Last active
October 18, 2024 07:48
-
-
Save anujonthemove/7b35b7c1e05f01dd11d74d94784c1e58 to your computer and use it in GitHub Desktop.
Bird's eye view perspective transformation using OpenCV
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
import math | |
PI = 3.1415926 | |
frameWidth = 640 | |
frameHeight = 480 | |
def update_perspective(val): | |
alpha = (cv2.getTrackbarPos("Alpha", "Result") - 90) * PI / 180 | |
beta = (cv2.getTrackbarPos("Beta", "Result") - 90) * PI / 180 | |
gamma = (cv2.getTrackbarPos("Gamma", "Result") - 90) * PI / 180 | |
focalLength = cv2.getTrackbarPos("f", "Result") | |
dist = cv2.getTrackbarPos("Distance", "Result") | |
image_size = (frameWidth, frameHeight) | |
w, h = image_size | |
A1 = np.array([[1, 0, -w / 2], | |
[0, 1, -h / 2], | |
[0, 0, 0], | |
[0, 0, 1]], dtype=np.float32) | |
RX = np.array([[1, 0, 0, 0], | |
[0, math.cos(alpha), -math.sin(alpha), 0], | |
[0, math.sin(alpha), math.cos(alpha), 0], | |
[0, 0, 0, 1]], dtype=np.float32) | |
RY = np.array([[math.cos(beta), 0, -math.sin(beta), 0], | |
[0, 1, 0, 0], | |
[math.sin(beta), 0, math.cos(beta), 0], | |
[0, 0, 0, 1]], dtype=np.float32) | |
RZ = np.array([[math.cos(gamma), -math.sin(gamma), 0, 0], | |
[math.sin(gamma), math.cos(gamma), 0, 0], | |
[0, 0, 1, 0], | |
[0, 0, 0, 1]], dtype=np.float32) | |
R = np.dot(np.dot(RX, RY), RZ) | |
T = np.array([[1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, 1, dist], | |
[0, 0, 0, 1]], dtype=np.float32) | |
K = np.array([[focalLength, 0, w / 2, 0], | |
[0, focalLength, h / 2, 0], | |
[0, 0, 1, 0]], dtype=np.float32) | |
transformationMat = np.dot(np.dot(np.dot(K, T), R), A1) | |
destination = cv2.warpPerspective(source, transformationMat, image_size, flags=cv2.INTER_CUBIC + cv2.WARP_INVERSE_MAP) | |
cv2.imshow("Result", destination) | |
source = cv2.imread('frame.jpg') # Replace with your image file path | |
cv2.namedWindow("Result", cv2.WINDOW_NORMAL) | |
cv2.createTrackbar("Alpha", "Result", 90, 180, update_perspective) | |
cv2.createTrackbar("Beta", "Result", 90, 180, update_perspective) | |
cv2.createTrackbar("Gamma", "Result", 90, 180, update_perspective) | |
cv2.createTrackbar("f", "Result", 500, 2000, update_perspective) | |
cv2.createTrackbar("Distance", "Result", 500, 2000, update_perspective) | |
update_perspective(0) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
import math | |
PI = 3.1415926 | |
frameWidth = 640 | |
frameHeight = 480 | |
def update_perspective(val): | |
alpha = (cv2.getTrackbarPos("Alpha", "Result") - 90) * PI / 180 | |
beta = (cv2.getTrackbarPos("Beta", "Result") - 90) * PI / 180 | |
gamma = (cv2.getTrackbarPos("Gamma", "Result") - 90) * PI / 180 | |
focalLength = cv2.getTrackbarPos("f", "Result") | |
dist = cv2.getTrackbarPos("Distance", "Result") | |
image_size = (frameWidth, frameHeight) | |
w, h = image_size | |
A1 = np.array([[1, 0, -w / 2], | |
[0, 1, -h / 2], | |
[0, 0, 0], | |
[0, 0, 1]], dtype=np.float32) | |
RX = np.array([[1, 0, 0, 0], | |
[0, math.cos(alpha), -math.sin(alpha), 0], | |
[0, math.sin(alpha), math.cos(alpha), 0], | |
[0, 0, 0, 1]], dtype=np.float32) | |
RY = np.array([[math.cos(beta), 0, -math.sin(beta), 0], | |
[0, 1, 0, 0], | |
[math.sin(beta), 0, math.cos(beta), 0], | |
[0, 0, 0, 1]], dtype=np.float32) | |
RZ = np.array([[math.cos(gamma), -math.sin(gamma), 0, 0], | |
[math.sin(gamma), math.cos(gamma), 0, 0], | |
[0, 0, 1, 0], | |
[0, 0, 0, 1]], dtype=np.float32) | |
R = np.dot(np.dot(RX, RY), RZ) | |
T = np.array([[1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, 1, dist], | |
[0, 0, 0, 1]], dtype=np.float32) | |
K = np.array([[focalLength, 0, w / 2, 0], | |
[0, focalLength, h / 2, 0], | |
[0, 0, 1, 0]], dtype=np.float32) | |
transformationMat = np.dot(np.dot(np.dot(K, T), R), A1) | |
ret, frame = capture.read() | |
if not ret: | |
return | |
destination = cv2.warpPerspective(frame, transformationMat, image_size, flags=cv2.INTER_CUBIC + cv2.WARP_INVERSE_MAP) | |
cv2.imshow("Result", destination) | |
frameWidth = 640 | |
frameHeight = 480 | |
capture = cv2.VideoCapture(filename) # Replace with your video file path | |
cv2.namedWindow("Result", cv2.WINDOW_NORMAL) | |
cv2.createTrackbar("Alpha", "Result", 90, 180, update_perspective) | |
cv2.createTrackbar("Beta", "Result", 90, 180, update_perspective) | |
cv2.createTrackbar("Gamma", "Result", 90, 180, update_perspective) | |
cv2.createTrackbar("f", "Result", 500, 2000, update_perspective) | |
cv2.createTrackbar("Distance", "Result", 500, 2000, update_perspective) | |
while True: | |
update_perspective(0) | |
if cv2.waitKey(1) & 0xFF == 27: # Press 'Esc' to exit | |
break | |
capture.release() | |
cv2.destroyAllWindows() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// OpenCV imports | |
#include <opencv2/imgproc/imgproc.hpp> | |
#include <opencv2/highgui/highgui.hpp> | |
// C++ imports | |
#include <iostream> | |
// namespaces | |
using namespace std; | |
using namespace cv; | |
#define PI 3.1415926 | |
int frameWidth = 640; | |
int frameHeight = 480; | |
/* | |
* This code illustrates bird's eye view perspective transformation using opencv | |
* Paper: Distance Determination for an Automobile Environment using Inverse Perspective Mapping in OpenCV | |
* Link to paper: https://www.researchgate.net/publication/224195999_Distance_determination_for_an_automobile_environment_using_Inverse_Perspective_Mapping_in_OpenCV | |
* Code taken from: http://www.aizac.info/birds-eye-view-homography-using-opencv/ | |
*/ | |
int main(int argc, char const *argv[]) { | |
if(argc < 2) { | |
cerr << "Usage: " << argv[0] << " /path/to/video/" << endl; | |
cout << "Exiting...." << endl; | |
return -1; | |
} | |
// get file name from the command line | |
string filename = argv[1]; | |
// capture object | |
VideoCapture capture(filename); | |
// mat container to receive images | |
Mat source, destination; | |
// check if capture was successful | |
if( !capture.isOpened()) throw "Error reading video"; | |
int alpha_ = 90, beta_ = 90, gamma_ = 90; | |
int f_ = 500, dist_ = 500; | |
namedWindow("Result", 1); | |
createTrackbar("Alpha", "Result", &alpha_, 180); | |
createTrackbar("Beta", "Result", &beta_, 180); | |
createTrackbar("Gamma", "Result", &gamma_, 180); | |
createTrackbar("f", "Result", &f_, 2000); | |
createTrackbar("Distance", "Result", &dist_, 2000); | |
while( true ) { | |
capture >> source; | |
resize(source, source,Size(frameWidth, frameHeight)); | |
double focalLength, dist, alpha, beta, gamma; | |
alpha =((double)alpha_ -90) * PI/180; | |
beta =((double)beta_ -90) * PI/180; | |
gamma =((double)gamma_ -90) * PI/180; | |
focalLength = (double)f_; | |
dist = (double)dist_; | |
Size image_size = source.size(); | |
double w = (double)image_size.width, h = (double)image_size.height; | |
// Projecion matrix 2D -> 3D | |
Mat A1 = (Mat_<float>(4, 3)<< | |
1, 0, -w/2, | |
0, 1, -h/2, | |
0, 0, 0, | |
0, 0, 1 ); | |
// Rotation matrices Rx, Ry, Rz | |
Mat RX = (Mat_<float>(4, 4) << | |
1, 0, 0, 0, | |
0, cos(alpha), -sin(alpha), 0, | |
0, sin(alpha), cos(alpha), 0, | |
0, 0, 0, 1 ); | |
Mat RY = (Mat_<float>(4, 4) << | |
cos(beta), 0, -sin(beta), 0, | |
0, 1, 0, 0, | |
sin(beta), 0, cos(beta), 0, | |
0, 0, 0, 1 ); | |
Mat RZ = (Mat_<float>(4, 4) << | |
cos(gamma), -sin(gamma), 0, 0, | |
sin(gamma), cos(gamma), 0, 0, | |
0, 0, 1, 0, | |
0, 0, 0, 1 ); | |
// R - rotation matrix | |
Mat R = RX * RY * RZ; | |
// T - translation matrix | |
Mat T = (Mat_<float>(4, 4) << | |
1, 0, 0, 0, | |
0, 1, 0, 0, | |
0, 0, 1, dist, | |
0, 0, 0, 1); | |
// K - intrinsic matrix | |
Mat K = (Mat_<float>(3, 4) << | |
focalLength, 0, w/2, 0, | |
0, focalLength, h/2, 0, | |
0, 0, 1, 0 | |
); | |
Mat transformationMat = K * (T * (R * A1)); | |
warpPerspective(source, destination, transformationMat, image_size, INTER_CUBIC | WARP_INVERSE_MAP); | |
imshow("Result", destination); | |
waitKey(100); | |
} | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I think you should take a look at this, I am still working on it, but this is worked to me.
https://stackoverflow.com/questions/48576087/birds-eye-view-perspective-transformation-from-camera-calibration-opencv-python
https://docs.opencv.org/3.4.0/d9/dab/tutorial_homography.html#tutorial_homography_Demo3