Solution: Deploy an Azure Machine Learning Model
Part 1: Configure deployment settings
- Create a new Automated ML run
# General | |
.DS_Store | |
.AppleDouble | |
.LSOverride | |
# Icon must end with two \r | |
Icon | |
# Thumbnails | |
._* |
--1 | |
SELECT * | |
FROM "olist_order_payments_dataset" | |
WHERE payment_type='voucher' | |
OR payment_type='boleto' | |
--2 | |
SELECT *, product_length_cm*product_height_cm*product_width_cm volume | |
FROM "olist_products_dataset" | |
LIMIT 5 |
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
""" | |
Original Repository with up to date version: https://github.com/WittmannF/sort-google-scholar | |
This code creates a database with a list of publications data from Google | |
Scholar. | |
The data acquired from GS is Title, Citations, Links and Rank. | |
It is useful for finding relevant papers by sorting by the number of citations | |
This example will look for the top 100 papers related to the keyword, |
<link rel="stylesheet" type="text/css" href="https://cdn.rawgit.com/bmabey/pyLDAvis/files/ldavis.v1.0.0.css"> | |
<div id="ldavis_el65140446592215944742620371"></div> | |
<script type="text/javascript"> | |
var ldavis_el65140446592215944742620371_data = {"mdsDat": {"x": [-0.13990785077723894, -0.09679313042303961, 0.08372094501590253, 0.07604489996546725, 0.08866863335149071, -0.01173349713258175], "y": [0.02244036859154854, 0.013060650645922876, 0.1393068438230911, -0.08369764087875763, -0.019555346123243667, -0.07155487605856131], "topics": [1, 2, 3, 4, 5, 6], "cluster": [1, 1, 1, 1, 1, 1], "Freq": [24.220427827520453, 20.28266275869824, 19.98643568178107, 14.374536641380327, 10.845324205247051, 10.290612885372857]}, "tinfo": {"Term": ["week", "difficul", "classroom", "act", "oth", "rul", "mood", "repetit", "irrit", "inappropry", "talk", "behavy", "hopeless", "mot", "pleas", "adult", "task", "impuls", "childr", "psychomot", "thing", "hand", "anxy", "ment", "wav", "rock", "body", "skin", "distress", "compuls", "quie |
# envolveu a combinação de encoding e o separador: | |
url_bernardo = 'https://raw.githubusercontent.com/beloureiro/Planning/main/DB11FB06-1447-11EB-AD05-1866DA94328D.csv' | |
df = pd.read_csv(url_bernardo, sep=';', encoding='latin') |
Hello student,
Well done in your first submission!
Cheers,
Instalar o Anaconda com Python 3.7:
import re | |
PATTERN = '(.*), (.*) - (.*): [bB]om dia' | |
db = re.findall(PATTERN, txt) |
print('hello world') |