Skip to content

Instantly share code, notes, and snippets.

@MikeK4y
Last active June 21, 2024 11:17
Show Gist options
  • Save MikeK4y/1d99b93f806e7d535021b15afd5bb04f to your computer and use it in GitHub Desktop.
Save MikeK4y/1d99b93f806e7d535021b15afd5bb04f to your computer and use it in GitHub Desktop.
A python class to convert GPS coordinates to a local ENU coordinate system and vice versa
'''
MIT License
Copyright (c) 2019 Michail Kalaitzakis
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import numpy as np
class GPS_utils:
'''
Contains the algorithms to convert a gps signal (longitude, latitude, height)
to a local cartesian ENU system and vice versa
Use setENUorigin(lat, lon, height) to set the local ENU coordinate system origin
Use geo2enu(lat, lon, height) to get the position in the local ENU system
Use enu2geo(x_enu, y_enu, z_enu) to get the latitude, longitude and height
'''
def __init__(self):
# Geodetic System WGS 84 axes
self.a = 6378137.0
self.b = 6356752.314245
self.a2 = self.a * self.a
self.b2 = self.b * self.b
self.e2 = 1.0 - (self.b2 / self.a2)
self.e = self.e2 / (1.0 - self.e2)
# Local ENU Origin
self.latZero = None
self.lonZero = None
self.hgtZero = None
self.xZero = None
self.yZero = None
self.zZero = None
self.R = np.asmatrix(np.eye(3))
def setENUorigin(self, lat, lon, height):
# Save origin lat, lon, height
self.latZero = lat
self.lonZero = lon
self.hgtZero = height
# Get origin ECEF X,Y,Z
origin = self.geo2ecef(self.latZero, self.lonZero, self.hgtZero)
self.xZero = origin.item(0)
self.yZero = origin.item(1)
self.zZero = origin.item(2)
self.oZero = np.array([[self.xZero], [self.yZero], [self.zZero]])
# Build rotation matrix
phi = np.deg2rad(self.latZero)
lmd = np.deg2rad(self.lonZero)
cPhi = np.cos(phi)
cLmd = np.cos(lmd)
sPhi = np.sin(phi)
sLmd = np.sin(lmd)
self.R[0, 0] = -sLmd
self.R[0, 1] = cLmd
self.R[0, 2] = 0.0
self.R[1, 0] = -sPhi * cLmd
self.R[1, 1] = -sPhi * sLmd
self.R[1, 2] = cPhi
self.R[2, 0] = cPhi * cLmd
self.R[2, 1] = cPhi * sLmd
self.R[2, 2] = sPhi
def geo2ecef(self, lat, lon, height):
phi = np.deg2rad(lat)
lmd = np.deg2rad(lon)
cPhi = np.cos(phi)
cLmd = np.cos(lmd)
sPhi = np.sin(phi)
sLmd = np.sin(lmd)
N = self.a / np.sqrt(1.0 - self.e2 * sPhi * sPhi)
x = (N + height) * cPhi * cLmd
y = (N + height) * cPhi * sLmd
z = ((self.b2 / self.a2) * N + height) * sPhi
return np.array([[x], [y], [z]])
def ecef2enu(self, x, y, z):
ecef = np.array([[x], [y], [z]])
return self.R * (ecef - self.oZero)
def geo2enu(self, lat, lon, height):
ecef = self.geo2ecef(lat, lon, height)
return self.ecef2enu(ecef.item(0), ecef.item(1), ecef.item(2))
def ecef2geo(self, x, y, z):
p = np.sqrt(x*x + y*y)
q = np.arctan2(self.a * z, self.b * p)
sq = np.sin(q)
cq = np.cos(q)
sq3 = sq * sq * sq
cq3 = cq * cq * cq
phi = np.arctan2(z + self.e * self.b * sq3, p - self.e2 * self.a * cq3)
lmd = np.arctan2(y, x)
v = self.a / np.sqrt(1.0 - self.e2 * np.sin(phi) * np.sin(phi))
lat = np.rad2deg(phi)
lon = np.rad2deg(lmd)
h = (p / np.cos(phi)) - v
return np.array([[lat], [lon], [h]])
def enu2ecef(self, x, y, z):
lmd = np.deg2rad(self.latZero)
phi = np.deg2rad(self.lonZero)
cPhi = np.cos(phi)
cLmd = np.cos(lmd)
sPhi = np.sin(phi)
sLmd = np.sin(lmd)
N = self.a / np.sqrt(1.0 - self.e2 * sLmd * sLmd)
x0 = (self.hgtZero + N) * cLmd * cPhi
y0 = (self.hgtZero + N) * cLmd * sPhi
z0 = (self.hgtZero + (1.0 - self.e2) * N) * sLmd
xd = -sPhi * x - cPhi * sLmd * y + cLmd * cPhi * z
yd = cPhi * x - sPhi * sLmd * y + cLmd * sPhi * z
zd = cLmd * y + sLmd * z
return np.array([[x0+xd], [y0+yd], [z0+zd]])
def enu2geo(self, x, y, z):
ecef = self.enu2ecef(x, y, z)
return self.ecef2geo(ecef.item(0), ecef.item(1), ecef.item(2))
@Tal-Raveh
Copy link

row 123 should be:
v = self.a / np.sqrt(1.0 - self.e2 * np.sin(phi) * np.sin(phi))
(you should use self.e2 and not self.e

@MikeK4y
Copy link
Author

MikeK4y commented Dec 9, 2019

row 123 should be:
v = self.a / np.sqrt(1.0 - self.e2 * np.sin(phi) * np.sin(phi))
(you should use self.e2 and not self.e

Thanks for catching this!

@Tal-Raveh
Copy link

No problem, Thanks for sharing this :)

@ayushmankumar7
Copy link

Is there any link to any supporting Literature with this code?

@MikeK4y
Copy link
Author

MikeK4y commented Nov 8, 2021

Is there any link to any supporting Literature with this code?

It's been a while but I think it's mostly based on this:

https://en.wikipedia.org/wiki/Geographic_coordinate_conversion

@ayushmankumar7
Copy link

Thank you so much for replying! Sure I will go through it. Thank you again!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment