Created
May 29, 2023 06:30
-
-
Save Nick3523/343e100b40a00886376f7d63f6ad7bdb to your computer and use it in GitHub Desktop.
N - Body
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf8 | |
import os | |
import shutil | |
import random | |
import moviepy.video.io.ImageSequenceClip | |
from PIL import Image, ImageFile | |
import numpy as np | |
import matplotlib.pyplot as plt | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
""" | |
Code original pris sur https://github.com/pmocz/nbody-python (Philip Mocz (2020) Princeton Univeristy) | |
J'ai repris et modifié ce dernier pour : | |
- Utiliser une version non véctorisé sur le calcul des accélérations : pour mettre mieux en évidence la seconde loi de Newton | |
- Retirer l'évolution de la force dans le système dans le temps (pas utile dans ma démarche) | |
- Créer des scénarios prédéfinies et aléatoires avec : la constante gravitationnelle G n'est plus fixée à 1, mais varie entre 1 et 5, de même pour la masse des corps et de leur nombre : ils sont générés aléatoirement | |
- Et enfn, sauvegarder les images de la simulation pour enfaire ensuite des vidéos qui composent les scénarios. | |
""" | |
def getAcc( pos, mass, G, softening ): | |
""" | |
Calculate the acceleration on each particle due to Newton's Law | |
pos is an N x 3 matrix of positions | |
mass is an N x 1 vector of masses | |
G is Newton's Gravitational constant | |
softening is the softening length | |
a is N x 3 matrix of accelerations | |
""" | |
# positions r = [x,y,z] for all particles | |
x = pos[:,0:1] | |
y = pos[:,1:2] | |
z = pos[:,2:3] | |
# matrix that stores all pairwise particle separations: r_j - r_i | |
dx = x.T - x | |
dy = y.T - y | |
dz = z.T - z | |
# matrix that stores 1/r^3 for all particle pairwise particle separations | |
inv_r3 = (dx**2 + dy**2 + dz**2 + softening**2) | |
inv_r3[inv_r3>0] = inv_r3[inv_r3>0]**(-1.5) | |
ax = G * (dx * inv_r3) @ mass | |
ay = G * (dy * inv_r3) @ mass | |
az = G * (dz * inv_r3) @ mass | |
# pack together the acceleration components | |
a = np.hstack((ax,ay,az)) | |
return a | |
def main(repeat=1): | |
""" N-body simulation """ | |
for simuNumber in range(repeat): | |
# Simulation parameters | |
N = random.randint(2, 20) # Number of particles | |
t = 0 # current time of the simulation | |
tEnd = 10.0 # time at which simulation ends | |
dt = 0.01 # timestep | |
softening = 0.1 # softening length | |
G = random.randint(1, 5) # Newton's Gravitational Constant | |
plotRealTime = True | |
# Generate Initial Conditions | |
np.random.seed(42) | |
#mass = 20.0*np.ones((N,1))/N #static and uniform mass | |
mass = np.random.randint(1, 20, size=(N,1)) #random and unequal mass | |
pos = np.random.randn(N,3) | |
vel = np.random.randn(N,3) | |
# calculate initial gravitational accelerations | |
acc = getAcc( pos, mass, G, softening ) | |
Nt = 300 # number of steps | |
#Nt = int(np.ceil(tEnd/dt)) # number of timesteps | |
# particle orbits for plotting trails | |
pos_save = np.zeros((N,3,Nt+1)) | |
pos_save[:,:,0] = pos | |
# prep figure | |
fig = plt.figure(figsize=(4,5), dpi=80) | |
grid = plt.GridSpec(3, 1, wspace=0.0, hspace=0.3) | |
ax1 = plt.subplot(grid[0:3,0]) | |
image_files = [] | |
os.makedirs('temp') | |
print("nbiter : ", Nt) | |
# Simulation Main Loop | |
for i in range(Nt): | |
print(i) | |
# (1/2) kick | |
vel += acc * dt/2.0 | |
# drift | |
pos += vel * dt | |
# update accelerations | |
acc = getAcc( pos, mass, G, softening ) | |
# (1/2) kick | |
vel += acc * dt/2.0 | |
# update time | |
t += dt | |
# save energies, positions for plotting trail | |
pos_save[:,:,i+1] = pos | |
# plot in real time | |
if plotRealTime or (i == Nt-1): | |
plt.sca(ax1) | |
plt.cla() | |
xx = pos_save[:,0,max(i-50,0):i+1] | |
yy = pos_save[:,1,max(i-50,0):i+1] | |
plt.scatter(xx,yy,s=1,color=[.7,.7,1]) | |
plt.scatter(pos[:,0],pos[:,1],s=10,color='blue') | |
ax1.set(xlim=(-2, 2), ylim=(-2, 2)) | |
ax1.set_aspect('equal', 'box') | |
imgpath = 'temp/nbody' + str(i) + '.png' | |
plt.savefig(imgpath, dpi=240) | |
image_files.append(imgpath) | |
plt.xlabel('time') | |
plt.ylabel('energy') | |
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(image_files, fps=30) | |
clip.write_videofile('videos/simulation_' + str(N) + '_gravity_' + str(G) + 'particles_' + str(simuNumber) + '.mp4') | |
shutil.rmtree('temp/') #delet all previous images, run again simulation | |
return 0 | |
if __name__== "__main__": | |
main(100) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment