Created
June 5, 2020 21:03
-
-
Save aniruddha27/a39e114707cdb0ba194da3125a0cc903 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# rule to extract initiative name | |
def sent_subtree(text): | |
# pattern match for schemes or initiatives | |
patterns = [r'\b(?i)'+'plan'+r'\b', | |
r'\b(?i)'+'programme'+r'\b', | |
r'\b(?i)'+'scheme'+r'\b', | |
r'\b(?i)'+'campaign'+r'\b', | |
r'\b(?i)'+'initiative'+r'\b', | |
r'\b(?i)'+'conference'+r'\b', | |
r'\b(?i)'+'agreement'+r'\b', | |
r'\b(?i)'+'alliance'+r'\b'] | |
schemes = [] | |
doc = nlp(text) | |
flag = 0 | |
# if no initiative present in sentence | |
for pat in patterns: | |
if re.search(pat, text) != None: | |
flag = 1 | |
break | |
if flag == 0: | |
return schemes | |
# iterating over sentence tokens | |
for token in doc: | |
for pat in patterns: | |
# if we get a pattern match | |
if re.search(pat, token.text) != None: | |
word = '' | |
# iterating over token subtree | |
for node in token.subtree: | |
# only extract the proper nouns | |
if (node.pos_ == 'PROPN'): | |
word += node.text+' ' | |
if len(word)!=0: | |
schemes.append(word) | |
return schemes | |
# derive initiatives | |
df2['Schemes2'] = df2['Sent'].apply(sent_subtree) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment