Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
Collection of methods to achieve better circular arc drawing, as Canvas.drawArc() is unreliable. See the related article: https://medium.com/p/9155f49166b8
/**
* ArcUtils.java
*
* Copyright (c) 2014 BioWink GmbH.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
**/
package com.biowink.clue;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.PointF;
import org.jetbrains.annotations.NotNull;
import org.jetbrains.annotations.Nullable;
import static java.lang.Math.abs;
import static java.lang.Math.ceil;
import static java.lang.Math.cos;
import static java.lang.Math.floor;
import static java.lang.Math.sin;
import static java.lang.Math.sqrt;
import static java.lang.Math.toRadians;
/**
* Collection of methods to achieve better circular arc drawing, as
* {@link Canvas#drawArc(android.graphics.RectF, float, float, boolean, android.graphics.Paint)} is unreliable.
* <p>
* To draw a simple arc, use
* {@link #drawArc(android.graphics.Canvas, android.graphics.PointF, float, float, float, android.graphics.Paint)}.
* </p>
*/
public final class ArcUtils
{
private static final double FULL_CIRCLE_RADIANS = toRadians(360d);
private ArcUtils() { }
/**
* Draws a circular arc on the given {@code Canvas}.
*
* @param canvas The canvas to draw into.
* @param circleCenter The center of the circle on which to draw the arc.
* @param circleRadius The radius of the circle on which to draw the arc.
* @param startAngle Starting angle (in degrees) where the arc begins.
* @param sweepAngle Sweep angle (in degrees) measured clockwise.
* @param paint The paint to use then drawing the arc.
*
* @see #drawArc(android.graphics.Canvas, android.graphics.PointF, float, float, float, android.graphics.Paint, int, boolean)
*/
public static void drawArc(@NotNull Canvas canvas, PointF circleCenter, float circleRadius,
float startAngle, float sweepAngle, @NotNull Paint paint)
{
drawArc(canvas, circleCenter, circleRadius, startAngle, sweepAngle, paint, 8, false);
}
/**
* Draws a circular arc on the given {@code Canvas}.
*
* @param canvas The canvas to draw into.
* @param circleCenter The center of the circle on which to draw the arc.
* @param circleRadius The radius of the circle on which to draw the arc.
* @param startAngle Starting angle (in degrees) where the arc begins.
* @param sweepAngle Sweep angle (in degrees) measured clockwise.
* @param paint The paint to use then drawing the arc.
* @param arcsPointsOnCircle See {@link #createBezierArcDegrees(android.graphics.PointF, float, float, float, int, boolean, android.graphics.Path)}.
* @param arcsOverlayPoints See {@link #createBezierArcDegrees(android.graphics.PointF, float, float, float, int, boolean, android.graphics.Path)}.
*
* @see #drawArc(android.graphics.Canvas, android.graphics.PointF, float, float, float, android.graphics.Paint)
*/
public static void drawArc(@NotNull Canvas canvas, PointF circleCenter, float circleRadius,
float startAngle, float sweepAngle, @NotNull Paint paint,
int arcsPointsOnCircle, boolean arcsOverlayPoints)
{
if (sweepAngle == 0f)
{
final PointF p = pointFromAngleDegrees(circleCenter, circleRadius, startAngle);
canvas.drawPoint(p.x, p.y, paint);
}
else
{
canvas.drawPath(createBezierArcDegrees(
circleCenter, circleRadius, startAngle, sweepAngle,
arcsPointsOnCircle, arcsOverlayPoints, null), paint);
}
}
/**
* Normalize the input radians in the range 360° > x >= 0°.
*
* @param radians The angle to normalize (in radians).
*
* @return The angle normalized in the range 360° > x >= 0°.
*/
public static double normalizeRadians(double radians)
{
radians %= FULL_CIRCLE_RADIANS;
if (radians < 0d) { radians += FULL_CIRCLE_RADIANS; }
if (radians == FULL_CIRCLE_RADIANS) { radians = 0d; }
return radians;
}
/**
* Returns the point of a given angle (in radians) on a circle.
*
* @param center The center of the circle.
* @param radius The radius of the circle.
* @param angleRadians The angle (in radians).
*
* @return The point of the given angle on the specified circle.
*
* @see #pointFromAngleDegrees(android.graphics.PointF, float, float)
*/
@NotNull
public static PointF pointFromAngleRadians(@NotNull PointF center, float radius, double angleRadians)
{
return new PointF((float)(center.x + radius * cos(angleRadians)),
(float)(center.y + radius * sin(angleRadians)));
}
/**
* Returns the point of a given angle (in degrees) on a circle.
*
* @param center The center of the circle.
* @param radius The radius of the circle.
* @param angleDegrees The angle (in degrees).
*
* @return The point of the given angle on the specified circle.
*
* @see #pointFromAngleRadians(android.graphics.PointF, float, double)
*/
@NotNull
public static PointF pointFromAngleDegrees(@NotNull PointF center, float radius, float angleDegrees)
{
return pointFromAngleRadians(center, radius, toRadians(angleDegrees));
}
/**
* Adds a circular arc to the given path by approximating it through a cubic Bézier curve.
* <p/>
* <p>
* Note that this <strong>does not</strong> split the arc to better approximate it, for that see either:
* <ul>
* <li>{@link #createBezierArcDegrees(android.graphics.PointF, float, float, float, int, boolean,
* android.graphics.Path)}</li>
* <li>{@link #createBezierArcRadians(android.graphics.PointF, float, double, double, int, boolean,
* android.graphics.Path)}</li>
* </ul>
* </p>
* <p/>
* For a technical explanation:
* <a href="http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html">
* http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html
* </a>
*
* @param path The path to add the arc to.
* @param center The center of the circle.
* @param start The starting point of the arc on the circle.
* @param end The ending point of the arc on the circle.
* @param moveToStart If {@code true}, move to the starting point of the arc
* (see: {@link android.graphics.Path#moveTo(float, float)}).
*
* @see #createBezierArcDegrees(android.graphics.PointF, float, float, float, int, boolean, android.graphics.Path)
* @see #createBezierArcRadians(android.graphics.PointF, float, double, double, int, boolean, android.graphics.Path)
*/
public static void addBezierArcToPath(@NotNull Path path, @NotNull PointF center,
@NotNull PointF start, @NotNull PointF end, boolean moveToStart)
{
if (moveToStart) { path.moveTo(start.x, start.y); }
if (start.equals(end)) { return; }
final double ax = start.x - center.x;
final double ay = start.y - center.y;
final double bx = end.x - center.x;
final double by = end.y - center.y;
final double q1 = ax * ax + ay * ay;
final double q2 = q1 + ax * bx + ay * by;
final double k2 = 4d / 3d * (sqrt(2d * q1 * q2) - q2) / (ax * by - ay * bx);
final float x2 = (float)(center.x + ax - k2 * ay);
final float y2 = (float)(center.y + ay + k2 * ax);
final float x3 = (float)(center.x + bx + k2 * by);
final float y3 = (float)(center.y + by - k2 * bx);
path.cubicTo(x2, y2, x3, y3, end.x, end.y);
}
/**
* Adds a circular arc to the given path by approximating it through a cubic Bézier curve, splitting it if
* necessary. The precision of the approximation can be adjusted through {@code pointsOnCircle} and
* {@code overlapPoints} parameters.
* <p>
* <strong>Example:</strong> imagine an arc starting from 0° and sweeping 100° with a value of
* {@code pointsOnCircle} equal to 12 (threshold -> 360° / 12 = 30°):
* <ul>
* <li>if {@code overlapPoints} is {@code true}, it will be split as following:
* <ul>
* <li>from 0° to 30° (sweep 30°)</li>
* <li>from 30° to 60° (sweep 30°)</li>
* <li>from 60° to 90° (sweep 30°)</li>
* <li>from 90° to 100° (sweep 10°)</li>
* </ul>
* </li>
* <li>if {@code overlapPoints} is {@code false}, it will be split into 4 equal arcs:
* <ul>
* <li>from 0° to 25° (sweep 25°)</li>
* <li>from 25° to 50° (sweep 25°)</li>
* <li>from 50° to 75° (sweep 25°)</li>
* <li>from 75° to 100° (sweep 25°)</li>
* </ul>
* </li>
* </ul>
* </p>
* <p/>
* For a technical explanation:
* <a href="http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html">
* http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html
* </a>
*
* @param center The center of the circle.
* @param radius The radius of the circle.
* @param startAngleRadians The starting angle on the circle (in radians).
* @param sweepAngleRadians How long to make the total arc (in radians).
* @param pointsOnCircle Defines a <i>threshold</i> (360° /{@code pointsOnCircle}) to split the Bézier arc to
* better approximate a circular arc, depending also on the value of {@code overlapPoints}.
* The suggested number to have a reasonable approximation of a circle is at least 4 (90°).
* Less than 1 will be ignored (the arc will not be split).
* @param overlapPoints Given the <i>threshold</i> defined through {@code pointsOnCircle}:
* <ul>
* <li>if {@code true}, split the arc on every angle which is a multiple of the
* <i>threshold</i> (yields better results if drawing precision is required,
* especially when stacking multiple arcs, but can potentially use more points)</li>
* <li>if {@code false}, split the arc equally so that each part is shorter than
* the <i>threshold</i></li>
* </ul>
* @param addToPath An existing path where to add the arc to, or {@code null} to create a new path.
*
* @return {@code addToPath} if it's not {@code null}, otherwise a new path.
*
* @see #createBezierArcDegrees(android.graphics.PointF, float, float, float, int, boolean, android.graphics.Path)
*/
@NotNull
public static Path createBezierArcRadians(@NotNull PointF center, float radius, double startAngleRadians,
double sweepAngleRadians, int pointsOnCircle, boolean overlapPoints,
@Nullable Path addToPath)
{
final Path path = addToPath != null ? addToPath : new Path();
if (sweepAngleRadians == 0d) { return path; }
if (pointsOnCircle >= 1)
{
final double threshold = FULL_CIRCLE_RADIANS / pointsOnCircle;
if (abs(sweepAngleRadians) > threshold)
{
double angle = normalizeRadians(startAngleRadians);
PointF end, start = pointFromAngleRadians(center, radius, angle);
path.moveTo(start.x, start.y);
if (overlapPoints)
{
final boolean cw = sweepAngleRadians > 0; // clockwise?
final double angleEnd = angle + sweepAngleRadians;
while (true)
{
double next = (cw ? ceil(angle / threshold) : floor(angle / threshold)) * threshold;
if (angle == next) { next += threshold * (cw ? 1d : -1d); }
final boolean isEnd = cw ? angleEnd <= next : angleEnd >= next;
end = pointFromAngleRadians(center, radius, isEnd ? angleEnd : next);
addBezierArcToPath(path, center, start, end, false);
if (isEnd) { break; }
angle = next;
start = end;
}
}
else
{
final int n = abs((int)ceil(sweepAngleRadians / threshold));
final double sweep = sweepAngleRadians / n;
for (int i = 0;
i < n;
i++, start = end)
{
angle += sweep;
end = pointFromAngleRadians(center, radius, angle);
addBezierArcToPath(path, center, start, end, false);
}
}
return path;
}
}
final PointF start = pointFromAngleRadians(center, radius, startAngleRadians);
final PointF end = pointFromAngleRadians(center, radius, startAngleRadians + sweepAngleRadians);
addBezierArcToPath(path, center, start, end, true);
return path;
}
/**
* Adds a circular arc to the given path by approximating it through a cubic Bézier curve, splitting it if
* necessary. The precision of the approximation can be adjusted through {@code pointsOnCircle} and
* {@code overlapPoints} parameters.
* <p>
* <strong>Example:</strong> imagine an arc starting from 0° and sweeping 100° with a value of
* {@code pointsOnCircle} equal to 12 (threshold -> 360° / 12 = 30°):
* <ul>
* <li>if {@code overlapPoints} is {@code true}, it will be split as following:
* <ul>
* <li>from 0° to 30° (sweep 30°)</li>
* <li>from 30° to 60° (sweep 30°)</li>
* <li>from 60° to 90° (sweep 30°)</li>
* <li>from 90° to 100° (sweep 10°)</li>
* </ul>
* </li>
* <li>if {@code overlapPoints} is {@code false}, it will be split into 4 equal arcs:
* <ul>
* <li>from 0° to 25° (sweep 25°)</li>
* <li>from 25° to 50° (sweep 25°)</li>
* <li>from 50° to 75° (sweep 25°)</li>
* <li>from 75° to 100° (sweep 25°)</li>
* </ul>
* </li>
* </ul>
* </p>
* <p/>
* For a technical explanation:
* <a href="http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html">
* http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html
* </a>
*
* @param center The center of the circle.
* @param radius The radius of the circle.
* @param startAngleDegrees The starting angle on the circle (in degrees).
* @param sweepAngleDegrees How long to make the total arc (in degrees).
* @param pointsOnCircle Defines a <i>threshold</i> (360° /{@code pointsOnCircle}) to split the Bézier arc to
* better approximate a circular arc, depending also on the value of {@code overlapPoints}.
* The suggested number to have a reasonable approximation of a circle is at least 4 (90°).
* Less than 1 will ignored (the arc will not be split).
* @param overlapPoints Given the <i>threshold</i> defined through {@code pointsOnCircle}:
* <ul>
* <li>if {@code true}, split the arc on every angle which is a multiple of the
* <i>threshold</i> (yields better results if drawing precision is required,
* especially when stacking multiple arcs, but can potentially use more points)</li>
* <li>if {@code false}, split the arc equally so that each part is shorter than
* the <i>threshold</i></li>
* </ul>
* @param addToPath An existing path where to add the arc to, or {@code null} to create a new path.
*
* @return {@code addToPath} if it's not {@code null}, otherwise a new path.
*
* @see #createBezierArcRadians(android.graphics.PointF, float, double, double, int, boolean, android.graphics.Path)
*/
@NotNull
public static Path createBezierArcDegrees(@NotNull PointF center, float radius, float startAngleDegrees,
float sweepAngleDegrees, int pointsOnCircle, boolean overlapPoints,
@Nullable Path addToPath)
{
return createBezierArcRadians(center, radius, toRadians(startAngleDegrees), toRadians(sweepAngleDegrees),
pointsOnCircle, overlapPoints, addToPath);
}
}
@IsmailKhanDilazaq

This comment has been minimized.

Copy link

@IsmailKhanDilazaq IsmailKhanDilazaq commented Sep 22, 2016

please can you tell me how to draw arcs with sides using this code

@vuthaihoa123

This comment has been minimized.

Copy link

@vuthaihoa123 vuthaihoa123 commented Sep 27, 2017

tks u ^^!

@ParryPatel021

This comment has been minimized.

Copy link

@ParryPatel021 ParryPatel021 commented Jun 13, 2018

Would you please share the snippet by which draw Arc in android.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.