{{ message }}

Instantly share code, notes, and snippets.

# Guang Shi anyuzx

Last active Oct 24, 2019
setup.py for parallel Cython codes shown in the blog post
View pdist_cython_parallel.pyx
 # cython: language_level=3 import cython import numpy as np from cython.parallel import prange, parallel from libc.math cimport sqrt from libc.math cimport nearbyint @cython.boundscheck(False) @cython.wraparound(False)
Last active Oct 7, 2019
pdist_benchmark_pure_python
View pdist_benchmark_pure_python.ipynb
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Created Sep 29, 2019
C++ code for Pivot algorithm https://www.guangshi.io/posts/pivot-algorithm/
View pivot_algorithm.cpp
 // // This is a lattice random walk config generator using pivot algorithm. // can be self-avoid or not self-avoid // lattice_SAW(chain array, number of steps(monomers), step length(bond), self-avoid or no-self-avoid) // // Created by guangshi on 8/25/14. // Copyright (c) 2014 Guang Shi. All rights reserved. // #include
Last active Sep 24, 2019
A random walk example of using Pyodide
View random-walk-pyodide.js
 // dynamically load the script on demand class ScriptLoader { constructor(script) { this.script = script; this.scriptElement = document.createElement('script'); this.head = document.querySelector('head'); } load () { return new Promise((resolve, reject) => {
Last active Sep 23, 2019
Generate 2D random walk trajectory
View random_walk_2d.py
 import numpy as np def walk(n): # check if the number of steps is an integer if int(n) != n: print('number of steps should be an integer') return None # the initial position is (0,0) xy_0 = np.array([0.0, 0.0]) # generate displacements of each step
Last active Sep 19, 2019
View test.py
 import numpy as np x = np.random.rand(1000) y = np.random.rand(1000)
Last active Apr 26, 2018
View mdrnn_blog_block4.py
 def next_batch_nonlinear_map(bs, h, w, anisotropy=True): # ... same code ... y.append(np.dot(item, item)) # only changes here # ... same code ...
Created Jan 20, 2018
View mdrnn_blog_block3.py
 anisotropy = False learning_rate = 0.005 batch_size = 200 h = 10 w = 10 channels = 1 x = tf.placeholder(tf.float32, [batch_size, h, w, channels]) y = tf.placeholder(tf.float32, [batch_size, h, w, channels]) linear_map = np.random.rand(h,w)
Last active Nov 3, 2017
View pivot_algorithm_python.py
 import numpy as np import timeit from scipy.spatial.distance import cdist # define a dot product function used for the rotate operation def v_dot(a):return lambda b: np.dot(a,b) class lattice_SAW: def __init__(self,N,l0): self.N = N
Created Feb 19, 2017
extract pid from ps aux command
View extract_pid.md
`ps aux | grep name | grep -v grep`
`ps aux | grep name | grep -v grep | awk '{print \$2}'`