Created
October 31, 2020 14:32
-
-
Save Nick3523/7ab75af3e0611bc51f5b8b5ff95a885d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# coding: utf-8 | |
get_ipython().run_line_magic('matplotlib', 'inline') | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import cvxopt as opt | |
from cvxopt import blas, solvers | |
import pandas as pd | |
# ### Param's : | |
np.random.seed(42) | |
## Number of assets | |
n_assets = 5 | |
## Number of observations | |
n_obs = 1000 | |
return_vec = np.random.randn(n_assets, n_obs) #Randomly generates returns on each asset, for each observations (like a timeseries) | |
# ### Functions : | |
#Produces n random weights that sum to 1 | |
def rand_weights(n): | |
k = np.random.rand(n) | |
return k / sum(k) | |
#Returns a random portfolio defined by the mean and standard deviation of returns | |
def random_portfolio(returns): | |
p = np.asmatrix(np.mean(returns, axis=1)) | |
w = np.asmatrix(rand_weights(returns.shape[0])) | |
C = np.asmatrix(np.cov(returns)) | |
mu = w * p.T #mean returns of portfolio | |
sigma = np.sqrt(w * C * w.T) #std returns of portfolio | |
return mu, sigma | |
#Generate random portfolios, defined by their mean and std of returns, using the previous function | |
def generate_portfolios(n_portfolios=500): | |
means, stds = np.column_stack([random_portfolio(return_vec) for _ in range(n_portfolios)]) | |
return means, stds | |
#Plot the randomly generated portfolios | |
def plot_portfolio(n_portfolios=500): | |
means, stds = generate_portfolios(n_portfolios) | |
fig = plt.figure() | |
plt.plot(stds, means, 'o', markersize=5) | |
plt.title("Représentation graphiques des portefeuilles du marché") | |
plt.ylabel('Rendements') | |
plt.xlabel('Risques') | |
plt.savefig("Ptfs-Marchés.png",dpi=144) | |
#Compute the optimal portfolio, based on Markowitz theory - Source : https://plotly.com/python/v3/ipython-notebooks/markowitz-portfolio-optimization/ | |
def optimal_portfolio(returns): | |
n = len(returns) | |
returns = np.asmatrix(returns) | |
N = 100 | |
mus = [10**(5.0 * t/N - 1.0) for t in range(N)] #Used to avoid linear mean | |
# Convert to cvxopt matrices | |
S = opt.matrix(np.cov(returns)) | |
pbar = opt.matrix(np.mean(returns, axis=1)) | |
# Create constraint matrices | |
G = -opt.matrix(np.eye(n)) # negative n x n identity matrix | |
h = opt.matrix(0.0, (n ,1)) | |
A = opt.matrix(1.0, (1, n)) | |
b = opt.matrix(1.0) | |
# Calculate efficient frontier weights using quadratic programming | |
portfolios = [solvers.qp(mu*S, -pbar, G, h, A, b)['x'] for mu in mus] | |
## CALCULATE RISKS AND RETURNS FOR FRONTIER | |
returns = [blas.dot(pbar, x) for x in portfolios] | |
risks = [np.sqrt(blas.dot(x, S*x)) for x in portfolios] | |
## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE | |
m1 = np.polyfit(returns, risks, 2) | |
x1 = np.sqrt(m1[2] / m1[0]) | |
# CALCULATE THE OPTIMAL PORTFOLIO | |
wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x'] | |
return np.asarray(wt), returns, risks | |
#Main program : | |
plot_portfolio(1000) | |
weights, returns, risks = optimal_portfolio(return_vec) | |
fig = plt.figure() | |
plt.plot(stds, means, 'o') | |
plt.plot(risks, returns, 'y-o') | |
plt.title("Frontière de l'efficience") | |
plt.ylabel('Rendements') | |
plt.xlabel('Risques') | |
plt.savefig("Frotnière-efficience.png",dpi=144) | |
print (weights) | |
print(np.sum(weights)) #100% is invested in n_assets (5 assets in this example) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Parfait merci.