsb - 1; | |
ysv_ext1 = ysb + 1; | |
zsv_ext1 = zsb + 1; | |
} else if ((c & 0x02) == 0) { | |
dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D; | |
dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D; | |
dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D; | |
xsv_ext1 = xsb + 1; | |
ysv_ext1 = ysb - 1; | |
zsv_ext1 = zsb + 1; | |
} else { | |
dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D; | |
dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D; | |
dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D; | |
xsv_ext1 = xsb + 1; | |
ysv_ext1 = ysb + 1; | |
zsv_ext1 = zsb - 1; | |
} | |
} | |
} else { // One point on (0,0,0) side, one point on (1,1,1) side | |
byte c1, c2; | |
if (aIsFurtherSide) { | |
c1 = aPoint; | |
c2 = bPoint; | |
} else { | |
c1 = bPoint; | |
c2 = aPoint; | |
} | |
// One contribution is a permutation of (1,1,-1) | |
if ((c1 & 0x01) == 0) { | |
dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_3D; | |
dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D; | |
dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D; | |
xsv_ext0 = xsb - 1; | |
ysv_ext0 = ysb + 1; | |
zsv_ext0 = zsb + 1; | |
} else if ((c1 & 0x02) == 0) { | |
dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D; | |
dy_ext0 = dy0 + 1 - SQUISH_CONSTANT_3D; | |
dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D; | |
xsv_ext0 = xsb + 1; | |
ysv_ext0 = ysb - 1; | |
zsv_ext0 = zsb + 1; | |
} else { | |
dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D; | |
dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D; | |
dz_ext0 = dz0 + 1 - SQUISH_CONSTANT_3D; | |
xsv_ext0 = xsb + 1; | |
ysv_ext0 = ysb + 1; | |
zsv_ext0 = zsb - 1; | |
} | |
// One contribution is a permutation of (0,0,2) | |
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D; | |
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D; | |
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D; | |
xsv_ext1 = xsb; | |
ysv_ext1 = ysb; | |
zsv_ext1 = zsb; | |
if ((c2 & 0x01) != 0) { | |
dx_ext1 -= 2; | |
xsv_ext1 += 2; | |
} else if ((c2 & 0x02) != 0) { | |
dy_ext1 -= 2; | |
ysv_ext1 += 2; | |
} else { | |
dz_ext1 -= 2; | |
zsv_ext1 += 2; | |
} | |
} | |
// Contribution (1,0,0) | |
double dx1 = dx0 - 1 - SQUISH_CONSTANT_3D; | |
double dy1 = dy0 - 0 - SQUISH_CONSTANT_3D; | |
double dz1 = dz0 - 0 - SQUISH_CONSTANT_3D; | |
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1; | |
if (attn1 > 0) { | |
attn1 *= attn1; | |
value += attn1 * attn1 * extrapolate(xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1); | |
} | |
// Contribution (0,1,0) | |
double dx2 = dx0 - 0 - SQUISH_CONSTANT_3D; | |
double dy2 = dy0 - 1 - SQUISH_CONSTANT_3D; | |
double dz2 = dz1; | |
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2; | |
if (attn2 > 0) { | |
attn2 *= attn2; | |
value += attn2 * attn2 * extrapolate(xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2); | |
} | |
// Contribution (0,0,1) | |
double dx3 = dx2; | |
double dy3 = dy1; | |
double dz3 = dz0 - 1 - SQUISH_CONSTANT_3D; | |
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3; | |
if (attn3 > 0) { | |
attn3 *= attn3; | |
value += attn3 * attn3 * extrapolate(xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3); | |
} | |
// Contribution (1,1,0) | |
double dx4 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D; | |
double dy4 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D; | |
double dz4 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D; | |
double attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4; | |
if (attn4 > 0) { | |
attn4 *= attn4; | |
value += attn4 * attn4 * extrapolate(xsb + 1, ysb + 1, zsb + 0, dx4, dy4, dz4); | |
} | |
// Contribution (1,0,1) | |
double dx5 = dx4; | |
double dy5 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D; | |
double dz5 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D; | |
double attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5; | |
if (attn5 > 0) { | |
attn5 *= attn5; | |
value += attn5 * attn5 * extrapolate(xsb + 1, ysb + 0, zsb + 1, dx5, dy5, dz5); | |
} | |
// Contribution (0,1,1) | |
double dx6 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D; | |
double dy6 = dy4; | |
double dz6 = dz5; | |
double attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6; | |
if (attn6 > 0) { | |
attn6 *= attn6; | |
value += attn6 * attn6 * extrapolate(xsb + 0, ysb + 1, zsb + 1, dx6, dy6, dz6); | |
} | |
} | |
// First extra vertex | |
double attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0; | |
if (attn_ext0 > 0) | |
{ | |
attn_ext0 *= attn_ext0; | |
value += attn_ext0 * attn_ext0 * extrapolate(xsv_ext0, ysv_ext0, zsv_ext0, dx_ext0, dy_ext0, dz_ext0); | |
} | |
// Second extra vertex | |
double attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1; | |
if (attn_ext1 > 0) | |
{ | |
attn_ext1 *= attn_ext1; | |
value += attn_ext1 * attn_ext1 * extrapolate(xsv_ext1, ysv_ext1, zsv_ext1, dx_ext1, dy_ext1, dz_ext1); | |
} | |
return value; | |
} | |
public double eval(double x, double y, double z, double w) { | |
// Get points for A4 lattice | |
double s = -0.138196601125011 * (x + y + z + w); | |
double xs = x + s, ys = y + s, zs = z + s, ws = w + s; | |
return eval4_Base(xs, ys, zs, ws); | |
} | |
public double eval4_XYBeforeZW(double x, double y, double z, double w) { | |
double s2 = (x + y) * -0.178275657951399372 + (z + w) * 0.215623393288842828; | |
double t2 = (z + w) * -0.403949762580207112 + (x + y) * -0.375199083010075342; | |
double xs = x + s2, ys = y + s2, zs = z + t2, ws = w + t2; | |
return eval4_Base(xs, ys, zs, ws); | |
} | |
public double eval4_XZBeforeYW(double x, double y, double z, double w) { | |
double s2 = (x + z) * -0.178275657951399372 + (y + w) * 0.215623393288842828; | |
double t2 = (y + w) * -0.403949762580207112 + (x + z) * -0.375199083010075342; | |
double xs = x + s2, ys = y + t2, zs = z + s2, ws = w + t2; | |
return eval4_Base(xs, ys, zs, ws); | |
} | |
public double eval4_XYZBeforeW(double x, double y, double z, double w) { | |
double xyz = x + y + z; | |
double ww = w * 0.2236067977499788; | |
double s2 = xyz * -0.16666666666666666 + ww; | |
double xs = x + s2, ys = y + s2, zs = z + s2, ws = -0.5 * xyz + ww; | |
return eval4_Base(xs, ys, zs, ws); | |
} | |
// 4D OpenSimplex Noise. | |
private double eval4_Base(double xs, double ys, double zs, double ws) { | |
// Floor to get simplectic honeycomb coordinates of rhombo-hypercube super-cell origin. | |
int xsb = fastFloor(xs); | |
int ysb = fastFloor(ys); | |
int zsb = fastFloor(zs); | |
int wsb = fastFloor(ws); | |
// Compute simplectic honeycomb coordinates relative to rhombo-hypercube origin. | |
double xins = xs - xsb; | |
double yins = ys - ysb; | |
double zins = zs - zsb; | |
double wins = ws - wsb; | |
// Sum those together to get a value that determines which region we're in. | |
double inSum = xins + yins + zins + wins; | |
// Positions relative to origin point. | |
double squishOffsetIns = inSum * SQUISH_CONSTANT_4D; | |
double dx0 = xins + squishOffsetIns; | |
double dy0 = yins + squishOffsetIns; | |
double dz0 = zins + squishOffsetIns; | |
double dw0 = wins + squishOffsetIns; | |
// We'll be defining these inside the next block and using them afterwards. | |
double dx_ext0, dy_ext0, dz_ext0, dw_ext0; | |
double dx_ext1, dy_ext1, dz_ext1, dw_ext1; | |
double dx_ext2, dy_ext2, dz_ext2, dw_ext2; | |
int xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0; | |
int xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1; | |
int xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2; | |
double value = 0; | |
if (inSum <= 1) { // We're inside the pentachoron (4-Simplex) at (0,0,0,0) | |
// Determine which two of (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0) are closest. | |
byte aPoint = 0x01; | |
double aScore = xins; | |
byte bPoint = 0x02; | |
double bScore = yins; | |
if (aScore >= bScore && zins > bScore) { | |
bScore = zins; | |
bPoint = 0x04; | |
} else if (aScore < bScore && zins > aScore) { | |
aScore = zins; | |
aPoint = 0x04; | |
} | |
if (aScore >= bScore && wins > bScore) { | |
bScore = wins; | |
bPoint = 0x08; | |
} else if (aScore < bScore && wins > aScore) { | |
aScore = wins; | |
aPoint = 0x08; | |
} | |
// Now we determine the three lattice points not part of the pentachoron that may contribute. | |
// This depends on the closest two pentachoron vertices, including (0,0,0,0) | |
double uins = 1 - inSum; | |
if (uins > aScore || uins > bScore) { // (0,0,0,0) is one of the closest two pentachoron vertices. | |
byte c = (bScore > aScore ? bPoint : aPoint); // Our other closest vertex is the closest out of a and b. | |
if ((c & 0x01) == 0) { | |
xsv_ext0 = xsb - 1; | |
xsv_ext1 = xsv_ext2 = xsb; | |
dx_ext0 = dx0 + 1; | |
dx_ext1 = dx_ext2 = dx0; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1; | |
dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 1; | |
} | |
if ((c & 0x02) == 0) { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb; | |
dy_ext0 = dy_ext1 = dy_ext2 = dy0; | |
if ((c & 0x01) == 0x01) { | |
ysv_ext0 -= 1; | |
dy_ext0 += 1; | |
} else { | |
ysv_ext1 -= 1; | |
dy_ext1 += 1; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1; | |
} | |
if ((c & 0x04) == 0) { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb; | |
dz_ext0 = dz_ext1 = dz_ext2 = dz0; | |
if ((c & 0x03) != 0) { | |
if ((c & 0x03) == 0x03) { | |
zsv_ext0 -= 1; | |
dz_ext0 += 1; | |
} else { | |
zsv_ext1 -= 1; | |
dz_ext1 += 1; | |
} | |
} else { | |
zsv_ext2 -= 1; | |
dz_ext2 += 1; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1; | |
} | |
if ((c & 0x08) == 0) { | |
wsv_ext0 = wsv_ext1 = wsb; | |
wsv_ext2 = wsb - 1; | |
dw_ext0 = dw_ext1 = dw0; | |
dw_ext2 = dw0 + 1; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1; | |
dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 1; | |
} | |
} else { // (0,0,0,0) is not one of the closest two pentachoron vertices. | |
byte c = (byte)(aPoint | bPoint); // Our three extra vertices are determined by the closest two. | |
if ((c & 0x01) == 0) { | |
xsv_ext0 = xsv_ext2 = xsb; | |
xsv_ext1 = xsb - 1; | |
dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D; | |
dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_4D; | |
dx_ext2 = dx0 - SQUISH_CONSTANT_4D; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1; | |
dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dx_ext1 = dx_ext2 = dx0 - 1 - SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x02) == 0) { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb; | |
dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D; | |
dy_ext1 = dy_ext2 = dy0 - SQUISH_CONSTANT_4D; | |
if ((c & 0x01) == 0x01) { | |
ysv_ext1 -= 1; | |
dy_ext1 += 1; | |
} else { | |
ysv_ext2 -= 1; | |
dy_ext2 += 1; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1; | |
dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dy_ext1 = dy_ext2 = dy0 - 1 - SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x04) == 0) { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb; | |
dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D; | |
dz_ext1 = dz_ext2 = dz0 - SQUISH_CONSTANT_4D; | |
if ((c & 0x03) == 0x03) { | |
zsv_ext1 -= 1; | |
dz_ext1 += 1; | |
} else { | |
zsv_ext2 -= 1; | |
dz_ext2 += 1; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1; | |
dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dz_ext1 = dz_ext2 = dz0 - 1 - SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x08) == 0) { | |
wsv_ext0 = wsv_ext1 = wsb; | |
wsv_ext2 = wsb - 1; | |
dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D; | |
dw_ext1 = dw0 - SQUISH_CONSTANT_4D; | |
dw_ext2 = dw0 + 1 - SQUISH_CONSTANT_4D; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1; | |
dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dw_ext1 = dw_ext2 = dw0 - 1 - SQUISH_CONSTANT_4D; | |
} | |
} | |
// Contribution (0,0,0,0) | |
double attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0; | |
if (attn0 > 0) { | |
attn0 *= attn0; | |
value += attn0 * attn0 * extrapolate(xsb + 0, ysb + 0, zsb + 0, wsb + 0, dx0, dy0, dz0, dw0); | |
} | |
// Contribution (1,0,0,0) | |
double dx1 = dx0 - 1 - SQUISH_CONSTANT_4D; | |
double dy1 = dy0 - 0 - SQUISH_CONSTANT_4D; | |
double dz1 = dz0 - 0 - SQUISH_CONSTANT_4D; | |
double dw1 = dw0 - 0 - SQUISH_CONSTANT_4D; | |
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1; | |
if (attn1 > 0) { | |
attn1 *= attn1; | |
value += attn1 * attn1 * extrapolate(xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1); | |
} | |
// Contribution (0,1,0,0) | |
double dx2 = dx0 - 0 - SQUISH_CONSTANT_4D; | |
double dy2 = dy0 - 1 - SQUISH_CONSTANT_4D; | |
double dz2 = dz1; | |
double dw2 = dw1; | |
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2; | |
if (attn2 > 0) { | |
attn2 *= attn2; | |
value += attn2 * attn2 * extrapolate(xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2); | |
} | |
// Contribution (0,0,1,0) | |
double dx3 = dx2; | |
double dy3 = dy1; | |
double dz3 = dz0 - 1 - SQUISH_CONSTANT_4D; | |
double dw3 = dw1; | |
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3; | |
if (attn3 > 0) { | |
attn3 *= attn3; | |
value += attn3 * attn3 * extrapolate(xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3); | |
} | |
// Contribution (0,0,0,1) | |
double dx4 = dx2; | |
double dy4 = dy1; | |
double dz4 = dz1; | |
double dw4 = dw0 - 1 - SQUISH_CONSTANT_4D; | |
double attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4; | |
if (attn4 > 0) { | |
attn4 *= attn4; | |
value += attn4 * attn4 * extrapolate(xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4); | |
} | |
} else if (inSum >= 3) { // We're inside the pentachoron (4-Simplex) at (1,1,1,1) | |
// Determine which two of (1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1) are closest. | |
byte aPoint = 0x0E; | |
double aScore = xins; | |
byte bPoint = 0x0D; | |
double bScore = yins; | |
if (aScore <= bScore && zins < bScore) { | |
bScore = zins; | |
bPoint = 0x0B; | |
} else if (aScore > bScore && zins < aScore) { | |
aScore = zins; | |
aPoint = 0x0B; | |
} | |
if (aScore <= bScore && wins < bScore) { | |
bScore = wins; | |
bPoint = 0x07; | |
} else if (aScore > bScore && wins < aScore) { | |
aScore = wins; | |
aPoint = 0x07; | |
} | |
// Now we determine the three lattice points not part of the pentachoron that may contribute. | |
// This depends on the closest two pentachoron vertices, including (0,0,0,0) | |
double uins = 4 - inSum; | |
if (uins < aScore || uins < bScore) { // (1,1,1,1) is one of the closest two pentachoron vertices. | |
byte c = (bScore < aScore ? bPoint : aPoint); // Our other closest vertex is the closest out of a and b. | |
if ((c & 0x01) != 0) { | |
xsv_ext0 = xsb + 2; | |
xsv_ext1 = xsv_ext2 = xsb + 1; | |
dx_ext0 = dx0 - 2 - 4 * SQUISH_CONSTANT_4D; | |
dx_ext1 = dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb; | |
dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 4 * SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x02) != 0) { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D; | |
if ((c & 0x01) != 0) { | |
ysv_ext1 += 1; | |
dy_ext1 -= 1; | |
} else { | |
ysv_ext0 += 1; | |
dy_ext0 -= 1; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb; | |
dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 4 * SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x04) != 0) { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D; | |
if ((c & 0x03) != 0x03) { | |
if ((c & 0x03) == 0) { | |
zsv_ext0 += 1; | |
dz_ext0 -= 1; | |
} else { | |
zsv_ext1 += 1; | |
dz_ext1 -= 1; | |
} | |
} else { | |
zsv_ext2 += 1; | |
dz_ext2 -= 1; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb; | |
dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 4 * SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x08) != 0) { | |
wsv_ext0 = wsv_ext1 = wsb + 1; | |
wsv_ext2 = wsb + 2; | |
dw_ext0 = dw_ext1 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D; | |
dw_ext2 = dw0 - 2 - 4 * SQUISH_CONSTANT_4D; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb; | |
dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 4 * SQUISH_CONSTANT_4D; | |
} | |
} else { // (1,1,1,1) is not one of the closest two pentachoron vertices. | |
byte c = (byte)(aPoint & bPoint); // Our three extra vertices are determined by the closest two. | |
if ((c & 0x01) != 0) { | |
xsv_ext0 = xsv_ext2 = xsb + 1; | |
xsv_ext1 = xsb + 2; | |
dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dx_ext1 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D; | |
dx_ext2 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb; | |
dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D; | |
dx_ext1 = dx_ext2 = dx0 - 3 * SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x02) != 0) { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1; | |
dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dy_ext1 = dy_ext2 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
if ((c & 0x01) != 0) { | |
ysv_ext2 += 1; | |
dy_ext2 -= 1; | |
} else { | |
ysv_ext1 += 1; | |
dy_ext1 -= 1; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb; | |
dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D; | |
dy_ext1 = dy_ext2 = dy0 - 3 * SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x04) != 0) { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1; | |
dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dz_ext1 = dz_ext2 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
if ((c & 0x03) != 0) { | |
zsv_ext2 += 1; | |
dz_ext2 -= 1; | |
} else { | |
zsv_ext1 += 1; | |
dz_ext1 -= 1; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb; | |
dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D; | |
dz_ext1 = dz_ext2 = dz0 - 3 * SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x08) != 0) { | |
wsv_ext0 = wsv_ext1 = wsb + 1; | |
wsv_ext2 = wsb + 2; | |
dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dw_ext1 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
dw_ext2 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb; | |
dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D; | |
dw_ext1 = dw_ext2 = dw0 - 3 * SQUISH_CONSTANT_4D; | |
} | |
} | |
// Contribution (1,1,1,0) | |
double dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
double dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
double dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
double dw4 = dw0 - 3 * SQUISH_CONSTANT_4D; | |
double attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4; | |
if (attn4 > 0) { | |
attn4 *= attn4; | |
value += attn4 * attn4 * extrapolate(xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4); | |
} | |
// Contribution (1,1,0,1) | |
double dx3 = dx4; | |
double dy3 = dy4; | |
double dz3 = dz0 - 3 * SQUISH_CONSTANT_4D; | |
double dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3; | |
if (attn3 > 0) { | |
attn3 *= attn3; | |
value += attn3 * attn3 * extrapolate(xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3); | |
} | |
// Contribution (1,0,1,1) | |
double dx2 = dx4; | |
double dy2 = dy0 - 3 * SQUISH_CONSTANT_4D; | |
double dz2 = dz4; | |
double dw2 = dw3; | |
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2; | |
if (attn2 > 0) { | |
attn2 *= attn2; | |
value += attn2 * attn2 * extrapolate(xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2); | |
} | |
// Contribution (0,1,1,1) | |
double dx1 = dx0 - 3 * SQUISH_CONSTANT_4D; | |
double dz1 = dz4; | |
double dy1 = dy4; | |
double dw1 = dw3; | |
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1; | |
if (attn1 > 0) { | |
attn1 *= attn1; | |
value += attn1 * attn1 * extrapolate(xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1); | |
} | |
// Contribution (1,1,1,1) | |
dx0 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D; | |
dy0 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D; | |
dz0 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D; | |
dw0 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D; | |
double attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0; | |
if (attn0 > 0) { | |
attn0 *= attn0; | |
value += attn0 * attn0 * extrapolate(xsb + 1, ysb + 1, zsb + 1, wsb + 1, dx0, dy0, dz0, dw0); | |
} | |
} else if (inSum <= 2) { // We're inside the first dispentachoron (Rectified 4-Simplex) | |
double aScore; | |
byte aPoint; | |
boolean aIsBiggerSide = true; | |
double bScore; | |
byte bPoint; | |
boolean bIsBiggerSide = true; | |
// Decide between (1,1,0,0) and (0,0,1,1) | |
if (xins + yins > zins + wins) { | |
aScore = xins + yins; | |
aPoint = 0x03; | |
} else { | |
aScore = zins + wins; | |
aPoint = 0x0C; | |
} | |
// Decide between (1,0,1,0) and (0,1,0,1) | |
if (xins + zins > yins + wins) { | |
bScore = xins + zins; | |
bPoint = 0x05; | |
} else { | |
bScore = yins + wins; | |
bPoint = 0x0A; | |
} | |
// Closer between (1,0,0,1) and (0,1,1,0) will replace the further of a and b, if closer. | |
if (xins + wins > yins + zins) { | |
double score = xins + wins; | |
if (aScore >= bScore && score > bScore) { | |
bScore = score; | |
bPoint = 0x09; | |
} else if (aScore < bScore && score > aScore) { | |
aScore = score; | |
aPoint = 0x09; | |
} | |
} else { | |
double score = yins + zins; | |
if (aScore >= bScore && score > bScore) { | |
bScore = score; | |
bPoint = 0x06; | |
} else if (aScore < bScore && score > aScore) { | |
aScore = score; | |
aPoint = 0x06; | |
} | |
} | |
// Decide if (1,0,0,0) is closer. | |
double p1 = 2 - inSum + xins; | |
if (aScore >= bScore && p1 > bScore) { | |
bScore = p1; | |
bPoint = 0x01; | |
bIsBiggerSide = false; | |
} else if (aScore < bScore && p1 > aScore) { | |
aScore = p1; | |
aPoint = 0x01; | |
aIsBiggerSide = false; | |
} | |
// Decide if (0,1,0,0) is closer. | |
double p2 = 2 - inSum + yins; | |
if (aScore >= bScore && p2 > bScore) { | |
bScore = p2; | |
bPoint = 0x02; | |
bIsBiggerSide = false; | |
} else if (aScore < bScore && p2 > aScore) { | |
aScore = p2; | |
aPoint = 0x02; | |
aIsBiggerSide = false; | |
} | |
// Decide if (0,0,1,0) is closer. | |
double p3 = 2 - inSum + zins; | |
if (aScore >= bScore && p3 > bScore) { | |
bScore = p3; | |
bPoint = 0x04; | |
bIsBiggerSide = false; | |
} else if (aScore < bScore && p3 > aScore) { | |
aScore = p3; | |
aPoint = 0x04; | |
aIsBiggerSide = false; | |
} | |
// Decide if (0,0,0,1) is closer. | |
double p4 = 2 - inSum + wins; | |
if (aScore >= bScore && p4 > bScore) { | |
bScore = p4; | |
bPoint = 0x08; | |
bIsBiggerSide = false; | |
} else if (aScore < bScore && p4 > aScore) { | |
aScore = p4; | |
aPoint = 0x08; | |
aIsBiggerSide = false; | |
} | |
// Where each of the two closest points are determines how the extra three vertices are calculated. | |
if (aIsBiggerSide == bIsBiggerSide) { | |
if (aIsBiggerSide) { // Both closest points on the bigger side | |
byte c1 = (byte)(aPoint | bPoint); | |
byte c2 = (byte)(aPoint & bPoint); | |
if ((c1 & 0x01) == 0) { | |
xsv_ext0 = xsb; | |
xsv_ext1 = xsb - 1; | |
dx_ext0 = dx0 - 3 * SQUISH_CONSTANT_4D; | |
dx_ext1 = dx0 + 1 - 2 * SQUISH_CONSTANT_4D; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb + 1; | |
dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
dx_ext1 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
} | |
if ((c1 & 0x02) == 0) { | |
ysv_ext0 = ysb; | |
ysv_ext1 = ysb - 1; | |
dy_ext0 = dy0 - 3 * SQUISH_CONSTANT_4D; | |
dy_ext1 = dy0 + 1 - 2 * SQUISH_CONSTANT_4D; | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
dy_ext1 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
} | |
if ((c1 & 0x04) == 0) { | |
zsv_ext0 = zsb; | |
zsv_ext1 = zsb - 1; | |
dz_ext0 = dz0 - 3 * SQUISH_CONSTANT_4D; | |
dz_ext1 = dz0 + 1 - 2 * SQUISH_CONSTANT_4D; | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
dz_ext1 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
} | |
if ((c1 & 0x08) == 0) { | |
wsv_ext0 = wsb; | |
wsv_ext1 = wsb - 1; | |
dw_ext0 = dw0 - 3 * SQUISH_CONSTANT_4D; | |
dw_ext1 = dw0 + 1 - 2 * SQUISH_CONSTANT_4D; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsb + 1; | |
dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
dw_ext1 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
} | |
// One combination is a permutation of (0,0,0,2) based on c2 | |
xsv_ext2 = xsb; | |
ysv_ext2 = ysb; | |
zsv_ext2 = zsb; | |
wsv_ext2 = wsb; | |
dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D; | |
dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D; | |
dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D; | |
dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D; | |
if ((c2 & 0x01) != 0) { | |
xsv_ext2 += 2; | |
dx_ext2 -= 2; | |
} else if ((c2 & 0x02) != 0) { | |
ysv_ext2 += 2; | |
dy_ext2 -= 2; | |
} else if ((c2 & 0x04) != 0) { | |
zsv_ext2 += 2; | |
dz_ext2 -= 2; | |
} else { | |
wsv_ext2 += 2; | |
dw_ext2 -= 2; | |
} | |
} else { // Both closest points on the smaller side | |
// One of the two extra points is (0,0,0,0) | |
xsv_ext2 = xsb; | |
ysv_ext2 = ysb; | |
zsv_ext2 = zsb; | |
wsv_ext2 = wsb; | |
dx_ext2 = dx0; | |
dy_ext2 = dy0; | |
dz_ext2 = dz0; | |
dw_ext2 = dw0; | |
// Other two points are based on the omitted axes. | |
byte c = (byte)(aPoint | bPoint); | |
if ((c & 0x01) == 0) { | |
xsv_ext0 = xsb - 1; | |
xsv_ext1 = xsb; | |
dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D; | |
dx_ext1 = dx0 - SQUISH_CONSTANT_4D; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb + 1; | |
dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x02) == 0) { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D; | |
if ((c & 0x01) == 0x01) | |
{ | |
ysv_ext0 -= 1; | |
dy_ext0 += 1; | |
} else { | |
ysv_ext1 -= 1; | |
dy_ext1 += 1; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x04) == 0) { | |
zsv_ext0 = zsv_ext1 = zsb; | |
dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D; | |
if ((c & 0x03) == 0x03) | |
{ | |
zsv_ext0 -= 1; | |
dz_ext0 += 1; | |
} else { | |
zsv_ext1 -= 1; | |
dz_ext1 += 1; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x08) == 0) | |
{ | |
wsv_ext0 = wsb; | |
wsv_ext1 = wsb - 1; | |
dw_ext0 = dw0 - SQUISH_CONSTANT_4D; | |
dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsb + 1; | |
dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D; | |
} | |
} | |
} else { // One point on each "side" | |
byte c1, c2; | |
if (aIsBiggerSide) { | |
c1 = aPoint; | |
c2 = bPoint; | |
} else { | |
c1 = bPoint; | |
c2 = aPoint; | |
} | |
// Two contributions are the bigger-sided point with each 0 replaced with -1. | |
if ((c1 & 0x01) == 0) { | |
xsv_ext0 = xsb - 1; | |
xsv_ext1 = xsb; | |
dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D; | |
dx_ext1 = dx0 - SQUISH_CONSTANT_4D; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb + 1; | |
dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D; | |
} | |
if ((c1 & 0x02) == 0) { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D; | |
if ((c1 & 0x01) == 0x01) { | |
ysv_ext0 -= 1; | |
dy_ext0 += 1; | |
} else { | |
ysv_ext1 -= 1; | |
dy_ext1 += 1; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D; | |
} | |
if ((c1 & 0x04) == 0) { | |
zsv_ext0 = zsv_ext1 = zsb; | |
dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D; | |
if ((c1 & 0x03) == 0x03) { | |
zsv_ext0 -= 1; | |
dz_ext0 += 1; | |
} else { | |
zsv_ext1 -= 1; | |
dz_ext1 += 1; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D; | |
} | |
if ((c1 & 0x08) == 0) { | |
wsv_ext0 = wsb; | |
wsv_ext1 = wsb - 1; | |
dw_ext0 = dw0 - SQUISH_CONSTANT_4D; | |
dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsb + 1; | |
dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D; | |
} | |
// One contribution is a permutation of (0,0,0,2) based on the smaller-sided point | |
xsv_ext2 = xsb; | |
ysv_ext2 = ysb; | |
zsv_ext2 = zsb; | |
wsv_ext2 = wsb; | |
dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D; | |
dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D; | |
dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D; | |
dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D; | |
if ((c2 & 0x01) != 0) { | |
xsv_ext2 += 2; | |
dx_ext2 -= 2; | |
} else if ((c2 & 0x02) != 0) { | |
ysv_ext2 += 2; | |
dy_ext2 -= 2; | |
} else if ((c2 & 0x04) != 0) { | |
zsv_ext2 += 2; | |
dz_ext2 -= 2; | |
} else { | |
wsv_ext2 += 2; | |
dw_ext2 -= 2; | |
} | |
} | |
// Contribution (1,0,0,0) | |
double dx1 = dx0 - 1 - SQUISH_CONSTANT_4D; | |
double dy1 = dy0 - 0 - SQUISH_CONSTANT_4D; | |
double dz1 = dz0 - 0 - SQUISH_CONSTANT_4D; | |
double dw1 = dw0 - 0 - SQUISH_CONSTANT_4D; | |
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1; | |
if (attn1 > 0) { | |
attn1 *= attn1; | |
value += attn1 * attn1 * extrapolate(xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1); | |
} | |
// Contribution (0,1,0,0) | |
double dx2 = dx0 - 0 - SQUISH_CONSTANT_4D; | |
double dy2 = dy0 - 1 - SQUISH_CONSTANT_4D; | |
double dz2 = dz1; | |
double dw2 = dw1; | |
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2; | |
if (attn2 > 0) { | |
attn2 *= attn2; | |
value += attn2 * attn2 * extrapolate(xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2); | |
} | |
// Contribution (0,0,1,0) | |
double dx3 = dx2; | |
double dy3 = dy1; | |
double dz3 = dz0 - 1 - SQUISH_CONSTANT_4D; | |
double dw3 = dw1; | |
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3; | |
if (attn3 > 0) { | |
attn3 *= attn3; | |
value += attn3 * attn3 * extrapolate(xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3); | |
} | |
// Contribution (0,0,0,1) | |
double dx4 = dx2; | |
double dy4 = dy1; | |
double dz4 = dz1; | |
double dw4 = dw0 - 1 - SQUISH_CONSTANT_4D; | |
double attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4; | |
if (attn4 > 0) { | |
attn4 *= attn4; | |
value += attn4 * attn4 * extrapolate(xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4); | |
} | |
// Contribution (1,1,0,0) | |
double dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5; | |
if (attn5 > 0) { | |
attn5 *= attn5; | |
value += attn5 * attn5 * extrapolate(xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5); | |
} | |
// Contribution (1,0,1,0) | |
double dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6; | |
if (attn6 > 0) { | |
attn6 *= attn6; | |
value += attn6 * attn6 * extrapolate(xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6); | |
} | |
// Contribution (1,0,0,1) | |
double dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7; | |
if (attn7 > 0) { | |
attn7 *= attn7; | |
value += attn7 * attn7 * extrapolate(xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7); | |
} | |
// Contribution (0,1,1,0) | |
double dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8; | |
if (attn8 > 0) { | |
attn8 *= attn8; | |
value += attn8 * attn8 * extrapolate(xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8); | |
} | |
// Contribution (0,1,0,1) | |
double dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9; | |
if (attn9 > 0) { | |
attn9 *= attn9; | |
value += attn9 * attn9 * extrapolate(xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9); | |
} | |
// Contribution (0,0,1,1) | |
double dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10; | |
if (attn10 > 0) { | |
attn10 *= attn10; | |
value += attn10 * attn10 * extrapolate(xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10); | |
} | |
} else { // We're inside the second dispentachoron (Rectified 4-Simplex) | |
double aScore; | |
byte aPoint; | |
boolean aIsBiggerSide = true; | |
double bScore; | |
byte bPoint; | |
boolean bIsBiggerSide = true; | |
// Decide between (0,0,1,1) and (1,1,0,0) | |
if (xins + yins < zins + wins) { | |
aScore = xins + yins; | |
aPoint = 0x0C; | |
} else { | |
aScore = zins + wins; | |
aPoint = 0x03; | |
} | |
// Decide between (0,1,0,1) and (1,0,1,0) | |
if (xins + zins < yins + wins) { | |
bScore = xins + zins; | |
bPoint = 0x0A; | |
} else { | |
bScore = yins + wins; | |
bPoint = 0x05; | |
} | |
// Closer between (0,1,1,0) and (1,0,0,1) will replace the further of a and b, if closer. | |
if (xins + wins < yins + zins) { | |
double score = xins + wins; | |
if (aScore <= bScore && score < bScore) { | |
bScore = score; | |
bPoint = 0x06; | |
} else if (aScore > bScore && score < aScore) { | |
aScore = score; | |
aPoint = 0x06; | |
} | |
} else { | |
double score = yins + zins; | |
if (aScore <= bScore && score < bScore) { | |
bScore = score; | |
bPoint = 0x09; | |
} else if (aScore > bScore && score < aScore) { | |
aScore = score; | |
aPoint = 0x09; | |
} | |
} | |
// Decide if (0,1,1,1) is closer. | |
double p1 = 3 - inSum + xins; | |
if (aScore <= bScore && p1 < bScore) { | |
bScore = p1; | |
bPoint = 0x0E; | |
bIsBiggerSide = false; | |
} else if (aScore > bScore && p1 < aScore) { | |
aScore = p1; | |
aPoint = 0x0E; | |
aIsBiggerSide = false; | |
} | |
// Decide if (1,0,1,1) is closer. | |
double p2 = 3 - inSum + yins; | |
if (aScore <= bScore && p2 < bScore) { | |
bScore = p2; | |
bPoint = 0x0D; | |
bIsBiggerSide = false; | |
} else if (aScore > bScore && p2 < aScore) { | |
aScore = p2; | |
aPoint = 0x0D; | |
aIsBiggerSide = false; | |
} | |
// Decide if (1,1,0,1) is closer. | |
double p3 = 3 - inSum + zins; | |
if (aScore <= bScore && p3 < bScore) { | |
bScore = p3; | |
bPoint = 0x0B; | |
bIsBiggerSide = false; | |
} else if (aScore > bScore && p3 < aScore) { | |
aScore = p3; | |
aPoint = 0x0B; | |
aIsBiggerSide = false; | |
} | |
// Decide if (1,1,1,0) is closer. | |
double p4 = 3 - inSum + wins; | |
if (aScore <= bScore && p4 < bScore) { | |
bScore = p4; | |
bPoint = 0x07; | |
bIsBiggerSide = false; | |
} else if (aScore > bScore && p4 < aScore) { | |
aScore = p4; | |
aPoint = 0x07; | |
aIsBiggerSide = false; | |
} | |
// Where each of the two closest points are determines how the extra three vertices are calculated. | |
if (aIsBiggerSide == bIsBiggerSide) { | |
if (aIsBiggerSide) { // Both closest points on the bigger side | |
byte c1 = (byte)(aPoint & bPoint); | |
byte c2 = (byte)(aPoint | bPoint); | |
// Two contributions are permutations of (0,0,0,1) and (0,0,0,2) based on c1 | |
xsv_ext0 = xsv_ext1 = xsb; | |
ysv_ext0 = ysv_ext1 = ysb; | |
zsv_ext0 = zsv_ext1 = zsb; | |
wsv_ext0 = wsv_ext1 = wsb; | |
dx_ext0 = dx0 - SQUISH_CONSTANT_4D; | |
dy_ext0 = dy0 - SQUISH_CONSTANT_4D; | |
dz_ext0 = dz0 - SQUISH_CONSTANT_4D; | |
dw_ext0 = dw0 - SQUISH_CONSTANT_4D; | |
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_4D; | |
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_4D; | |
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_4D; | |
dw_ext1 = dw0 - 2 * SQUISH_CONSTANT_4D; | |
if ((c1 & 0x01) != 0) { | |
xsv_ext0 += 1; | |
dx_ext0 -= 1; | |
xsv_ext1 += 2; | |
dx_ext1 -= 2; | |
} else if ((c1 & 0x02) != 0) { | |
ysv_ext0 += 1; | |
dy_ext0 -= 1; | |
ysv_ext1 += 2; | |
dy_ext1 -= 2; | |
} else if ((c1 & 0x04) != 0) { | |
zsv_ext0 += 1; | |
dz_ext0 -= 1; | |
zsv_ext1 += 2; | |
dz_ext1 -= 2; | |
} else { | |
wsv_ext0 += 1; | |
dw_ext0 -= 1; | |
wsv_ext1 += 2; | |
dw_ext1 -= 2; | |
} | |
// One contribution is a permutation of (1,1,1,-1) based on c2 | |
xsv_ext2 = xsb + 1; | |
ysv_ext2 = ysb + 1; | |
zsv_ext2 = zsb + 1; | |
wsv_ext2 = wsb + 1; | |
dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
if ((c2 & 0x01) == 0) { | |
xsv_ext2 -= 2; | |
dx_ext2 += 2; | |
} else if ((c2 & 0x02) == 0) { | |
ysv_ext2 -= 2; | |
dy_ext2 += 2; | |
} else if ((c2 & 0x04) == 0) { | |
zsv_ext2 -= 2; | |
dz_ext2 += 2; | |
} else { | |
wsv_ext2 -= 2; | |
dw_ext2 += 2; | |
} | |
} else { // Both closest points on the smaller side | |
// One of the two extra points is (1,1,1,1) | |
xsv_ext2 = xsb + 1; | |
ysv_ext2 = ysb + 1; | |
zsv_ext2 = zsb + 1; | |
wsv_ext2 = wsb + 1; | |
dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D; | |
dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D; | |
dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D; | |
dw_ext2 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D; | |
// Other two points are based on the shared axes. | |
byte c = (byte)(aPoint & bPoint); | |
if ((c & 0x01) != 0) { | |
xsv_ext0 = xsb + 2; | |
xsv_ext1 = xsb + 1; | |
dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D; | |
dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb; | |
dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x02) != 0) { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
if ((c & 0x01) == 0) | |
{ | |
ysv_ext0 += 1; | |
dy_ext0 -= 1; | |
} else { | |
ysv_ext1 += 1; | |
dy_ext1 -= 1; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x04) != 0) { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
if ((c & 0x03) == 0) | |
{ | |
zsv_ext0 += 1; | |
dz_ext0 -= 1; | |
} else { | |
zsv_ext1 += 1; | |
dz_ext1 -= 1; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb; | |
dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D; | |
} | |
if ((c & 0x08) != 0) | |
{ | |
wsv_ext0 = wsb + 1; | |
wsv_ext1 = wsb + 2; | |
dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsb; | |
dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D; | |
} | |
} | |
} else { // One point on each "side" | |
byte c1, c2; | |
if (aIsBiggerSide) { | |
c1 = aPoint; | |
c2 = bPoint; | |
} else { | |
c1 = bPoint; | |
c2 = aPoint; | |
} | |
// Two contributions are the bigger-sided point with each 1 replaced with 2. | |
if ((c1 & 0x01) != 0) { | |
xsv_ext0 = xsb + 2; | |
xsv_ext1 = xsb + 1; | |
dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D; | |
dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb; | |
dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D; | |
} | |
if ((c1 & 0x02) != 0) { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
if ((c1 & 0x01) == 0) { | |
ysv_ext0 += 1; | |
dy_ext0 -= 1; | |
} else { | |
ysv_ext1 += 1; | |
dy_ext1 -= 1; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D; | |
} | |
if ((c1 & 0x04) != 0) { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
if ((c1 & 0x03) == 0) { | |
zsv_ext0 += 1; | |
dz_ext0 -= 1; | |
} else { | |
zsv_ext1 += 1; | |
dz_ext1 -= 1; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb; | |
dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D; | |
} | |
if ((c1 & 0x08) != 0) { | |
wsv_ext0 = wsb + 1; | |
wsv_ext1 = wsb + 2; | |
dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsb; | |
dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D; | |
} | |
// One contribution is a permutation of (1,1,1,-1) based on the smaller-sided point | |
xsv_ext2 = xsb + 1; | |
ysv_ext2 = ysb + 1; | |
zsv_ext2 = zsb + 1; | |
wsv_ext2 = wsb + 1; | |
dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
if ((c2 & 0x01) == 0) { | |
xsv_ext2 -= 2; | |
dx_ext2 += 2; | |
} else if ((c2 & 0x02) == 0) { | |
ysv_ext2 -= 2; | |
dy_ext2 += 2; | |
} else if ((c2 & 0x04) == 0) { | |
zsv_ext2 -= 2; | |
dz_ext2 += 2; | |
} else { | |
wsv_ext2 -= 2; | |
dw_ext2 += 2; | |
} | |
} | |
// Contribution (1,1,1,0) | |
double dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
double dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
double dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
double dw4 = dw0 - 3 * SQUISH_CONSTANT_4D; | |
double attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4; | |
if (attn4 > 0) { | |
attn4 *= attn4; | |
value += attn4 * attn4 * extrapolate(xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4); | |
} | |
// Contribution (1,1,0,1) | |
double dx3 = dx4; | |
double dy3 = dy4; | |
double dz3 = dz0 - 3 * SQUISH_CONSTANT_4D; | |
double dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D; | |
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3; | |
if (attn3 > 0) { | |
attn3 *= attn3; | |
value += attn3 * attn3 * extrapolate(xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3); | |
} | |
// Contribution (1,0,1,1) | |
double dx2 = dx4; | |
double dy2 = dy0 - 3 * SQUISH_CONSTANT_4D; | |
double dz2 = dz4; | |
double dw2 = dw3; | |
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2; | |
if (attn2 > 0) { | |
attn2 *= attn2; | |
value += attn2 * attn2 * extrapolate(xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2); | |
} | |
// Contribution (0,1,1,1) | |
double dx1 = dx0 - 3 * SQUISH_CONSTANT_4D; | |
double dz1 = dz4; | |
double dy1 = dy4; | |
double dw1 = dw3; | |
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1; | |
if (attn1 > 0) { | |
attn1 *= attn1; | |
value += attn1 * attn1 * extrapolate(xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1); | |
} | |
// Contribution (1,1,0,0) | |
double dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5; | |
if (attn5 > 0) { | |
attn5 *= attn5; | |
value += attn5 * attn5 * extrapolate(xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5); | |
} | |
// Contribution (1,0,1,0) | |
double dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6; | |
if (attn6 > 0) { | |
attn6 *= attn6; | |
value += attn6 * attn6 * extrapolate(xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6); | |
} | |
// Contribution (1,0,0,1) | |
double dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7; | |
if (attn7 > 0) { | |
attn7 *= attn7; | |
value += attn7 * attn7 * extrapolate(xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7); | |
} | |
// Contribution (0,1,1,0) | |
double dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8; | |
if (attn8 > 0) { | |
attn8 *= attn8; | |
value += attn8 * attn8 * extrapolate(xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8); | |
} | |
// Contribution (0,1,0,1) | |
double dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9; | |
if (attn9 > 0) { | |
attn9 *= attn9; | |
value += attn9 * attn9 * extrapolate(xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9); | |
} | |
// Contribution (0,0,1,1) | |
double dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D; | |
double dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; | |
double attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10; | |
if (attn10 > 0) { | |
attn10 *= attn10; | |
value += attn10 * attn10 * extrapolate(xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10); | |
} | |
} | |
// First extra vertex | |
double attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0 - dw_ext0 * dw_ext0; | |
if (attn_ext0 > 0) | |
{ | |
attn_ext0 *= attn_ext0; | |
value += attn_ext0 * attn_ext0 * extrapolate(xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0, dx_ext0, dy_ext0, dz_ext0, dw_ext0); | |
} | |
// Second extra vertex | |
double attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1 - dw_ext1 * dw_ext1; | |
if (attn_ext1 > 0) | |
{ | |
attn_ext1 *= attn_ext1; | |
value += attn_ext1 * attn_ext1 * extrapolate(xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1, dx_ext1, dy_ext1, dz_ext1, dw_ext1); | |
} | |
// Third extra vertex | |
double attn_ext2 = 2 - dx_ext2 * dx_ext2 - dy_ext2 * dy_ext2 - dz_ext2 * dz_ext2 - dw_ext2 * dw_ext2; | |
if (attn_ext2 > 0) | |
{ | |
attn_ext2 *= attn_ext2; | |
value += attn_ext2 * attn_ext2 * extrapolate(xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2, dx_ext2, dy_ext2, dz_ext2, dw_ext2); | |
} | |
return value; | |
} | |
private double extrapolate(int xsb, int ysb, double dx, double dy) | |
{ | |
Grad2 grad = permGrad2[perm[xsb & PMASK] ^ (ysb & PMASK)]; | |
return grad.dx * dx + grad.dy * dy; | |
} | |
private double extrapolate(int xsb, int ysb, int zsb, double dx, double dy, double dz) | |
{ | |
Grad3 grad = permGrad3[perm[perm[xsb & PMASK] ^ (ysb & PMASK)] ^ (zsb & PMASK)]; | |
return grad.dx * dx + grad.dy * dy + grad.dz * dz; | |
} | |
private double extrapolate(int xsb, int ysb, int zsb, int wsb, double dx, double dy, double dz, double dw) | |
{ | |
Grad4 grad = permGrad4[perm[perm[perm[xsb & PMASK] ^ (ysb & PMASK)] ^ (zsb & PMASK)] ^ (wsb & PMASK)]; | |
return grad.dx * dx + grad.dy * dy + grad.dz * dz + grad.dw * dw; | |
} | |
private static int fastFloor(double x) { | |
int xi = (int)x; | |
return x < xi ? xi - 1 : xi; | |
} | |
public static class Grad2 { | |
double dx, dy; | |
public Grad2(double dx, double dy) { | |
this.dx = dx; this.dy = dy; | |
} | |
} | |
public static class Grad3 { | |
double dx, dy, dz; | |
public Grad3(double dx, double dy, double dz) { | |
this.dx = dx; this.dy = dy; this.dz = dz; | |
} | |
} | |
public static class Grad4 { | |
double dx, dy, dz, dw; | |
public Grad4(double dx, double dy, double dz, double dw) { | |
this.dx = dx; this.dy = dy; this.dz = dz; this.dw = dw; | |
} | |
} | |
private static final double N2 = 7.69084574549313; | |
private static final double N3 = 26.92263139946168; | |
private static final double N4 = 8.881759591352166; | |
private static final Grad2[] GRADIENTS_2D = new Grad2[PSIZE]; | |
private static final Grad3[] GRADIENTS_3D = new Grad3[PSIZE]; | |
private static final Grad4[] GRADIENTS_4D = new Grad4[PSIZE]; | |
static { | |
Grad2[] grad2 = { | |
new Grad2( 0.130526192220052, 0.99144486137381), | |
new Grad2( 0.38268343236509, 0.923879532511287), | |
new Grad2( 0.608761429008721, 0.793353340291235), | |
new Grad2( 0.793353340291235, 0.608761429008721), | |
new Grad2( 0.923879532511287, 0.38268343236509), | |
new Grad2( 0.99144486137381, 0.130526192220051), | |
new Grad2( 0.99144486137381, -0.130526192220051), | |
new Grad2( 0.923879532511287, -0.38268343236509), | |
new Grad2( 0.793353340291235, -0.60876142900872), | |
new Grad2( 0.608761429008721, -0.793353340291235), | |
new Grad2( 0.38268343236509, -0.923879532511287), | |
new Grad2( 0.130526192220052, -0.99144486137381), | |
new Grad2(-0.130526192220052, -0.99144486137381), | |
new Grad2(-0.38268343236509, -0.923879532511287), | |
new Grad2(-0.608761429008721, -0.793353340291235), | |
new Grad2(-0.793353340291235, -0.608761429008721), | |
new Grad2(-0.923879532511287, -0.38268343236509), | |
new Grad2(-0.99144486137381, -0.130526192220052), | |
new Grad2(-0.99144486137381, 0.130526192220051), | |
new Grad2(-0.923879532511287, 0.38268343236509), | |
new Grad2(-0.793353340291235, 0.608761429008721), | |
new Grad2(-0.608761429008721, 0.793353340291235), | |
new Grad2(-0.38268343236509, 0.923879532511287), | |
new Grad2(-0.130526192220052, 0.99144486137381) | |
}; | |
for (int i = 0; i < grad2.length; i++) { | |
grad2[i].dx /= N2; grad2[i].dy /= N2; | |
} | |
for (int i = 0; i < PSIZE; i++) { | |
GRADIENTS_2D[i] = grad2[i % grad2.length]; | |
} | |
Grad3[] grad3 = { | |
new Grad3(-1.4082482904633333, -1.4082482904633333, -2.6329931618533333), | |
new Grad3(-0.07491495712999985, -0.07491495712999985, -3.29965982852), | |
new Grad3( 0.24732126143473554, -1.6667938651159684, -2.838945207362466), | |
new Grad3(-1.6667938651159684, 0.24732126143473554, -2.838945207362466), | |
new Grad3(-1.4082482904633333, -2.6329931618533333, -1.4082482904633333), | |
new Grad3(-0.07491495712999985, -3.29965982852, -0.07491495712999985), | |
new Grad3(-1.6667938651159684, -2.838945207362466, 0.24732126143473554), | |
new Grad3( 0.24732126143473554, -2.838945207362466, -1.6667938651159684), | |
new Grad3( 1.5580782047233335, 0.33333333333333337, -2.8914115380566665), | |
new Grad3( 2.8914115380566665, -0.33333333333333337, -1.5580782047233335), | |
new Grad3( 1.8101897177633992, -1.2760767510338025, -2.4482280932803), | |
new Grad3( 2.4482280932803, 1.2760767510338025, -1.8101897177633992), | |
new Grad3( 1.5580782047233335, -2.8914115380566665, 0.33333333333333337), | |
new Grad3( 2.8914115380566665, -1.5580782047233335, -0.33333333333333337), | |
new Grad3( 2.4482280932803, -1.8101897177633992, 1.2760767510338025), | |
new Grad3( 1.8101897177633992, -2.4482280932803, -1.2760767510338025), | |
new Grad3(-2.6329931618533333, -1.4082482904633333, -1.4082482904633333), | |
new Grad3(-3.29965982852, -0.07491495712999985, -0.07491495712999985), | |
new Grad3(-2.838945207362466, 0.24732126143473554, -1.6667938651159684), | |
new Grad3(-2.838945207362466, -1.6667938651159684, 0.24732126143473554), | |
new Grad3( 0.33333333333333337, 1.5580782047233335, -2.8914115380566665), | |
new Grad3(-0.33333333333333337, 2.8914115380566665, -1.5580782047233335), | |
new Grad3( 1.2760767510338025, 2.4482280932803, -1.8101897177633992), | |
new Grad3(-1.2760767510338025, 1.8101897177633992, -2.4482280932803), | |
new Grad3( 0.33333333333333337, -2.8914115380566665, 1.5580782047233335), | |
new Grad3(-0.33333333333333337, -1.5580782047233335, 2.8914115380566665), | |
new Grad3(-1.2760767510338025, -2.4482280932803, 1.8101897177633992), | |
new Grad3( 1.2760767510338025, -1.8101897177633992, 2.4482280932803), | |
new Grad3( 3.29965982852, 0.07491495712999985, 0.07491495712999985), | |
new Grad3( 2.6329931618533333, 1.4082482904633333, 1.4082482904633333), | |
new Grad3( 2.838945207362466, -0.24732126143473554, 1.6667938651159684), | |
new Grad3( 2.838945207362466, 1.6667938651159684, -0.24732126143473554), | |
new Grad3(-2.8914115380566665, 1.5580782047233335, 0.33333333333333337), | |
new Grad3(-1.5580782047233335, 2.8914115380566665, -0.33333333333333337), | |
new Grad3(-2.4482280932803, 1.8101897177633992, -1.2760767510338025), | |
new Grad3(-1.8101897177633992, 2.4482280932803, 1.2760767510338025), | |
new Grad3(-2.8914115380566665, 0.33333333333333337, 1.5580782047233335), | |
new Grad3(-1.5580782047233335, -0.33333333333333337, 2.8914115380566665), | |
new Grad3(-1.8101897177633992, 1.2760767510338025, 2.4482280932803), | |
new Grad3(-2.4482280932803, -1.2760767510338025, 1.8101897177633992), | |
new Grad3( 0.07491495712999985, 3.29965982852, 0.07491495712999985), | |
new Grad3( 1.4082482904633333, 2.6329931618533333, 1.4082482904633333), | |
new Grad3( 1.6667938651159684, 2.838945207362466, -0.24732126143473554), | |
new Grad3(-0.24732126143473554, 2.838945207362466, 1.6667938651159684), | |
new Grad3( 0.07491495712999985, 0.07491495712999985, 3.29965982852), | |
new Grad3( 1.4082482904633333, 1.4082482904633333, 2.6329931618533333), | |
new Grad3(-0.24732126143473554, 1.6667938651159684, 2.838945207362466), | |
new Grad3( 1.6667938651159684, -0.24732126143473554, 2.838945207362466) | |
}; | |
for (int i = 0; i < grad3.length; i++) { | |
grad3[i].dx /= N3; grad3[i].dy /= N3; grad3[i].dz /= N3; | |
} | |
for (int i = 0; i < PSIZE; i++) { | |
GRADIENTS_3D[i] = grad3[i % grad3.length]; | |
} | |
Grad4[] grad4 = { | |
new Grad4(-0.753341017856078, -0.37968289875261624, -0.37968289875261624, -0.37968289875261624), | |
new Grad4(-0.7821684431180708, -0.4321472685365301, -0.4321472685365301, 0.12128480194602098), | |
new Grad4(-0.7821684431180708, -0.4321472685365301, 0.12128480194602098, -0.4321472685365301), | |
new Grad4(-0.7821684431180708, 0.12128480194602098, -0.4321472685365301, -0.4321472685365301), | |
new Grad4(-0.8586508742123365, -0.508629699630796, 0.044802370851755174, 0.044802370851755174), | |
new Grad4(-0.8586508742123365, 0.044802370851755174, -0.508629699630796, 0.044802370851755174), | |
new Grad4(-0.8586508742123365, 0.044802370851755174, 0.044802370851755174, -0.508629699630796), | |
new Grad4(-0.9982828964265062, -0.03381941603233842, -0.03381941603233842, -0.03381941603233842), | |
new Grad4(-0.37968289875261624, -0.753341017856078, -0.37968289875261624, -0.37968289875261624), | |
new Grad4(-0.4321472685365301, -0.7821684431180708, -0.4321472685365301, 0.12128480194602098), | |
new Grad4(-0.4321472685365301, -0.7821684431180708, 0.12128480194602098, -0.4321472685365301), | |
new Grad4( 0.12128480194602098, -0.7821684431180708, -0.4321472685365301, -0.4321472685365301), | |
new Grad4(-0.508629699630796, -0.8586508742123365, 0.044802370851755174, 0.044802370851755174), | |
new Grad4( 0.044802370851755174, -0.8586508742123365, -0.508629699630796, 0.044802370851755174), | |
new Grad4( 0.044802370851755174, -0.8586508742123365, 0.044802370851755174, -0.508629699630796), | |
new Grad4(-0.03381941603233842, -0.9982828964265062, -0.03381941603233842, -0.03381941603233842), | |
new Grad4(-0.37968289875261624, -0.37968289875261624, -0.753341017856078, -0.37968289875261624), | |
new Grad4(-0.4321472685365301, -0.4321472685365301, -0.7821684431180708, 0.12128480194602098), | |
new Grad4(-0.4321472685365301, 0.12128480194602098, -0.7821684431180708, -0.4321472685365301), | |
new Grad4( 0.12128480194602098, -0.4321472685365301, -0.7821684431180708, -0.4321472685365301), | |
new Grad4(-0.508629699630796, 0.044802370851755174, -0.8586508742123365, 0.044802370851755174), | |
new Grad4( 0.044802370851755174, -0.508629699630796, -0.8586508742123365, 0.044802370851755174), | |
new Grad4( 0.044802370851755174, 0.044802370851755174, -0.8586508742123365, -0.508629699630796), | |
new Grad4(-0.03381941603233842, -0.03381941603233842, -0.9982828964265062, -0.03381941603233842), | |
new Grad4(-0.37968289875261624, -0.37968289875261624, -0.37968289875261624, -0.753341017856078), | |
new Grad4(-0.4321472685365301, -0.4321472685365301, 0.12128480194602098, -0.7821684431180708), | |
new Grad4(-0.4321472685365301, 0.12128480194602098, -0.4321472685365301, -0.7821684431180708), | |
new Grad4( 0.12128480194602098, -0.4321472685365301, -0.4321472685365301, -0.7821684431180708), | |
new Grad4(-0.508629699630796, 0.044802370851755174, 0.044802370851755174, -0.8586508742123365), | |
new Grad4( 0.044802370851755174, -0.508629699630796, 0.044802370851755174, -0.8586508742123365), | |
new Grad4( 0.044802370851755174, 0.044802370851755174, -0.508629699630796, -0.8586508742123365), | |
new Grad4(-0.03381941603233842, -0.03381941603233842, -0.03381941603233842, -0.9982828964265062), | |
new Grad4(-0.6740059517812944, -0.3239847771997537, -0.3239847771997537, 0.5794684678643381), | |
new Grad4(-0.7504883828755602, -0.4004672082940195, 0.15296486218853164, 0.5029860367700724), | |
new Grad4(-0.7504883828755602, 0.15296486218853164, -0.4004672082940195, 0.5029860367700724), | |
new Grad4(-0.8828161875373585, 0.08164729285680945, 0.08164729285680945, 0.4553054119602712), | |
new Grad4(-0.4553054119602712, -0.08164729285680945, -0.08164729285680945, 0.8828161875373585), | |
new Grad4(-0.5029860367700724, -0.15296486218853164, 0.4004672082940195, 0.7504883828755602), | |
new Grad4(-0.5029860367700724, 0.4004672082940195, -0.15296486218853164, 0.7504883828755602), | |
new Grad4(-0.5794684678643381, 0.3239847771997537, 0.3239847771997537, 0.6740059517812944), | |
new Grad4(-0.3239847771997537, -0.6740059517812944, -0.3239847771997537, 0.5794684678643381), | |
new Grad4(-0.4004672082940195, -0.7504883828755602, 0.15296486218853164, 0.5029860367700724), | |
new Grad4( 0.15296486218853164, -0.7504883828755602, -0.4004672082940195, 0.5029860367700724), | |
new Grad4( 0.08164729285680945, -0.8828161875373585, 0.08164729285680945, 0.4553054119602712), | |
new Grad4(-0.08164729285680945, -0.4553054119602712, -0.08164729285680945, 0.8828161875373585), | |
new Grad4(-0.15296486218853164, -0.5029860367700724, 0.4004672082940195, 0.7504883828755602), | |
new Grad4( 0.4004672082940195, -0.5029860367700724, -0.15296486218853164, 0.7504883828755602), | |
new Grad4( 0.3239847771997537, -0.5794684678643381, 0.3239847771997537, 0.6740059517812944), | |
new Grad4(-0.3239847771997537, -0.3239847771997537, -0.6740059517812944, 0.5794684678643381), | |
new Grad4(-0.4004672082940195, 0.15296486218853164, -0.7504883828755602, 0.5029860367700724), | |
new Grad4( 0.15296486218853164, -0.4004672082940195, -0.7504883828755602, 0.5029860367700724), | |
new Grad4( 0.08164729285680945, 0.08164729285680945, -0.8828161875373585, 0.4553054119602712), | |
new Grad4(-0.08164729285680945, -0.08164729285680945, -0.4553054119602712, 0.8828161875373585), | |
new Grad4(-0.15296486218853164, 0.4004672082940195, -0.5029860367700724, 0.7504883828755602), | |
new Grad4( 0.4004672082940195, -0.15296486218853164, -0.5029860367700724, 0.7504883828755602), | |
new Grad4( 0.3239847771997537, 0.3239847771997537, -0.5794684678643381, 0.6740059517812944), | |
new Grad4(-0.6740059517812944, -0.3239847771997537, 0.5794684678643381, -0.3239847771997537), | |
new Grad4(-0.7504883828755602, -0.4004672082940195, 0.5029860367700724, 0.15296486218853164), | |
new Grad4(-0.7504883828755602, 0.15296486218853164, 0.5029860367700724, -0.4004672082940195), | |
new Grad4(-0.8828161875373585, 0.08164729285680945, 0.4553054119602712, 0.08164729285680945), | |
new Grad4(-0.4553054119602712, -0.08164729285680945, 0.8828161875373585, -0.08164729285680945), | |
new Grad4(-0.5029860367700724, -0.15296486218853164, 0.7504883828755602, 0.4004672082940195), | |
new Grad4(-0.5029860367700724, 0.4004672082940195, 0.7504883828755602, -0.15296486218853164), | |
new Grad4(-0.5794684678643381, 0.3239847771997537, 0.6740059517812944, 0.3239847771997537), | |
new Grad4(-0.3239847771997537, -0.6740059517812944, 0.5794684678643381, -0.3239847771997537), | |
new Grad4(-0.4004672082940195, -0.7504883828755602, 0.5029860367700724, 0.15296486218853164), | |
new Grad4( 0.15296486218853164, -0.7504883828755602, 0.5029860367700724, -0.4004672082940195), | |
new Grad4( 0.08164729285680945, -0.8828161875373585, 0.4553054119602712, 0.08164729285680945), | |
new Grad4(-0.08164729285680945, -0.4553054119602712, 0.8828161875373585, -0.08164729285680945), | |
new Grad4(-0.15296486218853164, -0.5029860367700724, 0.7504883828755602, 0.4004672082940195), | |
new Grad4( 0.4004672082940195, -0.5029860367700724, 0.7504883828755602, -0.15296486218853164), | |
new Grad4( 0.3239847771997537, -0.5794684678643381, 0.6740059517812944, 0.3239847771997537), | |
new Grad4(-0.3239847771997537, -0.3239847771997537, 0.5794684678643381, -0.6740059517812944), | |
new Grad4(-0.4004672082940195, 0.15296486218853164, 0.5029860367700724, -0.7504883828755602), | |
new Grad4( 0.15296486218853164, -0.4004672082940195, 0.5029860367700724, -0.7504883828755602), | |
new Grad4( 0.08164729285680945, 0.08164729285680945, 0.4553054119602712, -0.8828161875373585), | |
new Grad4(-0.08164729285680945, -0.08164729285680945, 0.8828161875373585, -0.4553054119602712), | |
new Grad4(-0.15296486218853164, 0.4004672082940195, 0.7504883828755602, -0.5029860367700724), | |
new Grad4( 0.4004672082940195, -0.15296486218853164, 0.7504883828755602, -0.5029860367700724), | |
new Grad4( 0.3239847771997537, 0.3239847771997537, 0.6740059517812944, -0.5794684678643381), | |
new Grad4(-0.6740059517812944, 0.5794684678643381, -0.3239847771997537, -0.3239847771997537), | |
new Grad4(-0.7504883828755602, 0.5029860367700724, -0.4004672082940195, 0.15296486218853164), | |
new Grad4(-0.7504883828755602, 0.5029860367700724, 0.15296486218853164, -0.4004672082940195), | |
new Grad4(-0.8828161875373585, 0.4553054119602712, 0.08164729285680945, 0.08164729285680945), | |
new Grad4(-0.4553054119602712, 0.8828161875373585, -0.08164729285680945, -0.08164729285680945), | |
new Grad4(-0.5029860367700724, 0.7504883828755602, -0.15296486218853164, 0.4004672082940195), | |
new Grad4(-0.5029860367700724, 0.7504883828755602, 0.4004672082940195, -0.15296486218853164), | |
new Grad4(-0.5794684678643381, 0.6740059517812944, 0.3239847771997537, 0.3239847771997537), | |
new Grad4(-0.3239847771997537, 0.5794684678643381, -0.6740059517812944, -0.3239847771997537), | |
new Grad4(-0.4004672082940195, 0.5029860367700724, -0.7504883828755602, 0.15296486218853164), | |
new Grad4( 0.15296486218853164, 0.5029860367700724, -0.7504883828755602, -0.4004672082940195), | |
new Grad4( 0.08164729285680945, 0.4553054119602712, -0.8828161875373585, 0.08164729285680945), | |
new Grad4(-0.08164729285680945, 0.8828161875373585, -0.4553054119602712, -0.08164729285680945), | |
new Grad4(-0.15296486218853164, 0.7504883828755602, -0.5029860367700724, 0.4004672082940195), | |
new Grad4( 0.4004672082940195, 0.7504883828755602, -0.5029860367700724, -0.15296486218853164), | |
new Grad4( 0.3239847771997537, 0.6740059517812944, -0.5794684678643381, 0.3239847771997537), | |
new Grad4(-0.3239847771997537, 0.5794684678643381, -0.3239847771997537, -0.6740059517812944), | |
new Grad4(-0.4004672082940195, 0.5029860367700724, 0.15296486218853164, -0.7504883828755602), | |
new Grad4( 0.15296486218853164, 0.5029860367700724, -0.4004672082940195, -0.7504883828755602), | |
new Grad4( 0.08164729285680945, 0.4553054119602712, 0.08164729285680945, -0.8828161875373585), | |
new Grad4(-0.08164729285680945, 0.8828161875373585, -0.08164729285680945, -0.4553054119602712), | |
new Grad4(-0.15296486218853164, 0.7504883828755602, 0.4004672082940195, -0.5029860367700724), | |
new Grad4( 0.4004672082940195, 0.7504883828755602, -0.15296486218853164, -0.5029860367700724), | |
new Grad4( 0.3239847771997537, 0.6740059517812944, 0.3239847771997537, -0.5794684678643381), | |
new Grad4( 0.5794684678643381, -0.6740059517812944, -0.3239847771997537, -0.3239847771997537), | |
new Grad4( 0.5029860367700724, -0.7504883828755602, -0.4004672082940195, 0.15296486218853164), | |
new Grad4( 0.5029860367700724, -0.7504883828755602, 0.15296486218853164, -0.4004672082940195), | |
new Grad4( 0.4553054119602712, -0.8828161875373585, 0.08164729285680945, 0.08164729285680945), | |
new Grad4( 0.8828161875373585, -0.4553054119602712, -0.08164729285680945, -0.08164729285680945), | |
new Grad4( 0.7504883828755602, -0.5029860367700724, -0.15296486218853164, 0.4004672082940195), | |
new Grad4( 0.7504883828755602, -0.5029860367700724, 0.4004672082940195, -0.15296486218853164), | |
new Grad4( 0.6740059517812944, -0.5794684678643381, 0.3239847771997537, 0.3239847771997537), | |
new Grad4( 0.5794684678643381, -0.3239847771997537, -0.6740059517812944, -0.3239847771997537), | |
new Grad4( 0.5029860367700724, -0.4004672082940195, -0.7504883828755602, 0.15296486218853164), | |
new Grad4( 0.5029860367700724, 0.15296486218853164, -0.7504883828755602, -0.4004672082940195), | |
new Grad4( 0.4553054119602712, 0.08164729285680945, -0.8828161875373585, 0.08164729285680945), | |
new Grad4( 0.8828161875373585, -0.08164729285680945, -0.4553054119602712, -0.08164729285680945), | |
new Grad4( 0.7504883828755602, -0.15296486218853164, -0.5029860367700724, 0.4004672082940195), | |
new Grad4( 0.7504883828755602, 0.4004672082940195, -0.5029860367700724, -0.15296486218853164), | |
new Grad4( 0.6740059517812944, 0.3239847771997537, -0.5794684678643381, 0.3239847771997537), | |
new Grad4( 0.5794684678643381, -0.3239847771997537, -0.3239847771997537, -0.6740059517812944), | |
new Grad4( 0.5029860367700724, -0.4004672082940195, 0.15296486218853164, -0.7504883828755602), | |
new Grad4( 0.5029860367700724, 0.15296486218853164, -0.4004672082940195, -0.7504883828755602), | |
new Grad4( 0.4553054119602712, 0.08164729285680945, 0.08164729285680945, -0.8828161875373585), | |
new Grad4( 0.8828161875373585, -0.08164729285680945, -0.08164729285680945, -0.4553054119602712), | |
new Grad4( 0.7504883828755602, -0.15296486218853164, 0.4004672082940195, -0.5029860367700724), | |
new Grad4( 0.7504883828755602, 0.4004672082940195, -0.15296486218853164, -0.5029860367700724), | |
new Grad4( 0.6740059517812944, 0.3239847771997537, 0.3239847771997537, -0.5794684678643381), | |
new Grad4( 0.03381941603233842, 0.03381941603233842, 0.03381941603233842, 0.9982828964265062), | |
new Grad4(-0.044802370851755174, -0.044802370851755174, 0.508629699630796, 0.8586508742123365), | |
new Grad4(-0.044802370851755174, 0.508629699630796, -0.044802370851755174, 0.8586508742123365), | |
new Grad4(-0.12128480194602098, 0.4321472685365301, 0.4321472685365301, 0.7821684431180708), | |
new Grad4( 0.508629699630796, -0.044802370851755174, -0.044802370851755174, 0.8586508742123365), | |
new Grad4( 0.4321472685365301, -0.12128480194602098, 0.4321472685365301, 0.7821684431180708), | |
new Grad4( 0.4321472685365301, 0.4321472685365301, -0.12128480194602098, 0.7821684431180708), | |
new Grad4( 0.37968289875261624, 0.37968289875261624, 0.37968289875261624, 0.753341017856078), | |
new Grad4( 0.03381941603233842, 0.03381941603233842, 0.9982828964265062, 0.03381941603233842), | |
new Grad4(-0.044802370851755174, 0.044802370851755174, 0.8586508742123365, 0.508629699630796), | |
new Grad4(-0.044802370851755174, 0.508629699630796, 0.8586508742123365, -0.044802370851755174), | |
new Grad4(-0.12128480194602098, 0.4321472685365301, 0.7821684431180708, 0.4321472685365301), | |
new Grad4( 0.508629699630796, -0.044802370851755174, 0.8586508742123365, -0.044802370851755174), | |
new Grad4( 0.4321472685365301, -0.12128480194602098, 0.7821684431180708, 0.4321472685365301), | |
new Grad4( 0.4321472685365301, 0.4321472685365301, 0.7821684431180708, -0.12128480194602098), | |
new Grad4( 0.37968289875261624, 0.37968289875261624, 0.753341017856078, 0.37968289875261624), | |
new Grad4( 0.03381941603233842, 0.9982828964265062, 0.03381941603233842, 0.03381941603233842), | |
new Grad4(-0.044802370851755174, 0.8586508742123365, -0.044802370851755174, 0.508629699630796), | |
new Grad4(-0.044802370851755174, 0.8586508742123365, 0.508629699630796, -0.044802370851755174), | |
new Grad4(-0.12128480194602098, 0.7821684431180708, 0.4321472685365301, 0.4321472685365301), | |
new Grad4( 0.508629699630796, 0.8586508742123365, -0.044802370851755174, -0.044802370851755174), | |
new Grad4( 0.4321472685365301, 0.7821684431180708, -0.12128480194602098, 0.4321472685365301), | |
new Grad4( 0.4321472685365301, 0.7821684431180708, 0.4321472685365301, -0.12128480194602098), | |
new Grad4( 0.37968289875261624, 0.753341017856078, 0.37968289875261624, 0.37968289875261624), | |
new Grad4( 0.9982828964265062, 0.03381941603233842, 0.03381941603233842, 0.03381941603233842), | |
new Grad4( 0.8586508742123365, -0.044802370851755174, -0.044802370851755174, 0.508629699630796), | |
new Grad4( 0.8586508742123365, -0.044802370851755174, 0.508629699630796, -0.044802370851755174), | |
new Grad4( 0.7821684431180708, -0.12128480194602098, 0.4321472685365301, 0.4321472685365301), | |
new Grad4( 0.8586508742123365, 0.508629699630796, -0.044802370851755174, -0.044802370851755174), | |
new Grad4( 0.7821684431180708, 0.4321472685365301, -0.12128480194602098, 0.4321472685365301), | |
new Grad4( 0.7821684431180708, 0.4321472685365301, 0.4321472685365301, -0.12128480194602098), | |
new Grad4( 0.753341017856078, 0.37968289875261624, 0.37968289875261624, 0.37968289875261624) | |
}; | |
for (int i = 0; i < grad4.length; i++) { | |
grad4[i].dx /= N4; grad4[i].dy /= N4; grad4[i].dz /= N4; grad4[i].dw /= N4; | |
} | |
for (int i = 0; i < PSIZE; i++) { | |
GRADIENTS_4D[i] = grad4[i % grad4.length]; | |
} | |
} | |
} |
/* | |
* OpenSimplex Noise sample class. | |
*/ | |
import java.awt.image.BufferedImage; | |
import javax.imageio.ImageIO; | |
import java.io.*; | |
public class OpenSimplexNoiseTest | |
{ | |
private static final int WIDTH = 512; | |
private static final int HEIGHT = 512; | |
private static final double FEATURE_SIZE = 24; | |
public static void main(String[] args) | |
throws IOException { | |
OpenSimplexNoise noise = new OpenSimplexNoise(); | |
BufferedImage image = new BufferedImage(WIDTH, HEIGHT, BufferedImage.TYPE_INT_RGB); | |
for (int y = 0; y < HEIGHT; y++) | |
{ | |
for (int x = 0; x < WIDTH; x++) | |
{ | |
double value = noise.eval(x / FEATURE_SIZE, y / FEATURE_SIZE, 0.0); | |
int rgb = 0x010101 * (int)((value + 1) * 127.5); | |
image.setRGB(x, y, rgb); | |
} | |
} | |
ImageIO.write(image, "png", new File("noise.png")); | |
} | |
} |
This is free and unencumbered software released into the public domain. | |
Anyone is free to copy, modify, publish, use, compile, sell, or | |
distribute this software, either in source code form or as a compiled | |
binary, for any purpose, commercial or non-commercial, and by any | |
means. | |
In jurisdictions that recognize copyright laws, the author or authors | |
of this software dedicate any and all copyright interest in the | |
software to the public domain. We make this dedication for the benefit | |
of the public at large and to the detriment of our heirs and | |
successors. We intend this dedication to be an overt act of | |
relinquishment in perpetuity of all present and future rights to this | |
software under copyright law. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR | |
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | |
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | |
OTHER DEALINGS IN THE SOFTWARE. |
This comment has been minimized.
This comment has been minimized.
Any chance you can make periodic versions? |
This comment has been minimized.
This comment has been minimized.
I would like to see a 1 dimension implementation as well. |
This comment has been minimized.
This comment has been minimized.
Here is another example of someone struggling with the "chance" problem: |
This comment has been minimized.
This comment has been minimized.
This is fantastic. Thank you! I am deff going to give you credit in my work. |
This comment has been minimized.
This comment has been minimized.
Awesome work! This was exactly what I was looking for. I'll add to my project and, of course, keep your name on it!!! |
This comment has been minimized.
This comment has been minimized.
Bloody hell, this is a freaking long source. Any chance of a shorter implementation, perhaps a GLSL one? |
This comment has been minimized.
This comment has been minimized.
Shouldn't it generate noise between -1 and 1? For the 2d implementation it seems to generate more like within an area of -0.87 to +0.87 I thing the norm constants haven't been chosen quite right. |
This comment has been minimized.
This comment has been minimized.
@KdotJPG There seem to be few unused assignments: smcameron/open-simplex-noise-in-c#4 Any idea? |
This comment has been minimized.
This comment has been minimized.
// Iterations: 100000000
2DOpenSimplexNoise speed: 6498.520513ms // this
2DSimplexNoise speed: 5000.267634ms // http://staffwww.itn.liu.se/~stegu/simplexnoise/SimplexNoise.java
// Iterations: 1000000
2DOpenSimplexNoise speed: 111.175103ms
2DSimplexNoise speed: 73.051068ms
////////////////////////////////////////////////////////////////
// After adding final to both implementation like so "public final class Name"
// Also I've separated the tests to avoid hot and cold scenario
// Iterations: 100000000
2DOpenSimplexNoise speed: 5702.409891ms
2DOpenSimplexNoise speed: 5675.584907ms
2DOpenSimplexNoise speed: 5863.16953ms
2DSimplexNoise speed: 4633.812286ms
2DSimplexNoise speed: 4524.991414ms
2DSimplexNoise speed: 4492.767565ms
2DSimplexNoise speed: 4649.350849ms
2DSimplexNoise speed: 4455.254193ms
2DSimplexNoise speed: 4633.330702ms
2DSimplexNoise speed: 4550.094936ms
// Best scenarios in this test
//
// 2DOpenSimplexNoise - 5675.584907ms
// 2DSimplexNoise - 4455.254193ms
// Worst scenarios in this test
//
// 2DOpenSimplexNoise - 5863.16953ms
// 2DSimplexNoise - 4649.350849ms
////////////////////////////////////////////////////////////////
// After removing final
2DOpenSimplexNoise speed: 5724.589568ms
2DOpenSimplexNoise speed: 5842.842763ms
2DOpenSimplexNoise speed: 5804.29675ms
2DOpenSimplexNoise speed: 5665.408102ms
2DSimplexNoise speed: 4581.063116ms
2DSimplexNoise speed: 4530.74752ms
2DSimplexNoise speed: 4590.37899ms
2DSimplexNoise speed: 4504.37333ms
// final seems to make no difference in this code
// Best scenarios in this test
//
// 2DOpenSimplexNoise - 5665.408102ms
// 2DSimplexNoise - 4504.37333ms
// Worst scenarios in this test
//
// 2DOpenSimplexNoise - 5842.842763ms
// 2DSimplexNoise - 4590.37899ms
//////////////////////////////////////////////////////////////// code: public class SimplexNoisePerformanceTests {
private static int iterations = 100000000;
private static double x = 0.5447734756785486781d;
private static double y = 0.4923141242323442d;
public @Test void simplexNoise() {
final double[] result = new double[iterations];
final long start = System.nanoTime();
for (int i = 0; i < iterations; i++)
result[i] = SimplexNoise.noise(i*x, i*y);
long end = System.nanoTime() - start;
System.out.println("2DSimplexNoise speed: "+(end/1000000d)+"ms");
}
public @Test void openSimplexNoise() {
final double[] result = new double[iterations];
final OpenSimplexNoise simplex = new OpenSimplexNoise();
long start = System.nanoTime();
for (int i = 0; i < iterations; i++)
result[i] = simplex.eval(i*x, i*y);
long end = System.nanoTime() - start;
System.out.println("2DOpenSimplexNoise speed: "+(end/1000000d)+"ms");
}
} |
This comment has been minimized.
This comment has been minimized.
Look like it's never touch -1 or 1 |
This comment has been minimized.
This comment has been minimized.
agree with Porama6400 interval should be betwwn -1 to 1, how to change code to get correct values? |
This comment has been minimized.
This comment has been minimized.
https://eev.ee/blog/2016/05/29/perlin-noise/
I believe this should explain your issues with the range on OpenSimplex Noise; for 3D noise it would have a amplitude of ~0.866. |
This comment has been minimized.
This comment has been minimized.
What's the reason for shifting |
This comment has been minimized.
This comment has been minimized.
I am doing eval(x,y,z,0) (4d noise with w=0) and it gives a range of about: -0.6512914, 0.6200971 This is in a sample range of 16x256x16x0, or at point (x,y,z) the noise is eval(x,y,z,0). Shouldnt it be +-(1/2)sqrt(4) = +-(1/2)2 = +-1? |
This comment has been minimized.
Wow, great work!