Skip to content

Instantly share code, notes, and snippets.

View MegaYEye's full-sized avatar
🎹
信じる心があなたの魔法

FooBar MegaYEye

🎹
信じる心があなたの魔法
View GitHub Profile
@MegaYEye
MegaYEye / rapidjson_gen_json.cpp
Created October 2, 2019 21:48 — forked from fclairamb/rapidjson_gen_json.cpp
Write some JSON using a rapidjson library
#ifdef SHELL
g++ -Wall -Werror -g -I../../cclib/rapidjson/include $0 && ./a.out
exit 0
#endif
// Output is:
// {"project":"rapidjson","stars":11}
// {"Name":"XYZ","Rollnumer":2,"array":["hello","world"],"Marks":{"Math":"50","Science":"70","English":"50","Social Science":"70"}}
// {"FromEmail":"sender@gmail.com","FromName":"Sender's name","Subject":"My subject","Recipients":[{"Email":"recipient@gmail.com"}],"Text-part":"this is my text"}
@MegaYEye
MegaYEye / pg-pong.py
Created January 30, 2019 14:38 — forked from karpathy/pg-pong.py
Training a Neural Network ATARI Pong agent with Policy Gradients from raw pixels
""" Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """
import numpy as np
import cPickle as pickle
import gym
# hyperparameters
H = 200 # number of hidden layer neurons
batch_size = 10 # every how many episodes to do a param update?
learning_rate = 1e-4
gamma = 0.99 # discount factor for reward
@MegaYEye
MegaYEye / openai-gym-mcts.py
Created January 22, 2019 10:44 — forked from blole/ openai-gym-mcts.py
Monte Carlo tree search agent for https://gym.openai.com
#!/usr/bin/env python2
import os
import gym
import sys
import random
import itertools
from time import time
from copy import copy
from math import sqrt, log
@MegaYEye
MegaYEye / installcuda9_ubuntu.txt
Created November 6, 2018 13:56
Install CUDA 9 + cudnn 7.1 on Ubuntu
# ----------------------------------------------------
# 1: NVIDIA Graphics Driver Installation
# ----------------------------------------------------
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-update
sudo apt install nvidia-384 nvidia-384-dev
# ----------------------------------------------------
# 2: Blacklist noveau-graphics-driver
"""
solving pendulum using actor-critic model
"""
import gym
import numpy as np
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Input
from keras.layers.merge import Add, Multiply
from keras.optimizers import Adam