Skip to content

Instantly share code, notes, and snippets.

@Tony363
Created September 11, 2020 11:47
Show Gist options
  • Save Tony363/3f1132ec210368d3a44a316d8130fd16 to your computer and use it in GitHub Desktop.
Save Tony363/3f1132ec210368d3a44a316d8130fd16 to your computer and use it in GitHub Desktop.
Stitcher::Status Stitcher::composePanorama(InputArrayOfArrays images, OutputArray pano)
{
CV_INSTRUMENT_REGION();
LOGLN("Warping images (auxiliary)... ");
std::vector<UMat> imgs;
images.getUMatVector(imgs);
if (!imgs.empty())
{
CV_Assert(imgs.size() == imgs_.size());
UMat img;
seam_est_imgs_.resize(imgs.size());
for (size_t i = 0; i < imgs.size(); ++i)
{
imgs_[i] = imgs[i];
resize(imgs[i], img, Size(), seam_scale_, seam_scale_, INTER_LINEAR_EXACT);
seam_est_imgs_[i] = img.clone();
}
std::vector<UMat> seam_est_imgs_subset;
std::vector<UMat> imgs_subset;
for (size_t i = 0; i < indices_.size(); ++i)
{
imgs_subset.push_back(imgs_[indices_[i]]);
seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]);
}
seam_est_imgs_ = seam_est_imgs_subset;
imgs_ = imgs_subset;
}
UMat pano_;
#if ENABLE_LOG
int64 t = getTickCount();
#endif
std::vector<Point> corners(imgs_.size());
std::vector<UMat> masks_warped(imgs_.size());
std::vector<UMat> images_warped(imgs_.size());
std::vector<Size> sizes(imgs_.size());
std::vector<UMat> masks(imgs_.size());
// Prepare image masks
for (size_t i = 0; i < imgs_.size(); ++i)
{
masks[i].create(seam_est_imgs_[i].size(), CV_8U);
masks[i].setTo(Scalar::all(255));
}
// Warp images and their masks
Ptr<detail::RotationWarper> w = warper_->create(float(warped_image_scale_ * seam_work_aspect_));
for (size_t i = 0; i < imgs_.size(); ++i)
{
Mat_<float> K;
cameras_[i].K().convertTo(K, CV_32F);
K(0,0) *= (float)seam_work_aspect_;
K(0,2) *= (float)seam_work_aspect_;
K(1,1) *= (float)seam_work_aspect_;
K(1,2) *= (float)seam_work_aspect_;
corners[i] = w->warp(seam_est_imgs_[i], K, cameras_[i].R, interp_flags_, BORDER_REFLECT, images_warped[i]);
sizes[i] = images_warped[i].size();
w->warp(masks[i], K, cameras_[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
}
LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
// Compensate exposure before finding seams
exposure_comp_->feed(corners, images_warped, masks_warped);
for (size_t i = 0; i < imgs_.size(); ++i)
exposure_comp_->apply(int(i), corners[i], images_warped[i], masks_warped[i]);
// Find seams
std::vector<UMat> images_warped_f(imgs_.size());
for (size_t i = 0; i < imgs_.size(); ++i)
images_warped[i].convertTo(images_warped_f[i], CV_32F);
seam_finder_->find(images_warped_f, corners, masks_warped);
// Release unused memory
seam_est_imgs_.clear();
images_warped.clear();
images_warped_f.clear();
masks.clear();
LOGLN("Compositing...");
#if ENABLE_LOG
t = getTickCount();
#endif
UMat img_warped, img_warped_s;
UMat dilated_mask, seam_mask, mask, mask_warped;
//double compose_seam_aspect = 1;
double compose_work_aspect = 1;
bool is_blender_prepared = false;
double compose_scale = 1;
bool is_compose_scale_set = false;
std::vector<detail::CameraParams> cameras_scaled(cameras_);
UMat full_img, img;
for (size_t img_idx = 0; img_idx < imgs_.size(); ++img_idx)
{
LOGLN("Compositing image #" << indices_[img_idx] + 1);
#if ENABLE_LOG
int64 compositing_t = getTickCount();
#endif
// Read image and resize it if necessary
full_img = imgs_[img_idx];
if (!is_compose_scale_set)
{
if (compose_resol_ > 0)
compose_scale = std::min(1.0, std::sqrt(compose_resol_ * 1e6 / full_img.size().area()));
is_compose_scale_set = true;
// Compute relative scales
//compose_seam_aspect = compose_scale / seam_scale_;
compose_work_aspect = compose_scale / work_scale_;
// Update warped image scale
float warp_scale = static_cast<float>(warped_image_scale_ * compose_work_aspect);
w = warper_->create(warp_scale);
// Update corners and sizes
for (size_t i = 0; i < imgs_.size(); ++i)
{
// Update intrinsics
cameras_scaled[i].ppx *= compose_work_aspect;
cameras_scaled[i].ppy *= compose_work_aspect;
cameras_scaled[i].focal *= compose_work_aspect;
// Update corner and size
Size sz = full_img_sizes_[i];
if (std::abs(compose_scale - 1) > 1e-1)
{
sz.width = cvRound(full_img_sizes_[i].width * compose_scale);
sz.height = cvRound(full_img_sizes_[i].height * compose_scale);
}
Mat K;
cameras_scaled[i].K().convertTo(K, CV_32F);
Rect roi = w->warpRoi(sz, K, cameras_scaled[i].R);
corners[i] = roi.tl();
sizes[i] = roi.size();
}
}
if (std::abs(compose_scale - 1) > 1e-1)
{
#if ENABLE_LOG
int64 resize_t = getTickCount();
#endif
resize(full_img, img, Size(), compose_scale, compose_scale, INTER_LINEAR_EXACT);
LOGLN(" resize time: " << ((getTickCount() - resize_t) / getTickFrequency()) << " sec");
}
else
img = full_img;
full_img.release();
Size img_size = img.size();
LOGLN(" after resize time: " << ((getTickCount() - compositing_t) / getTickFrequency()) << " sec");
Mat K;
cameras_scaled[img_idx].K().convertTo(K, CV_32F);
#if ENABLE_LOG
int64 pt = getTickCount();
#endif
// Warp the current image
w->warp(img, K, cameras_[img_idx].R, interp_flags_, BORDER_REFLECT, img_warped);
LOGLN(" warp the current image: " << ((getTickCount() - pt) / getTickFrequency()) << " sec");
#if ENABLE_LOG
pt = getTickCount();
#endif
// Warp the current image mask
mask.create(img_size, CV_8U);
mask.setTo(Scalar::all(255));
w->warp(mask, K, cameras_[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
LOGLN(" warp the current image mask: " << ((getTickCount() - pt) / getTickFrequency()) << " sec");
#if ENABLE_LOG
pt = getTickCount();
#endif
// Compensate exposure
exposure_comp_->apply((int)img_idx, corners[img_idx], img_warped, mask_warped);
LOGLN(" compensate exposure: " << ((getTickCount() - pt) / getTickFrequency()) << " sec");
#if ENABLE_LOG
pt = getTickCount();
#endif
img_warped.convertTo(img_warped_s, CV_16S);
img_warped.release();
img.release();
mask.release();
// Make sure seam mask has proper size
dilate(masks_warped[img_idx], dilated_mask, Mat());
resize(dilated_mask, seam_mask, mask_warped.size(), 0, 0, INTER_LINEAR_EXACT);
bitwise_and(seam_mask, mask_warped, mask_warped);
LOGLN(" other: " << ((getTickCount() - pt) / getTickFrequency()) << " sec");
#if ENABLE_LOG
pt = getTickCount();
#endif
if (!is_blender_prepared)
{
blender_->prepare(corners, sizes);
is_blender_prepared = true;
}
LOGLN(" other2: " << ((getTickCount() - pt) / getTickFrequency()) << " sec");
LOGLN(" feed...");
#if ENABLE_LOG
int64 feed_t = getTickCount();
#endif
// Blend the current image
blender_->feed(img_warped_s, mask_warped, corners[img_idx]);
LOGLN(" feed time: " << ((getTickCount() - feed_t) / getTickFrequency()) << " sec");
LOGLN("Compositing ## time: " << ((getTickCount() - compositing_t) / getTickFrequency()) << " sec");
}
#if ENABLE_LOG
int64 blend_t = getTickCount();
#endif
UMat result;
blender_->blend(result, result_mask_);
LOGLN("blend time: " << ((getTickCount() - blend_t) / getTickFrequency()) << " sec");
LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
// Preliminary result is in CV_16SC3 format, but all values are in [0,255] range,
// so convert it to avoid user confusing
result.convertTo(pano, CV_8U);
return OK;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment