This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import namedtuple | |
from jax import random | |
from jax.flatten_util import ravel_pytree | |
import jax.numpy as jnp | |
import numpyro | |
import numpyro.distributions as dist | |
from numpyro.infer import MCMC, util | |
from numpyro.infer.mcmc import MCMCKernel | |
MetState = namedtuple("MetState", ["z", "rng_key"]) | |
class Metropolis(MCMCKernel): | |
def __init__(self, model, step_size=0.1): | |
self._model = model | |
self._step_size = step_size | |
@property | |
def sample_field(self): | |
return "z" | |
def init(self, rng_key, num_warmup, init_params, model_args, model_kwargs): | |
assert rng_key.ndim == 1, "only non-vectorized, for now" | |
init_params_2, potential_fn, postprocess_fn, model_trace = util.initialize_model( | |
rng_key, | |
self._model, | |
# init_strategy=self._init_strategy, | |
dynamic_args=False, | |
model_args=model_args, | |
model_kwargs=model_kwargs, | |
) | |
z_flat, unravel_fn = ravel_pytree(init_params) | |
self._potential_fn = lambda z: potential_fn(unravel_fn(z)) | |
self._postprocess_fn = lambda z: postprocess_fn(unravel_fn(z)) | |
return MetState(z_flat, rng_key) | |
def postprocess_fn(self, model_args, model_kwargs): | |
return self._postprocess_fn | |
def sample(self, state, model_args, model_kwargs): | |
rng_key, key_proposal, key_accept = random.split(state.rng_key, 3) | |
z_proposal = dist.Normal(state.z, self._step_size).sample(key_proposal) | |
accept_prob = jnp.exp(self._potential_fn(state.z) - self._potential_fn(z_proposal)) | |
z_new = jnp.where(dist.Uniform().sample(key_accept) < accept_prob, z_proposal, state.z) | |
return MetState(z_new, rng_key) | |
def model(): | |
numpyro.sample('x', dist.Uniform(0,1)) | |
def my_run(model): | |
rng_key = random.PRNGKey(12345) | |
kernel = Metropolis(model, step_size=1) | |
mcmc = MCMC(kernel, num_warmup=0, num_samples=50_000, thinning=1) | |
mcmc.run(rng_key, init_params={'x':jnp.ones(10)}) | |
posterior_samples = mcmc.get_samples() | |
mcmc.print_summary() | |
my_run(model) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment