Created
March 7, 2011 01:51
-
-
Save adamlum/857957 to your computer and use it in GitHub Desktop.
Adam Lum's solution to RPCFN #6 (Fair Distribution)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Adam Lum's solution to RPCFN #6 | |
# http://rubylearning.com/blog/2010/01/26/rpcfn-fair-distribution-6/ | |
# Definitely not the most elegant, efficient, or Computer Science-y | |
# way to handle this challenge, but it's _a_ solution to these small sets. | |
# (For the sake of my code, hopefully the hypothetical t-shirt printing | |
# company in the problem never owns more than 4 machines) :) | |
class FairDistribution | |
attr_accessor :number_of_presses, :jobs, :cached_time_required, :cached_distribution | |
def initialize(in_jobs, in_number_of_presses) | |
@number_of_presses = in_number_of_presses | |
@jobs = in_jobs | |
@cached_time_required = nil # So the calculation doesn't have to run more than once | |
@cached_distribution = nil # So the calculation doesn't have to run more than once | |
end | |
def time_required | |
if (@cached_time_required == nil) | |
calculate | |
end | |
@cached_time_required | |
end | |
def distribution | |
if (@cached_distribution == nil) | |
calculate | |
end | |
@cached_distribution | |
end | |
def partition_set(in_set) | |
total_sum = array_sum(in_set) | |
index_array = [] | |
subsets = [] | |
partitioned_set = [] | |
partition_difference = 1 << 64 | |
(0..in_set.size - 1).each do |p| | |
index_array << p | |
end | |
(1..in_set.size).each do |i| | |
index_array.combination(i).each do |c| | |
subsets << c | |
end | |
end | |
subsets.each do |s| | |
subset_sum = subset_sum(s, in_set) | |
difference_subset_sum = subset_sum(index_array - s, in_set) | |
if (subset_sum + difference_subset_sum == total_sum && (subset_sum - difference_subset_sum).abs < partition_difference) | |
partitioned_set = [s, index_array - s] | |
partition_difference = (subset_sum - difference_subset_sum).abs | |
end | |
end | |
(0..1).each do |i| | |
temp_array = [] | |
partitioned_set[i].each do |j| | |
temp_array << in_set[j] | |
end | |
partitioned_set[i] = temp_array | |
end | |
partitioned_set | |
end | |
def three_partition | |
total_sum = array_sum(@jobs) | |
index_array = [] | |
subsets = [] | |
possible_distribution = [] | |
partition_difference = 1 << 64 | |
(0..jobs.size - 1).each do |p| | |
index_array << p | |
end | |
(1..@jobs.size).each do |i| | |
index_array.combination(i).each do |c| | |
subsets << c | |
end | |
end | |
subsets.each do |s| | |
(0..subsets.size - 1).each do |i| | |
(0..subsets.size - 1).each do |j| | |
if ((s + subsets[i] + subsets[j]).sort! == index_array) | |
partition1_sum = subset_sum(s, @jobs) | |
partition2_sum = subset_sum(subsets[i], @jobs) | |
partition3_sum = subset_sum(subsets[j], @jobs) | |
if ((partition1_sum + partition2_sum + partition3_sum) == total_sum) | |
partition_difference_array = [] | |
partition_difference_array << (partition1_sum - partition2_sum).abs | |
partition_difference_array << (partition1_sum - partition3_sum).abs | |
partition_difference_array << (partition2_sum - partition3_sum).abs | |
partition_difference_array.sort! | |
if (partition_difference_array.last < partition_difference) | |
possible_distribution = [s, subsets[i], subsets[j]] | |
partition_difference = partition_difference_array.last | |
end | |
end | |
end | |
end | |
end | |
end | |
return_array = [] | |
possible_distribution.each do |d| | |
partition = [] | |
d.each do |e| | |
partition << @jobs[e] | |
end | |
return_array << partition | |
end | |
return_array | |
end | |
def calculate | |
if (@number_of_presses == 1) | |
@cached_distribution = @jobs | |
@cached_time_required = array_sum(@jobs) | |
elsif (@number_of_presses == 2) | |
@cached_distribution = partition_set(@jobs) | |
@cached_time_required = (array_sum(@cached_distribution[0]) > array_sum(@cached_distribution[1])) ? array_sum(@cached_distribution[0]) : array_sum(@cached_distribution[1]) | |
elsif (@number_of_presses == 3) | |
@cached_distribution = three_partition | |
time_array = [] | |
@cached_distribution.each do |c| | |
time_array << array_sum(c) | |
end | |
@cached_time_required = time_array.sort!.last | |
elsif (@number_of_presses == 4) | |
standard_deviation_value = 1 << 64 # Some large starting value | |
(0..20).each do | |
# Shuffling the input array 20 times seemed enough for these small | |
# datasets, but test_basic3 in the test_suite still fails sometimes | |
# (but it's close) | |
@jobs.shuffle! | |
first_partition = partition_set(@jobs) | |
temp_distribution = partition_set(first_partition[0]) + partition_set(first_partition[1]) | |
#@cached_distribution = partition_set(first_partition[0]) + partition_set(first_partition[1]) | |
time_array = [] | |
temp_distribution.each do |c| | |
time_array << array_sum(c) | |
end | |
time_array.sort! | |
if (@cached_time_required == nil || (time_array.last <= @cached_time_required && standard_deviation_value > standard_deviation(time_array))) | |
@cached_distribution = temp_distribution | |
@cached_time_required = time_array.last | |
standard_deviation_value = standard_deviation(time_array) | |
end | |
end | |
else | |
@cached_time_required = 0 | |
@cached_distribution = [] | |
end | |
@cached_time_required | |
end | |
# Some helper functions | |
def subset_sum(subset, entire_set) | |
# Sums the set of array indexes, based on the entire set | |
return_sum = 0 | |
subset.each do |i| | |
return_sum += entire_set[i] | |
end | |
return_sum | |
end | |
def array_sum(array_to_sum) | |
# Sums the array elements | |
return_sum = 0 | |
array_to_sum.each do |x| | |
return_sum += x | |
end | |
return_sum | |
end | |
def standard_deviation(values) | |
count = values.size | |
mean = values.inject(:+) / count.to_f | |
stddev = Math.sqrt( values.inject(0) { |sum, e| sum + (e - mean) ** 2 } / count.to_f ) | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment