public
Last active

C# Suffix tree implementation based on Ukkonen's algorithm. Full explanation here: http://stackoverflow.com/questions/9452701/ukkonens-suffix-tree-algorithm-in-plain-english

  • Download Gist
0.suffixtree.cs
C#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
 
namespace SuffixTreeAlgorithm
{
public class SuffixTree
{
public char? CanonizationChar { get; set; }
public string Word { get; private set; }
private int CurrentSuffixStartIndex { get; set; }
private int CurrentSuffixEndIndex { get; set; }
private Node LastCreatedNodeInCurrentIteration { get; set; }
private int UnresolvedSuffixes { get; set; }
public Node RootNode { get; private set; }
private Node ActiveNode { get; set; }
private Edge ActiveEdge { get; set; }
private int DistanceIntoActiveEdge { get; set; }
private char LastCharacterOfCurrentSuffix { get; set; }
private int NextNodeNumber { get; set; }
private int NextEdgeNumber { get; set; }
 
public SuffixTree(string word)
{
Word = word;
RootNode = new Node(this);
ActiveNode = RootNode;
}
 
public event Action<SuffixTree> Changed;
private void TriggerChanged()
{
var handler = Changed;
if(handler != null)
handler(this);
}
 
public event Action<string, object[]> Message;
private void SendMessage(string format, params object[] args)
{
var handler = Message;
if(handler != null)
handler(format, args);
}
 
public static SuffixTree Create(string word, char canonizationChar = '$')
{
var tree = new SuffixTree(word);
tree.Build(canonizationChar);
return tree;
}
 
public void Build(char canonizationChar)
{
var n = Word.IndexOf(Word[Word.Length - 1]);
var mustCanonize = n < Word.Length - 1;
if(mustCanonize)
{
CanonizationChar = canonizationChar;
Word = string.Concat(Word, canonizationChar);
}
 
for(CurrentSuffixEndIndex = 0; CurrentSuffixEndIndex < Word.Length; CurrentSuffixEndIndex++)
{
SendMessage("=== ITERATION {0} ===", CurrentSuffixEndIndex);
LastCreatedNodeInCurrentIteration = null;
LastCharacterOfCurrentSuffix = Word[CurrentSuffixEndIndex];
 
for(CurrentSuffixStartIndex = CurrentSuffixEndIndex - UnresolvedSuffixes; CurrentSuffixStartIndex <= CurrentSuffixEndIndex; CurrentSuffixStartIndex++)
{
var wasImplicitlyAdded = !AddNextSuffix();
if(wasImplicitlyAdded)
{
UnresolvedSuffixes++;
break;
}
if(UnresolvedSuffixes > 0)
UnresolvedSuffixes--;
}
}
}
 
private bool AddNextSuffix()
{
var suffix = string.Concat(Word.Substring(CurrentSuffixStartIndex, CurrentSuffixEndIndex - CurrentSuffixStartIndex), "{", Word[CurrentSuffixEndIndex], "}");
SendMessage("The next suffix of '{0}' to add is '{1}' at indices {2},{3}", Word, suffix, CurrentSuffixStartIndex, CurrentSuffixEndIndex);
SendMessage(" => ActiveNode: {0}", ActiveNode);
SendMessage(" => ActiveEdge: {0}", ActiveEdge == null ? "none" : ActiveEdge.ToString());
SendMessage(" => DistanceIntoActiveEdge: {0}", DistanceIntoActiveEdge);
SendMessage(" => UnresolvedSuffixes: {0}", UnresolvedSuffixes);
if(ActiveEdge != null && DistanceIntoActiveEdge >= ActiveEdge.Length)
throw new Exception("BOUNDARY EXCEEDED");
 
if(ActiveEdge != null)
return AddCurrentSuffixToActiveEdge();
 
if(GetExistingEdgeAndSetAsActive())
return false;
 
ActiveNode.AddNewEdge();
TriggerChanged();
 
UpdateActivePointAfterAddingNewEdge();
return true;
}
 
private bool GetExistingEdgeAndSetAsActive()
{
Edge edge;
if(ActiveNode.Edges.TryGetValue(LastCharacterOfCurrentSuffix, out edge))
{
SendMessage("Existing edge for {0} starting with '{1}' found. Values adjusted to:", ActiveNode, LastCharacterOfCurrentSuffix);
ActiveEdge = edge;
DistanceIntoActiveEdge = 1;
TriggerChanged();
 
NormalizeActivePointIfNowAtOrBeyondEdgeBoundary(ActiveEdge.StartIndex);
SendMessage(" => ActiveEdge is now: {0}", ActiveEdge);
SendMessage(" => DistanceIntoActiveEdge is now: {0}", DistanceIntoActiveEdge);
SendMessage(" => UnresolvedSuffixes is now: {0}", UnresolvedSuffixes);
 
return true;
}
SendMessage("Existing edge for {0} starting with '{1}' not found", ActiveNode, LastCharacterOfCurrentSuffix);
return false;
}
 
private bool AddCurrentSuffixToActiveEdge()
{
var nextCharacterOnEdge = Word[ActiveEdge.StartIndex + DistanceIntoActiveEdge];
if(nextCharacterOnEdge == LastCharacterOfCurrentSuffix)
{
SendMessage("The next character on the current edge is '{0}' (suffix added implicitly)", LastCharacterOfCurrentSuffix);
DistanceIntoActiveEdge++;
TriggerChanged();
 
SendMessage(" => DistanceIntoActiveEdge is now: {0}", DistanceIntoActiveEdge);
NormalizeActivePointIfNowAtOrBeyondEdgeBoundary(ActiveEdge.StartIndex);
 
return false;
}
 
SplitActiveEdge();
ActiveEdge.Tail.AddNewEdge();
TriggerChanged();
 
UpdateActivePointAfterAddingNewEdge();
 
return true;
}
 
private void UpdateActivePointAfterAddingNewEdge()
{
if(ReferenceEquals(ActiveNode, RootNode))
{
if(DistanceIntoActiveEdge > 0)
{
SendMessage("New edge has been added and the active node is root. The active edge will now be updated.");
DistanceIntoActiveEdge--;
SendMessage(" => DistanceIntoActiveEdge decremented to: {0}", DistanceIntoActiveEdge);
ActiveEdge = DistanceIntoActiveEdge == 0 ? null : ActiveNode.Edges[Word[CurrentSuffixStartIndex + 1]];
SendMessage(" => ActiveEdge is now: {0}", ActiveEdge);
TriggerChanged();
 
NormalizeActivePointIfNowAtOrBeyondEdgeBoundary(CurrentSuffixStartIndex + 1);
}
}
else
UpdateActivePointToLinkedNodeOrRoot();
}
 
private void NormalizeActivePointIfNowAtOrBeyondEdgeBoundary(int firstIndexOfOriginalActiveEdge)
{
var walkDistance = 0;
while(ActiveEdge != null && DistanceIntoActiveEdge >= ActiveEdge.Length)
{
SendMessage("Active point is at or beyond edge boundary and will be moved until it falls inside an edge boundary");
DistanceIntoActiveEdge -= ActiveEdge.Length;
ActiveNode = ActiveEdge.Tail ?? RootNode;
if(DistanceIntoActiveEdge == 0)
ActiveEdge = null;
else
{
walkDistance += ActiveEdge.Length;
var c = Word[firstIndexOfOriginalActiveEdge + walkDistance];
ActiveEdge = ActiveNode.Edges[c];
}
TriggerChanged();
}
}
 
private void SplitActiveEdge()
{
ActiveEdge = ActiveEdge.SplitAtIndex(ActiveEdge.StartIndex + DistanceIntoActiveEdge);
SendMessage(" => ActiveEdge is now: {0}", ActiveEdge);
TriggerChanged();
if(LastCreatedNodeInCurrentIteration != null)
{
LastCreatedNodeInCurrentIteration.LinkedNode = ActiveEdge.Tail;
SendMessage(" => Connected {0} to {1}", LastCreatedNodeInCurrentIteration, ActiveEdge.Tail);
TriggerChanged();
}
LastCreatedNodeInCurrentIteration = ActiveEdge.Tail;
}
 
private void UpdateActivePointToLinkedNodeOrRoot()
{
SendMessage("The linked node for active node {0} is {1}", ActiveNode, ActiveNode.LinkedNode == null ? "[null]" : ActiveNode.LinkedNode.ToString());
if(ActiveNode.LinkedNode != null)
{
ActiveNode = ActiveNode.LinkedNode;
SendMessage(" => ActiveNode is now: {0}", ActiveNode);
}
else
{
ActiveNode = RootNode;
SendMessage(" => ActiveNode is now ROOT", ActiveNode);
}
TriggerChanged();
 
if(ActiveEdge != null)
{
var firstIndexOfOriginalActiveEdge = ActiveEdge.StartIndex;
ActiveEdge = ActiveNode.Edges[Word[ActiveEdge.StartIndex]];
TriggerChanged();
NormalizeActivePointIfNowAtOrBeyondEdgeBoundary(firstIndexOfOriginalActiveEdge);
}
}
 
public string RenderTree()
{
var writer = new StringWriter();
RootNode.RenderTree(writer, "");
return writer.ToString();
}
 
public string WriteDotGraph()
{
var sb = new StringBuilder();
sb.AppendLine("digraph {");
sb.AppendLine("rankdir = LR;");
sb.AppendLine("edge [arrowsize=0.5,fontsize=11];");
for(var i = 0; i < NextNodeNumber; i++)
sb.AppendFormat("node{0} [label=\"{0}\",style=filled,fillcolor={1},shape=circle,width=.1,height=.1,fontsize=11,margin=0.01];",
i, ActiveNode.NodeNumber == i ? "cyan" : "lightgrey").AppendLine();
RootNode.WriteDotGraph(sb);
sb.AppendLine("}");
return sb.ToString();
}
 
public HashSet<string> ExtractAllSubstrings()
{
var set = new HashSet<string>();
ExtractAllSubstrings("", set, RootNode);
return set;
}
 
private void ExtractAllSubstrings(string str, HashSet<string> set, Node node)
{
foreach(var edge in node.Edges.Values)
{
var edgeStr = edge.StringWithoutCanonizationChar;
var edgeLength = !edge.EndIndex.HasValue && CanonizationChar.HasValue ? edge.Length - 1 : edge.Length; // assume tailing canonization char
for(var length = 1; length <= edgeLength; length++)
set.Add(string.Concat(str, edgeStr.Substring(0, length)));
if(edge.Tail != null)
ExtractAllSubstrings(string.Concat(str, edge.StringWithoutCanonizationChar), set, edge.Tail);
}
}
 
public List<string> ExtractSubstringsForIndexing(int? maxLength = null)
{
var list = new List<string>();
ExtractSubstringsForIndexing("", list, maxLength ?? Word.Length, RootNode);
return list;
}
 
private void ExtractSubstringsForIndexing(string str, List<string> list, int len, Node node)
{
foreach(var edge in node.Edges.Values)
{
var newstr = string.Concat(str, Word.Substring(edge.StartIndex, Math.Min(len, edge.Length)));
if(len > edge.Length && edge.Tail != null)
ExtractSubstringsForIndexing(newstr, list, len - edge.Length, edge.Tail);
else
list.Add(newstr);
}
}
 
public class Edge
{
private readonly SuffixTree _tree;
 
public Edge(SuffixTree tree, Node head)
{
_tree = tree;
Head = head;
StartIndex = tree.CurrentSuffixEndIndex;
EdgeNumber = _tree.NextEdgeNumber++;
}
 
public Node Head { get; private set; }
public Node Tail { get; private set; }
public int StartIndex { get; private set; }
public int? EndIndex { get; set; }
public int EdgeNumber { get; private set; }
public int Length { get { return (EndIndex ?? _tree.Word.Length - 1) - StartIndex + 1; } }
 
public Edge SplitAtIndex(int index)
{
_tree.SendMessage("Splitting edge {0} at index {1} ('{2}')", this, index, _tree.Word[index]);
var newEdge = new Edge(_tree, Head);
var newNode = new Node(_tree);
newEdge.Tail = newNode;
newEdge.StartIndex = StartIndex;
newEdge.EndIndex = index - 1;
Head = newNode;
StartIndex = index;
newNode.Edges.Add(_tree.Word[StartIndex], this);
newEdge.Head.Edges[_tree.Word[newEdge.StartIndex]] = newEdge;
_tree.SendMessage(" => Hierarchy is now: {0} --> {1} --> {2} --> {3}", newEdge.Head, newEdge, newNode, this);
return newEdge;
}
 
public override string ToString()
{
return string.Concat(_tree.Word.Substring(StartIndex, (EndIndex ?? _tree.CurrentSuffixEndIndex) - StartIndex + 1), "(",
StartIndex, ",", EndIndex.HasValue ? EndIndex.ToString() : "#", ")");
}
 
public string StringWithoutCanonizationChar
{
get { return _tree.Word.Substring(StartIndex, (EndIndex ?? _tree.CurrentSuffixEndIndex - (_tree.CanonizationChar.HasValue ? 1 : 0)) - StartIndex + 1); }
}
 
public string String
{
get { return _tree.Word.Substring(StartIndex, (EndIndex ?? _tree.CurrentSuffixEndIndex) - StartIndex + 1); }
}
 
public void RenderTree(TextWriter writer, string prefix, int maxEdgeLength)
{
var strEdge = _tree.Word.Substring(StartIndex, (EndIndex ?? _tree.CurrentSuffixEndIndex) - StartIndex + 1);
writer.Write(strEdge);
if(Tail == null)
writer.WriteLine();
else
{
var line = new string(RenderChars.HorizontalLine, maxEdgeLength - strEdge.Length + 1);
writer.Write(line);
Tail.RenderTree(writer, string.Concat(prefix, new string(' ', strEdge.Length + line.Length)));
}
}
 
public void WriteDotGraph(StringBuilder sb)
{
if(Tail == null)
sb.AppendFormat("leaf{0} [label=\"\",shape=point]", EdgeNumber).AppendLine();
string label, weight, color;
if(_tree.ActiveEdge != null && ReferenceEquals(this, _tree.ActiveEdge))
{
if(_tree.ActiveEdge.Length == 0)
label = "";
else if(_tree.DistanceIntoActiveEdge > Length)
label = "<<FONT COLOR=\"red\" SIZE=\"11\"><B>" + String + "</B> (" + _tree.DistanceIntoActiveEdge + ")</FONT>>";
else if(_tree.DistanceIntoActiveEdge == Length)
label = "<<FONT COLOR=\"red\" SIZE=\"11\">" + String + "</FONT>>";
else if(_tree.DistanceIntoActiveEdge > 0)
label = "<<TABLE BORDER=\"0\" CELLPADDING=\"0\" CELLSPACING=\"0\"><TR><TD><FONT COLOR=\"blue\"><B>" + String.Substring(0, _tree.DistanceIntoActiveEdge) + "</B></FONT></TD><TD COLOR=\"black\">" + String.Substring(_tree.DistanceIntoActiveEdge) + "</TD></TR></TABLE>>";
else
label = "\"" + String + "\"";
color = "blue";
weight = "5";
}
else
{
label = "\"" + String + "\"";
color = "black";
weight = "3";
}
var tail = Tail == null ? "leaf" + EdgeNumber : "node" + Tail.NodeNumber;
sb.AppendFormat("node{0} -> {1} [label={2},weight={3},color={4},size=11]", Head.NodeNumber, tail, label, weight, color).AppendLine();
if(Tail != null)
Tail.WriteDotGraph(sb);
}
}
 
public class Node
{
private readonly SuffixTree _tree;
 
public Node(SuffixTree tree)
{
_tree = tree;
Edges = new Dictionary<char, Edge>();
NodeNumber = _tree.NextNodeNumber++;
}
 
public Dictionary<char, Edge> Edges { get; private set; }
public Node LinkedNode { get; set; }
public int NodeNumber { get; private set; }
 
public void AddNewEdge()
{
_tree.SendMessage("Adding new edge to {0}", this);
var edge = new Edge(_tree, this);
Edges.Add(_tree.Word[_tree.CurrentSuffixEndIndex], edge);
_tree.SendMessage(" => {0} --> {1}", this, edge);
}
 
public void RenderTree(TextWriter writer, string prefix)
{
var strNode = string.Concat("(", NodeNumber.ToString(new string('0', _tree.NextNodeNumber.ToString().Length)), ")");
writer.Write(strNode);
var edges = Edges.Select(kvp => kvp.Value).OrderBy(e => _tree.Word[e.StartIndex]).ToArray();
if(edges.Any())
{
var prefixWithNodePadding = prefix + new string(' ', strNode.Length);
var maxEdgeLength = edges.Max(e => (e.EndIndex ?? _tree.CurrentSuffixEndIndex) - e.StartIndex + 1);
for(var i = 0; i < edges.Length; i++)
{
char connector, extender = ' ';
if(i == 0)
{
if(edges.Length > 1)
{
connector = RenderChars.TJunctionDown;
extender = RenderChars.VerticalLine;
}
else
connector = RenderChars.HorizontalLine;
}
else
{
writer.Write(prefixWithNodePadding);
if(i == edges.Length - 1)
connector = RenderChars.CornerRight;
else
{
connector = RenderChars.TJunctionRight;
extender = RenderChars.VerticalLine;
}
}
writer.Write(string.Concat(connector, RenderChars.HorizontalLine));
var newPrefix = string.Concat(prefixWithNodePadding, extender, ' ');
edges[i].RenderTree(writer, newPrefix, maxEdgeLength);
}
}
}
 
public override string ToString()
{
return string.Concat("node #", NodeNumber);
}
 
public void WriteDotGraph(StringBuilder sb)
{
if(LinkedNode != null)
sb.AppendFormat("node{0} -> node{1} [label=\"\",weight=.01,style=dotted]", NodeNumber, LinkedNode.NodeNumber).AppendLine();
foreach(var edge in Edges.Values)
edge.WriteDotGraph(sb);
}
}
 
public static class RenderChars
{
public const char TJunctionDown = '┬';
public const char HorizontalLine = '─';
public const char VerticalLine = '│';
public const char TJunctionRight = '├';
public const char CornerRight = '└';
}
}
}
1.test.cs
C#
1 2 3 4 5 6 7 8 9
static void Main()
{
SuffixTree.Create("abcabxabcd");
SuffixTree.Create("abcdefabxybcdmnabcdex");
SuffixTree.Create("abcadak");
SuffixTree.Create("dedododeeodo");
SuffixTree.Create("ooooooooo");
SuffixTree.Create("mississippi");
}
2.output.abcabxabcd.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
=== ITERATION 0 ===
The next suffix of 'abcabxabcd' to add is '{a}' at indices 0,0
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'a' not found
Adding new edge to node #0
=> node #0 --> a(0,#)
 
(0)──a
 
=== ITERATION 1 ===
The next suffix of 'abcabxabcd' to add is '{b}' at indices 1,1
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'b' not found
Adding new edge to node #0
=> node #0 --> b(1,#)
 
(0)┬─ab
└─b
 
=== ITERATION 2 ===
The next suffix of 'abcabxabcd' to add is '{c}' at indices 2,2
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'c' not found
Adding new edge to node #0
=> node #0 --> c(2,#)
 
(0)┬─abc
├─bc
└─c
 
=== ITERATION 3 ===
The next suffix of 'abcabxabcd' to add is '{a}' at indices 3,3
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'a' found. Values adjusted to:
=> ActiveEdge is now: abca(0,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─abca
├─bca
└─ca
 
=== ITERATION 4 ===
The next suffix of 'abcabxabcd' to add is 'a{b}' at indices 3,4
=> ActiveNode: node #0
=> ActiveEdge: abcab(0,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
The next character on the current edge is 'b' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 2
 
(0)┬─abcab
├─bcab
└─cab
 
=== ITERATION 5 ===
The next suffix of 'abcabxabcd' to add is 'ab{x}' at indices 3,5
=> ActiveNode: node #0
=> ActiveEdge: abcabx(0,#)
=> DistanceIntoActiveEdge: 2
=> UnresolvedSuffixes: 2
Splitting edge abcabx(0,#) at index 2 ('c')
=> Hierarchy is now: node #0 --> ab(0,1) --> node #1 --> cabx(2,#)
=> ActiveEdge is now: ab(0,1)
Adding new edge to node #1
=> node #1 --> x(5,#)
 
(0)┬─ab────(1)┬─cabx
│ └─x
├─bcabx
└─cabx
 
The next suffix of 'abcabxabcd' to add is 'b{x}' at indices 4,5
=> ActiveNode: node #0
=> ActiveEdge: bcabx(1,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge bcabx(1,#) at index 2 ('c')
=> Hierarchy is now: node #0 --> b(1,1) --> node #2 --> cabx(2,#)
=> ActiveEdge is now: b(1,1)
=> Connected node #1 to node #2
Adding new edge to node #2
=> node #2 --> x(5,#)
 
(0)┬─ab───(1)┬─cabx
│ └─x
├─b────(2)┬─cabx
│ └─x
└─cabx
 
The next suffix of 'abcabxabcd' to add is '{x}' at indices 5,5
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'x' not found
Adding new edge to node #0
=> node #0 --> x(5,#)
 
(0)┬─ab───(1)┬─cabx
│ └─x
├─b────(2)┬─cabx
│ └─x
├─cabx
└─x
 
=== ITERATION 6 ===
The next suffix of 'abcabxabcd' to add is '{a}' at indices 6,6
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'a' found. Values adjusted to:
=> ActiveEdge is now: ab(0,1)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─ab────(1)┬─cabxa
│ └─xa
├─b─────(2)┬─cabxa
│ └─xa
├─cabxa
└─xa
 
=== ITERATION 7 ===
The next suffix of 'abcabxabcd' to add is 'a{b}' at indices 6,7
=> ActiveNode: node #0
=> ActiveEdge: ab(0,1)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
The next character on the current edge is 'b' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 2
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
 
(0)┬─ab─────(1)┬─cabxab
│ └─xab
├─b──────(2)┬─cabxab
│ └─xab
├─cabxab
└─xab
 
=== ITERATION 8 ===
The next suffix of 'abcabxabcd' to add is 'ab{c}' at indices 6,8
=> ActiveNode: node #1
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 2
Existing edge for node #1 starting with 'c' found. Values adjusted to:
=> ActiveEdge is now: cabxabc(2,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 2
 
(0)┬─ab──────(1)┬─cabxabc
│ └─xabc
├─b───────(2)┬─cabxabc
│ └─xabc
├─cabxabc
└─xabc
 
=== ITERATION 9 ===
The next suffix of 'abcabxabcd' to add is 'abc{d}' at indices 6,9
=> ActiveNode: node #1
=> ActiveEdge: cabxabcd(2,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 3
Splitting edge cabxabcd(2,#) at index 3 ('a')
=> Hierarchy is now: node #1 --> c(2,2) --> node #3 --> abxabcd(3,#)
=> ActiveEdge is now: c(2,2)
Adding new edge to node #3
=> node #3 --> d(9,#)
The linked node for active node node #1 is node #2
=> ActiveNode is now: node #2
 
(0)┬─ab───────(1)┬─c─────(3)┬─abxabcd
│ │ └─d
│ └─xabcd
├─b────────(2)┬─cabxabcd
│ └─xabcd
├─cabxabcd
└─xabcd
 
The next suffix of 'abcabxabcd' to add is 'bc{d}' at indices 7,9
=> ActiveNode: node #2
=> ActiveEdge: cabxabcd(2,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 2
Splitting edge cabxabcd(2,#) at index 3 ('a')
=> Hierarchy is now: node #2 --> c(2,2) --> node #4 --> abxabcd(3,#)
=> ActiveEdge is now: c(2,2)
=> Connected node #3 to node #4
Adding new edge to node #4
=> node #4 --> d(9,#)
The linked node for active node node #2 is [null]
 
(0)┬─ab───────(1)┬─c─────(3)┬─abxabcd
│ │ └─d
│ └─xabcd
├─b────────(2)┬─c─────(4)┬─abxabcd
│ │ └─d
│ └─xabcd
├─cabxabcd
└─xabcd
 
The next suffix of 'abcabxabcd' to add is 'c{d}' at indices 8,9
=> ActiveNode: node #0
=> ActiveEdge: cabxabcd(2,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge cabxabcd(2,#) at index 3 ('a')
=> Hierarchy is now: node #0 --> c(2,2) --> node #5 --> abxabcd(3,#)
=> ActiveEdge is now: c(2,2)
=> Connected node #4 to node #5
Adding new edge to node #5
=> node #5 --> d(9,#)
 
(0)┬─ab────(1)┬─c─────(3)┬─abxabcd
│ │ └─d
│ └─xabcd
├─b─────(2)┬─c─────(4)┬─abxabcd
│ │ └─d
│ └─xabcd
├─c─────(5)┬─abxabcd
│ └─d
└─xabcd
 
The next suffix of 'abcabxabcd' to add is '{d}' at indices 9,9
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'd' not found
Adding new edge to node #0
=> node #0 --> d(9,#)
 
(0)┬─ab────(1)┬─c─────(3)┬─abxabcd
│ │ └─d
│ └─xabcd
├─b─────(2)┬─c─────(4)┬─abxabcd
│ │ └─d
│ └─xabcd
├─c─────(5)┬─abxabcd
│ └─d
├─d
└─xabcd
3.output.abcdefabxybcdmnabcdex.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
=== ITERATION 0 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{a}' at indices 0,0
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'a' not found
Adding new edge to node #0
=> node #0 --> a(0,#)
 
(0)──a
 
=== ITERATION 1 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{b}' at indices 1,1
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'b' not found
Adding new edge to node #0
=> node #0 --> b(1,#)
 
(0)┬─ab
└─b
 
=== ITERATION 2 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{c}' at indices 2,2
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'c' not found
Adding new edge to node #0
=> node #0 --> c(2,#)
 
(0)┬─abc
├─bc
└─c
 
=== ITERATION 3 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{d}' at indices 3,3
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'd' not found
Adding new edge to node #0
=> node #0 --> d(3,#)
 
(0)┬─abcd
├─bcd
├─cd
└─d
 
=== ITERATION 4 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{e}' at indices 4,4
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'e' not found
Adding new edge to node #0
=> node #0 --> e(4,#)
 
(0)┬─abcde
├─bcde
├─cde
├─de
└─e
 
=== ITERATION 5 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{f}' at indices 5,5
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'f' not found
Adding new edge to node #0
=> node #0 --> f(5,#)
 
(0)┬─abcdef
├─bcdef
├─cdef
├─def
├─ef
└─f
 
=== ITERATION 6 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{a}' at indices 6,6
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'a' found. Values adjusted to:
=> ActiveEdge is now: abcdefa(0,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─abcdefa
├─bcdefa
├─cdefa
├─defa
├─efa
└─fa
 
=== ITERATION 7 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'a{b}' at indices 6,7
=> ActiveNode: node #0
=> ActiveEdge: abcdefab(0,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
The next character on the current edge is 'b' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 2
 
(0)┬─abcdefab
├─bcdefab
├─cdefab
├─defab
├─efab
└─fab
 
=== ITERATION 8 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'ab{x}' at indices 6,8
=> ActiveNode: node #0
=> ActiveEdge: abcdefabx(0,#)
=> DistanceIntoActiveEdge: 2
=> UnresolvedSuffixes: 2
Splitting edge abcdefabx(0,#) at index 2 ('c')
=> Hierarchy is now: node #0 --> ab(0,1) --> node #1 --> cdefabx(2,#)
=> ActiveEdge is now: ab(0,1)
Adding new edge to node #1
=> node #1 --> x(8,#)
 
(0)┬─ab───────(1)┬─cdefabx
│ └─x
├─bcdefabx
├─cdefabx
├─defabx
├─efabx
└─fabx
 
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'b{x}' at indices 7,8
=> ActiveNode: node #0
=> ActiveEdge: bcdefabx(1,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge bcdefabx(1,#) at index 2 ('c')
=> Hierarchy is now: node #0 --> b(1,1) --> node #2 --> cdefabx(2,#)
=> ActiveEdge is now: b(1,1)
=> Connected node #1 to node #2
Adding new edge to node #2
=> node #2 --> x(8,#)
 
(0)┬─ab──────(1)┬─cdefabx
│ └─x
├─b───────(2)┬─cdefabx
│ └─x
├─cdefabx
├─defabx
├─efabx
└─fabx
 
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{x}' at indices 8,8
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'x' not found
Adding new edge to node #0
=> node #0 --> x(8,#)
 
(0)┬─ab──────(1)┬─cdefabx
│ └─x
├─b───────(2)┬─cdefabx
│ └─x
├─cdefabx
├─defabx
├─efabx
├─fabx
└─x
 
=== ITERATION 9 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{y}' at indices 9,9
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'y' not found
Adding new edge to node #0
=> node #0 --> y(9,#)
 
(0)┬─ab───────(1)┬─cdefabxy
│ └─xy
├─b────────(2)┬─cdefabxy
│ └─xy
├─cdefabxy
├─defabxy
├─efabxy
├─fabxy
├─xy
└─y
 
=== ITERATION 10 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{b}' at indices 10,10
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'b' found. Values adjusted to:
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
=> ActiveEdge is now:
=> DistanceIntoActiveEdge is now: 0
=> UnresolvedSuffixes is now: 0
 
(0)┬─ab────────(1)┬─cdefabxyb
│ └─xyb
├─b─────────(2)┬─cdefabxyb
│ └─xyb
├─cdefabxyb
├─defabxyb
├─efabxyb
├─fabxyb
├─xyb
└─yb
 
=== ITERATION 11 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'b{c}' at indices 10,11
=> ActiveNode: node #2
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 1
Existing edge for node #2 starting with 'c' found. Values adjusted to:
=> ActiveEdge is now: cdefabxybc(2,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 1
 
(0)┬─ab─────────(1)┬─cdefabxybc
│ └─xybc
├─b──────────(2)┬─cdefabxybc
│ └─xybc
├─cdefabxybc
├─defabxybc
├─efabxybc
├─fabxybc
├─xybc
└─ybc
 
=== ITERATION 12 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'bc{d}' at indices 10,12
=> ActiveNode: node #2
=> ActiveEdge: cdefabxybcd(2,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 2
The next character on the current edge is 'd' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 2
 
(0)┬─ab──────────(1)┬─cdefabxybcd
│ └─xybcd
├─b───────────(2)┬─cdefabxybcd
│ └─xybcd
├─cdefabxybcd
├─defabxybcd
├─efabxybcd
├─fabxybcd
├─xybcd
└─ybcd
 
=== ITERATION 13 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'bcd{m}' at indices 10,13
=> ActiveNode: node #2
=> ActiveEdge: cdefabxybcdm(2,#)
=> DistanceIntoActiveEdge: 2
=> UnresolvedSuffixes: 3
Splitting edge cdefabxybcdm(2,#) at index 4 ('e')
=> Hierarchy is now: node #2 --> cd(2,3) --> node #3 --> efabxybcdm(4,#)
=> ActiveEdge is now: cd(2,3)
Adding new edge to node #3
=> node #3 --> m(13,#)
The linked node for active node node #2 is [null]
 
(0)┬─ab───────────(1)┬─cdefabxybcdm
│ └─xybcdm
├─b────────────(2)┬─cd─────(3)┬─efabxybcdm
│ │ └─m
│ └─xybcdm
├─cdefabxybcdm
├─defabxybcdm
├─efabxybcdm
├─fabxybcdm
├─xybcdm
└─ybcdm
 
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'cd{m}' at indices 11,13
=> ActiveNode: node #0
=> ActiveEdge: cdefabxybcdm(2,#)
=> DistanceIntoActiveEdge: 2
=> UnresolvedSuffixes: 2
Splitting edge cdefabxybcdm(2,#) at index 4 ('e')
=> Hierarchy is now: node #0 --> cd(2,3) --> node #4 --> efabxybcdm(4,#)
=> ActiveEdge is now: cd(2,3)
=> Connected node #3 to node #4
Adding new edge to node #4
=> node #4 --> m(13,#)
 
(0)┬─ab──────────(1)┬─cdefabxybcdm
│ └─xybcdm
├─b───────────(2)┬─cd─────(3)┬─efabxybcdm
│ │ └─m
│ └─xybcdm
├─cd──────────(4)┬─efabxybcdm
│ └─m
├─defabxybcdm
├─efabxybcdm
├─fabxybcdm
├─xybcdm
└─ybcdm
 
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'd{m}' at indices 12,13
=> ActiveNode: node #0
=> ActiveEdge: defabxybcdm(3,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge defabxybcdm(3,#) at index 4 ('e')
=> Hierarchy is now: node #0 --> d(3,3) --> node #5 --> efabxybcdm(4,#)
=> ActiveEdge is now: d(3,3)
=> Connected node #4 to node #5
Adding new edge to node #5
=> node #5 --> m(13,#)
 
(0)┬─ab─────────(1)┬─cdefabxybcdm
│ └─xybcdm
├─b──────────(2)┬─cd─────(3)┬─efabxybcdm
│ │ └─m
│ └─xybcdm
├─cd─────────(4)┬─efabxybcdm
│ └─m
├─d──────────(5)┬─efabxybcdm
│ └─m
├─efabxybcdm
├─fabxybcdm
├─xybcdm
└─ybcdm
 
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{m}' at indices 13,13
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'm' not found
Adding new edge to node #0
=> node #0 --> m(13,#)
 
(0)┬─ab─────────(1)┬─cdefabxybcdm
│ └─xybcdm
├─b──────────(2)┬─cd─────(3)┬─efabxybcdm
│ │ └─m
│ └─xybcdm
├─cd─────────(4)┬─efabxybcdm
│ └─m
├─d──────────(5)┬─efabxybcdm
│ └─m
├─efabxybcdm
├─fabxybcdm
├─m
├─xybcdm
└─ybcdm
 
=== ITERATION 14 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{n}' at indices 14,14
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'n' not found
Adding new edge to node #0
=> node #0 --> n(14,#)
 
(0)┬─ab──────────(1)┬─cdefabxybcdmn
│ └─xybcdmn
├─b───────────(2)┬─cd──────(3)┬─efabxybcdmn
│ │ └─mn
│ └─xybcdmn
├─cd──────────(4)┬─efabxybcdmn
│ └─mn
├─d───────────(5)┬─efabxybcdmn
│ └─mn
├─efabxybcdmn
├─fabxybcdmn
├─mn
├─n
├─xybcdmn
└─ybcdmn
 
=== ITERATION 15 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{a}' at indices 15,15
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'a' found. Values adjusted to:
=> ActiveEdge is now: ab(0,1)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─ab───────────(1)┬─cdefabxybcdmna
│ └─xybcdmna
├─b────────────(2)┬─cd───────(3)┬─efabxybcdmna
│ │ └─mna
│ └─xybcdmna
├─cd───────────(4)┬─efabxybcdmna
│ └─mna
├─d────────────(5)┬─efabxybcdmna
│ └─mna
├─efabxybcdmna
├─fabxybcdmna
├─mna
├─na
├─xybcdmna
└─ybcdmna
 
=== ITERATION 16 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'a{b}' at indices 15,16
=> ActiveNode: node #0
=> ActiveEdge: ab(0,1)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
The next character on the current edge is 'b' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 2
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
 
(0)┬─ab────────────(1)┬─cdefabxybcdmnab
│ └─xybcdmnab
├─b─────────────(2)┬─cd────────(3)┬─efabxybcdmnab
│ │ └─mnab
│ └─xybcdmnab
├─cd────────────(4)┬─efabxybcdmnab
│ └─mnab
├─d─────────────(5)┬─efabxybcdmnab
│ └─mnab
├─efabxybcdmnab
├─fabxybcdmnab
├─mnab
├─nab
├─xybcdmnab
└─ybcdmnab
 
=== ITERATION 17 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'ab{c}' at indices 15,17
=> ActiveNode: node #1
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 2
Existing edge for node #1 starting with 'c' found. Values adjusted to:
=> ActiveEdge is now: cdefabxybcdmnabc(2,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 2
 
(0)┬─ab─────────────(1)┬─cdefabxybcdmnabc
│ └─xybcdmnabc
├─b──────────────(2)┬─cd─────────(3)┬─efabxybcdmnabc
│ │ └─mnabc
│ └─xybcdmnabc
├─cd─────────────(4)┬─efabxybcdmnabc
│ └─mnabc
├─d──────────────(5)┬─efabxybcdmnabc
│ └─mnabc
├─efabxybcdmnabc
├─fabxybcdmnabc
├─mnabc
├─nabc
├─xybcdmnabc
└─ybcdmnabc
 
=== ITERATION 18 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'abc{d}' at indices 15,18
=> ActiveNode: node #1
=> ActiveEdge: cdefabxybcdmnabcd(2,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 3
The next character on the current edge is 'd' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 2
 
(0)┬─ab──────────────(1)┬─cdefabxybcdmnabcd
│ └─xybcdmnabcd
├─b───────────────(2)┬─cd──────────(3)┬─efabxybcdmnabcd
│ │ └─mnabcd
│ └─xybcdmnabcd
├─cd──────────────(4)┬─efabxybcdmnabcd
│ └─mnabcd
├─d───────────────(5)┬─efabxybcdmnabcd
│ └─mnabcd
├─efabxybcdmnabcd
├─fabxybcdmnabcd
├─mnabcd
├─nabcd
├─xybcdmnabcd
└─ybcdmnabcd
 
=== ITERATION 19 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'abcd{e}' at indices 15,19
=> ActiveNode: node #1
=> ActiveEdge: cdefabxybcdmnabcde(2,#)
=> DistanceIntoActiveEdge: 2
=> UnresolvedSuffixes: 4
The next character on the current edge is 'e' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 3
 
(0)┬─ab───────────────(1)┬─cdefabxybcdmnabcde
│ └─xybcdmnabcde
├─b────────────────(2)┬─cd───────────(3)┬─efabxybcdmnabcde
│ │ └─mnabcde
│ └─xybcdmnabcde
├─cd───────────────(4)┬─efabxybcdmnabcde
│ └─mnabcde
├─d────────────────(5)┬─efabxybcdmnabcde
│ └─mnabcde
├─efabxybcdmnabcde
├─fabxybcdmnabcde
├─mnabcde
├─nabcde
├─xybcdmnabcde
└─ybcdmnabcde
 
=== ITERATION 20 ===
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'abcde{x}' at indices 15,20
=> ActiveNode: node #1
=> ActiveEdge: cdefabxybcdmnabcdex(2,#)
=> DistanceIntoActiveEdge: 3
=> UnresolvedSuffixes: 5
Splitting edge cdefabxybcdmnabcdex(2,#) at index 5 ('f')
=> Hierarchy is now: node #1 --> cde(2,4) --> node #6 --> fabxybcdmnabcdex(5,#)
=> ActiveEdge is now: cde(2,4)
Adding new edge to node #6
=> node #6 --> x(20,#)
The linked node for active node node #1 is node #2
=> ActiveNode is now: node #2
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
 
(0)┬─ab────────────────(1)┬─cde───────────(6)┬─fabxybcdmnabcdex
│ │ └─x
│ └─xybcdmnabcdex
├─b─────────────────(2)┬─cd────────────(3)┬─efabxybcdmnabcdex
│ │ └─mnabcdex
│ └─xybcdmnabcdex
├─cd────────────────(4)┬─efabxybcdmnabcdex
│ └─mnabcdex
├─d─────────────────(5)┬─efabxybcdmnabcdex
│ └─mnabcdex
├─efabxybcdmnabcdex
├─fabxybcdmnabcdex
├─mnabcdex
├─nabcdex
├─xybcdmnabcdex
└─ybcdmnabcdex
 
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'bcde{x}' at indices 16,20
=> ActiveNode: node #3
=> ActiveEdge: efabxybcdmnabcdex(4,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 4
Splitting edge efabxybcdmnabcdex(4,#) at index 5 ('f')
=> Hierarchy is now: node #3 --> e(4,4) --> node #7 --> fabxybcdmnabcdex(5,#)
=> ActiveEdge is now: e(4,4)
=> Connected node #6 to node #7
Adding new edge to node #7
=> node #7 --> x(20,#)
The linked node for active node node #3 is node #4
=> ActiveNode is now: node #4
 
(0)┬─ab────────────────(1)┬─cde───────────(6)┬─fabxybcdmnabcdex
│ │ └─x
│ └─xybcdmnabcdex
├─b─────────────────(2)┬─cd────────────(3)┬─e────────(7)┬─fabxybcdmnabcdex
│ │ │ └─x
│ │ └─mnabcdex
│ └─xybcdmnabcdex
├─cd────────────────(4)┬─efabxybcdmnabcdex
│ └─mnabcdex
├─d─────────────────(5)┬─efabxybcdmnabcdex
│ └─mnabcdex
├─efabxybcdmnabcdex
├─fabxybcdmnabcdex
├─mnabcdex
├─nabcdex
├─xybcdmnabcdex
└─ybcdmnabcdex
 
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'cde{x}' at indices 17,20
=> ActiveNode: node #4
=> ActiveEdge: efabxybcdmnabcdex(4,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 3
Splitting edge efabxybcdmnabcdex(4,#) at index 5 ('f')
=> Hierarchy is now: node #4 --> e(4,4) --> node #8 --> fabxybcdmnabcdex(5,#)
=> ActiveEdge is now: e(4,4)
=> Connected node #7 to node #8
Adding new edge to node #8
=> node #8 --> x(20,#)
The linked node for active node node #4 is node #5
=> ActiveNode is now: node #5
 
(0)┬─ab────────────────(1)┬─cde───────────(6)┬─fabxybcdmnabcdex
│ │ └─x
│ └─xybcdmnabcdex
├─b─────────────────(2)┬─cd────────────(3)┬─e────────(7)┬─fabxybcdmnabcdex
│ │ │ └─x
│ │ └─mnabcdex
│ └─xybcdmnabcdex
├─cd────────────────(4)┬─e────────(8)┬─fabxybcdmnabcdex
│ │ └─x
│ └─mnabcdex
├─d─────────────────(5)┬─efabxybcdmnabcdex
│ └─mnabcdex
├─efabxybcdmnabcdex
├─fabxybcdmnabcdex
├─mnabcdex
├─nabcdex
├─xybcdmnabcdex
└─ybcdmnabcdex
 
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'de{x}' at indices 18,20
=> ActiveNode: node #5
=> ActiveEdge: efabxybcdmnabcdex(4,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 2
Splitting edge efabxybcdmnabcdex(4,#) at index 5 ('f')
=> Hierarchy is now: node #5 --> e(4,4) --> node #9 --> fabxybcdmnabcdex(5,#)
=> ActiveEdge is now: e(4,4)
=> Connected node #8 to node #9
Adding new edge to node #9
=> node #9 --> x(20,#)
The linked node for active node node #5 is [null]
 
(00)┬─ab────────────────(01)┬─cde───────────(06)┬─fabxybcdmnabcdex
│ │ └─x
│ └─xybcdmnabcdex
├─b─────────────────(02)┬─cd────────────(03)┬─e────────(07)┬─fabxybcdmnabcdex
│ │ │ └─x
│ │ └─mnabcdex
│ └─xybcdmnabcdex
├─cd────────────────(04)┬─e────────(08)┬─fabxybcdmnabcdex
│ │ └─x
│ └─mnabcdex
├─d─────────────────(05)┬─e────────(09)┬─fabxybcdmnabcdex
│ │ └─x
│ └─mnabcdex
├─efabxybcdmnabcdex
├─fabxybcdmnabcdex
├─mnabcdex
├─nabcdex
├─xybcdmnabcdex
└─ybcdmnabcdex
 
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'e{x}' at indices 19,20
=> ActiveNode: node #0
=> ActiveEdge: efabxybcdmnabcdex(4,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge efabxybcdmnabcdex(4,#) at index 5 ('f')
=> Hierarchy is now: node #0 --> e(4,4) --> node #10 --> fabxybcdmnabcdex(5,#)
=> ActiveEdge is now: e(4,4)
=> Connected node #9 to node #10
Adding new edge to node #10
=> node #10 --> x(20,#)
 
(00)┬─ab───────────────(01)┬─cde───────────(06)┬─fabxybcdmnabcdex
│ │ └─x
│ └─xybcdmnabcdex
├─b────────────────(02)┬─cd────────────(03)┬─e────────(07)┬─fabxybcdmnabcdex
│ │ │ └─x
│ │ └─mnabcdex
│ └─xybcdmnabcdex
├─cd───────────────(04)┬─e────────(08)┬─fabxybcdmnabcdex
│ │ └─x
│ └─mnabcdex
├─d────────────────(05)┬─e────────(09)┬─fabxybcdmnabcdex
│ │ └─x
│ └─mnabcdex
├─e────────────────(10)┬─fabxybcdmnabcdex
│ └─x
├─fabxybcdmnabcdex
├─mnabcdex
├─nabcdex
├─xybcdmnabcdex
└─ybcdmnabcdex
 
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{x}' at indices 20,20
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'x' found. Values adjusted to:
=> ActiveEdge is now: xybcdmnabcdex(8,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(00)┬─ab───────────────(01)┬─cde───────────(06)┬─fabxybcdmnabcdex
│ │ └─x
│ └─xybcdmnabcdex
├─b────────────────(02)┬─cd────────────(03)┬─e────────(07)┬─fabxybcdmnabcdex
│ │ │ └─x
│ │ └─mnabcdex
│ └─xybcdmnabcdex
├─cd───────────────(04)┬─e────────(08)┬─fabxybcdmnabcdex
│ │ └─x
│ └─mnabcdex
├─d────────────────(05)┬─e────────(09)┬─fabxybcdmnabcdex
│ │ └─x
│ └─mnabcdex
├─e────────────────(10)┬─fabxybcdmnabcdex
│ └─x
├─fabxybcdmnabcdex
├─mnabcdex
├─nabcdex
├─xybcdmnabcdex
└─ybcdmnabcdex
4.output.abcadak.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
=== ITERATION 0 ===
The next suffix of 'abcadak' to add is '{a}' at indices 0,0
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'a' not found
Adding new edge to node #0
=> node #0 --> a(0,#)
 
(0)──a
 
=== ITERATION 1 ===
The next suffix of 'abcadak' to add is '{b}' at indices 1,1
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'b' not found
Adding new edge to node #0
=> node #0 --> b(1,#)
 
(0)┬─ab
└─b
 
=== ITERATION 2 ===
The next suffix of 'abcadak' to add is '{c}' at indices 2,2
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'c' not found
Adding new edge to node #0
=> node #0 --> c(2,#)
 
(0)┬─abc
├─bc
└─c
 
=== ITERATION 3 ===
The next suffix of 'abcadak' to add is '{a}' at indices 3,3
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'a' found. Values adjusted to:
=> ActiveEdge is now: abca(0,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─abca
├─bca
└─ca
 
=== ITERATION 4 ===
The next suffix of 'abcadak' to add is 'a{d}' at indices 3,4
=> ActiveNode: node #0
=> ActiveEdge: abcad(0,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge abcad(0,#) at index 1 ('b')
=> Hierarchy is now: node #0 --> a(0,0) --> node #1 --> bcad(1,#)
=> ActiveEdge is now: a(0,0)
Adding new edge to node #1
=> node #1 --> d(4,#)
 
(0)┬─a────(1)┬─bcad
│ └─d
├─bcad
└─cad
 
The next suffix of 'abcadak' to add is '{d}' at indices 4,4
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'd' not found
Adding new edge to node #0
=> node #0 --> d(4,#)
 
(0)┬─a────(1)┬─bcad
│ └─d
├─bcad
├─cad
└─d
 
=== ITERATION 5 ===
The next suffix of 'abcadak' to add is '{a}' at indices 5,5
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'a' found. Values adjusted to:
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
=> ActiveEdge is now:
=> DistanceIntoActiveEdge is now: 0
=> UnresolvedSuffixes is now: 0
 
(0)┬─a─────(1)┬─bcada
│ └─da
├─bcada
├─cada
└─da
 
=== ITERATION 6 ===
The next suffix of 'abcadak' to add is 'a{k}' at indices 5,6
=> ActiveNode: node #1
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 1
Existing edge for node #1 starting with 'k' not found
Adding new edge to node #1
=> node #1 --> k(6,#)
The linked node for active node node #1 is [null]
 
(0)┬─a──────(1)┬─bcadak
│ ├─dak
│ └─k
├─bcadak
├─cadak
└─dak
 
The next suffix of 'abcadak' to add is '{k}' at indices 6,6
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'k' not found
Adding new edge to node #0
=> node #0 --> k(6,#)
 
(0)┬─a──────(1)┬─bcadak
│ ├─dak
│ └─k
├─bcadak
├─cadak
├─dak
└─k
5.output.dedododeeodo.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
=== ITERATION 0 ===
The next suffix of 'dedododeeodo$' to add is '{d}' at indices 0,0
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'd' not found
Adding new edge to node #0
=> node #0 --> d(0,#)
 
(0)──d
 
=== ITERATION 1 ===
The next suffix of 'dedododeeodo$' to add is '{e}' at indices 1,1
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'e' not found
Adding new edge to node #0
=> node #0 --> e(1,#)
 
(0)┬─de
└─e
 
=== ITERATION 2 ===
The next suffix of 'dedododeeodo$' to add is '{d}' at indices 2,2
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'd' found. Values adjusted to:
=> ActiveEdge is now: ded(0,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─ded
└─ed
 
=== ITERATION 3 ===
The next suffix of 'dedododeeodo$' to add is 'd{o}' at indices 2,3
=> ActiveNode: node #0
=> ActiveEdge: dedo(0,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge dedo(0,#) at index 1 ('e')
=> Hierarchy is now: node #0 --> d(0,0) --> node #1 --> edo(1,#)
=> ActiveEdge is now: d(0,0)
Adding new edge to node #1
=> node #1 --> o(3,#)
 
(0)┬─d───(1)┬─edo
│ └─o
└─edo
 
The next suffix of 'dedododeeodo$' to add is '{o}' at indices 3,3
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'o' not found
Adding new edge to node #0
=> node #0 --> o(3,#)
 
(0)┬─d───(1)┬─edo
│ └─o
├─edo
└─o
 
=== ITERATION 4 ===
The next suffix of 'dedododeeodo$' to add is '{d}' at indices 4,4
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'd' found. Values adjusted to:
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
=> ActiveEdge is now:
=> DistanceIntoActiveEdge is now: 0
=> UnresolvedSuffixes is now: 0
 
(0)┬─d────(1)┬─edod
│ └─od
├─edod
└─od
 
=== ITERATION 5 ===
The next suffix of 'dedododeeodo$' to add is 'd{o}' at indices 4,5
=> ActiveNode: node #1
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 1
Existing edge for node #1 starting with 'o' found. Values adjusted to:
=> ActiveEdge is now: odo(3,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 1
 
(0)┬─d─────(1)┬─edodo
│ └─odo
├─edodo
└─odo
 
=== ITERATION 6 ===
The next suffix of 'dedododeeodo$' to add is 'do{d}' at indices 4,6
=> ActiveNode: node #1
=> ActiveEdge: odod(3,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 2
The next character on the current edge is 'd' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 2
 
(0)┬─d──────(1)┬─edodod
│ └─odod
├─edodod
└─odod
 
=== ITERATION 7 ===
The next suffix of 'dedododeeodo$' to add is 'dod{e}' at indices 4,7
=> ActiveNode: node #1
=> ActiveEdge: odode(3,#)
=> DistanceIntoActiveEdge: 2
=> UnresolvedSuffixes: 3
Splitting edge odode(3,#) at index 5 ('o')
=> Hierarchy is now: node #1 --> od(3,4) --> node #2 --> ode(5,#)
=> ActiveEdge is now: od(3,4)
Adding new edge to node #2
=> node #2 --> e(7,#)
The linked node for active node node #1 is [null]
 
(0)┬─d───────(1)┬─edodode
│ └─od──────(2)┬─e
│ └─ode
├─edodode
└─odode
 
The next suffix of 'dedododeeodo$' to add is 'od{e}' at indices 5,7
=> ActiveNode: node #0
=> ActiveEdge: odode(3,#)
=> DistanceIntoActiveEdge: 2
=> UnresolvedSuffixes: 2
Splitting edge odode(3,#) at index 5 ('o')
=> Hierarchy is now: node #0 --> od(3,4) --> node #3 --> ode(5,#)
=> ActiveEdge is now: od(3,4)
=> Connected node #2 to node #3
Adding new edge to node #3
=> node #3 --> e(7,#)
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
 
(0)┬─d───────(1)┬─edodode
│ └─od──────(2)┬─e
│ └─ode
├─edodode
└─od──────(3)┬─e
└─ode
 
The next suffix of 'dedododeeodo$' to add is 'd{e}' at indices 6,7
=> ActiveNode: node #1
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 1
Existing edge for node #1 starting with 'e' found. Values adjusted to:
=> ActiveEdge is now: edodode(1,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 1
 
(0)┬─d───────(1)┬─edodode
│ └─od──────(2)┬─e
│ └─ode
├─edodode
└─od──────(3)┬─e
└─ode
 
=== ITERATION 8 ===
The next suffix of 'dedododeeodo$' to add is 'de{e}' at indices 6,8
=> ActiveNode: node #1
=> ActiveEdge: edododee(1,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 2
Splitting edge edododee(1,#) at index 2 ('d')
=> Hierarchy is now: node #1 --> e(1,1) --> node #4 --> dododee(2,#)
=> ActiveEdge is now: e(1,1)
Adding new edge to node #4
=> node #4 --> e(8,#)
The linked node for active node node #1 is [null]
 
(0)┬─d────────(1)┬─e──(4)┬─dododee
│ │ └─e
│ └─od─(2)┬─ee
│ └─odee
├─edododee
└─od───────(3)┬─ee
└─odee
 
The next suffix of 'dedododeeodo$' to add is 'e{e}' at indices 7,8
=> ActiveNode: node #0
=> ActiveEdge: edododee(1,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge edododee(1,#) at index 2 ('d')
=> Hierarchy is now: node #0 --> e(1,1) --> node #5 --> dododee(2,#)
=> ActiveEdge is now: e(1,1)
=> Connected node #4 to node #5
Adding new edge to node #5
=> node #5 --> e(8,#)
 
(0)┬─d──(1)┬─e──(4)┬─dododee
│ │ └─e
│ └─od─(2)┬─ee
│ └─odee
├─e──(5)┬─dododee
│ └─e
└─od─(3)┬─ee
└─odee
 
The next suffix of 'dedododeeodo$' to add is '{e}' at indices 8,8
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'e' found. Values adjusted to:
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
=> ActiveEdge is now:
=> DistanceIntoActiveEdge is now: 0
=> UnresolvedSuffixes is now: 0
 
(0)┬─d──(1)┬─e──(4)┬─dododee
│ │ └─e
│ └─od─(2)┬─ee
│ └─odee
├─e──(5)┬─dododee
│ └─e
└─od─(3)┬─ee
└─odee
 
=== ITERATION 9 ===
The next suffix of 'dedododeeodo$' to add is 'e{o}' at indices 8,9
=> ActiveNode: node #5
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 1
Existing edge for node #5 starting with 'o' not found
Adding new edge to node #5
=> node #5 --> o(9,#)
The linked node for active node node #5 is [null]
 
(0)┬─d──(1)┬─e──(4)┬─dododeeo
│ │ └─eo
│ └─od─(2)┬─eeo
│ └─odeeo
├─e──(5)┬─dododeeo
│ ├─eo
│ └─o
└─od─(3)┬─eeo
└─odeeo
 
The next suffix of 'dedododeeodo$' to add is '{o}' at indices 9,9
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'o' found. Values adjusted to:
=> ActiveEdge is now: od(3,4)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─d──(1)┬─e──(4)┬─dododeeo
│ │ └─eo
│ └─od─(2)┬─eeo
│ └─odeeo
├─e──(5)┬─dododeeo
│ ├─eo
│ └─o
└─od─(3)┬─eeo
└─odeeo
 
=== ITERATION 10 ===
The next suffix of 'dedododeeodo$' to add is 'o{d}' at indices 9,10
=> ActiveNode: node #0
=> ActiveEdge: od(3,4)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
The next character on the current edge is 'd' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 2
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
 
(0)┬─d──(1)┬─e──(4)┬─dododeeod
│ │ └─eod
│ └─od─(2)┬─eeod
│ └─odeeod
├─e──(5)┬─dododeeod
│ ├─eod
│ └─od
└─od─(3)┬─eeod
└─odeeod
 
=== ITERATION 11 ===
The next suffix of 'dedododeeodo$' to add is 'od{o}' at indices 9,11
=> ActiveNode: node #3
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 2
Existing edge for node #3 starting with 'o' found. Values adjusted to:
=> ActiveEdge is now: odeeodo(5,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 2
 
(0)┬─d──(1)┬─e──(4)┬─dododeeodo
│ │ └─eodo
│ └─od─(2)┬─eeodo
│ └─odeeodo
├─e──(5)┬─dododeeodo
│ ├─eodo
│ └─odo
└─od─(3)┬─eeodo
└─odeeodo
 
=== ITERATION 12 ===
The next suffix of 'dedododeeodo$' to add is 'odo{$}' at indices 9,12
=> ActiveNode: node #3
=> ActiveEdge: odeeodo$(5,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 3
Splitting edge odeeodo$(5,#) at index 6 ('d')
=> Hierarchy is now: node #3 --> o(5,5) --> node #6 --> deeodo$(6,#)
=> ActiveEdge is now: o(5,5)
Adding new edge to node #6
=> node #6 --> $(12,#)
The linked node for active node node #3 is [null]
 
(0)┬─d──(1)┬─e──(4)┬─dododeeodo$
│ │ └─eodo$
│ └─od─(2)┬─eeodo$
│ └─odeeodo$
├─e──(5)┬─dododeeodo$
│ ├─eodo$
│ └─odo$
└─od─(3)┬─eeodo$
└─o──────(6)┬─$
└─deeodo$
 
The next suffix of 'dedododeeodo$' to add is 'do{$}' at indices 10,12
=> ActiveNode: node #0
=> ActiveEdge: od(3,4)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 2
Splitting edge od(3,4) at index 4 ('d')
=> Hierarchy is now: node #0 --> o(3,3) --> node #7 --> d(4,4)
=> ActiveEdge is now: o(3,3)
=> Connected node #6 to node #7
Adding new edge to node #7
=> node #7 --> $(12,#)
 
(0)┬─d─(1)┬─e──(4)┬─dododeeodo$
│ │ └─eodo$
│ └─od─(2)┬─eeodo$
│ └─odeeodo$
├─e─(5)┬─dododeeodo$
│ ├─eodo$
│ └─odo$
└─o─(7)┬─$
└─d─(3)┬─eeodo$
└─o──────(6)┬─$
└─deeodo$
 
The next suffix of 'dedododeeodo$' to add is 'o{$}' at indices 11,12
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 1
Existing edge for node #0 starting with '$' not found
Adding new edge to node #0
=> node #0 --> $(12,#)
 
(0)┬─$
├─d─(1)┬─e──(4)┬─dododeeodo$
│ │ └─eodo$
│ └─od─(2)┬─eeodo$
│ └─odeeodo$
├─e─(5)┬─dododeeodo$
│ ├─eodo$
│ └─odo$
└─o─(7)┬─$
└─d─(3)┬─eeodo$
└─o──────(6)┬─$
└─deeodo$
 
The next suffix of 'dedododeeodo$' to add is '{$}' at indices 12,12
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with '$' found. Values adjusted to:
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
=> ActiveEdge is now:
=> DistanceIntoActiveEdge is now: 0
=> UnresolvedSuffixes is now: 0
 
(0)┬─$
├─d─(1)┬─e──(4)┬─dododeeodo$
│ │ └─eodo$
│ └─od─(2)┬─eeodo$
│ └─odeeodo$
├─e─(5)┬─dododeeodo$
│ ├─eodo$
│ └─odo$
└─o─(7)┬─$
└─d─(3)┬─eeodo$
└─o──────(6)┬─$
└─deeodo$
6.output.ooooooooo.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
=== ITERATION 0 ===
The next suffix of 'ooooooooo$' to add is '{o}' at indices 0,0
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'o' not found
Adding new edge to node #0
=> node #0 --> o(0,#)
 
(0)──o
 
=== ITERATION 1 ===
The next suffix of 'ooooooooo$' to add is '{o}' at indices 1,1
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'o' found. Values adjusted to:
=> ActiveEdge is now: oo(0,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)──oo
 
=== ITERATION 2 ===
The next suffix of 'ooooooooo$' to add is 'o{o}' at indices 1,2
=> ActiveNode: node #0
=> ActiveEdge: ooo(0,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
The next character on the current edge is 'o' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 2
 
(0)──ooo
 
=== ITERATION 3 ===
The next suffix of 'ooooooooo$' to add is 'oo{o}' at indices 1,3
=> ActiveNode: node #0
=> ActiveEdge: oooo(0,#)
=> DistanceIntoActiveEdge: 2
=> UnresolvedSuffixes: 2
The next character on the current edge is 'o' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 3
 
(0)──oooo
 
=== ITERATION 4 ===
The next suffix of 'ooooooooo$' to add is 'ooo{o}' at indices 1,4
=> ActiveNode: node #0
=> ActiveEdge: ooooo(0,#)
=> DistanceIntoActiveEdge: 3
=> UnresolvedSuffixes: 3
The next character on the current edge is 'o' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 4
 
(0)──ooooo
 
=== ITERATION 5 ===
The next suffix of 'ooooooooo$' to add is 'oooo{o}' at indices 1,5
=> ActiveNode: node #0
=> ActiveEdge: oooooo(0,#)
=> DistanceIntoActiveEdge: 4
=> UnresolvedSuffixes: 4
The next character on the current edge is 'o' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 5
 
(0)──oooooo
 
=== ITERATION 6 ===
The next suffix of 'ooooooooo$' to add is 'ooooo{o}' at indices 1,6
=> ActiveNode: node #0
=> ActiveEdge: ooooooo(0,#)
=> DistanceIntoActiveEdge: 5
=> UnresolvedSuffixes: 5
The next character on the current edge is 'o' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 6
 
(0)──ooooooo
 
=== ITERATION 7 ===
The next suffix of 'ooooooooo$' to add is 'oooooo{o}' at indices 1,7
=> ActiveNode: node #0
=> ActiveEdge: oooooooo(0,#)
=> DistanceIntoActiveEdge: 6
=> UnresolvedSuffixes: 6
The next character on the current edge is 'o' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 7
 
(0)──oooooooo
 
=== ITERATION 8 ===
The next suffix of 'ooooooooo$' to add is 'ooooooo{o}' at indices 1,8
=> ActiveNode: node #0
=> ActiveEdge: ooooooooo(0,#)
=> DistanceIntoActiveEdge: 7
=> UnresolvedSuffixes: 7
The next character on the current edge is 'o' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 8
 
(0)──ooooooooo
 
=== ITERATION 9 ===
The next suffix of 'ooooooooo$' to add is 'oooooooo{$}' at indices 1,9
=> ActiveNode: node #0
=> ActiveEdge: ooooooooo$(0,#)
=> DistanceIntoActiveEdge: 8
=> UnresolvedSuffixes: 8
Splitting edge ooooooooo$(0,#) at index 8 ('o')
=> Hierarchy is now: node #0 --> oooooooo(0,7) --> node #1 --> o$(8,#)
=> ActiveEdge is now: oooooooo(0,7)
Adding new edge to node #1
=> node #1 --> $(9,#)
 
(0)──oooooooo─(1)┬─$
└─o$
 
The next suffix of 'ooooooooo$' to add is 'ooooooo{$}' at indices 2,9
=> ActiveNode: node #0
=> ActiveEdge: oooooooo(0,7)
=> DistanceIntoActiveEdge: 7
=> UnresolvedSuffixes: 7
Splitting edge oooooooo(0,7) at index 7 ('o')
=> Hierarchy is now: node #0 --> ooooooo(0,6) --> node #2 --> o(7,7)
=> ActiveEdge is now: ooooooo(0,6)
=> Connected node #1 to node #2
Adding new edge to node #2
=> node #2 --> $(9,#)
 
(0)──ooooooo─(2)┬─$
└─o─(1)┬─$
└─o$
 
The next suffix of 'ooooooooo$' to add is 'oooooo{$}' at indices 3,9
=> ActiveNode: node #0
=> ActiveEdge: ooooooo(0,6)
=> DistanceIntoActiveEdge: 6
=> UnresolvedSuffixes: 6
Splitting edge ooooooo(0,6) at index 6 ('o')
=> Hierarchy is now: node #0 --> oooooo(0,5) --> node #3 --> o(6,6)
=> ActiveEdge is now: oooooo(0,5)
=> Connected node #2 to node #3
Adding new edge to node #3
=> node #3 --> $(9,#)
 
(0)──oooooo─(3)┬─$
└─o─(2)┬─$
└─o─(1)┬─$
└─o$
 
The next suffix of 'ooooooooo$' to add is 'ooooo{$}' at indices 4,9
=> ActiveNode: node #0
=> ActiveEdge: oooooo(0,5)
=> DistanceIntoActiveEdge: 5
=> UnresolvedSuffixes: 5
Splitting edge oooooo(0,5) at index 5 ('o')
=> Hierarchy is now: node #0 --> ooooo(0,4) --> node #4 --> o(5,5)
=> ActiveEdge is now: ooooo(0,4)
=> Connected node #3 to node #4
Adding new edge to node #4
=> node #4 --> $(9,#)
 
(0)──ooooo─(4)┬─$
└─o─(3)┬─$
└─o─(2)┬─$
└─o─(1)┬─$
└─o$
 
The next suffix of 'ooooooooo$' to add is 'oooo{$}' at indices 5,9
=> ActiveNode: node #0
=> ActiveEdge: ooooo(0,4)
=> DistanceIntoActiveEdge: 4
=> UnresolvedSuffixes: 4
Splitting edge ooooo(0,4) at index 4 ('o')
=> Hierarchy is now: node #0 --> oooo(0,3) --> node #5 --> o(4,4)
=> ActiveEdge is now: oooo(0,3)
=> Connected node #4 to node #5
Adding new edge to node #5
=> node #5 --> $(9,#)
 
(0)──oooo─(5)┬─$
└─o─(4)┬─$
└─o─(3)┬─$
└─o─(2)┬─$
└─o─(1)┬─$
└─o$
 
The next suffix of 'ooooooooo$' to add is 'ooo{$}' at indices 6,9
=> ActiveNode: node #0
=> ActiveEdge: oooo(0,3)
=> DistanceIntoActiveEdge: 3
=> UnresolvedSuffixes: 3
Splitting edge oooo(0,3) at index 3 ('o')
=> Hierarchy is now: node #0 --> ooo(0,2) --> node #6 --> o(3,3)
=> ActiveEdge is now: ooo(0,2)
=> Connected node #5 to node #6
Adding new edge to node #6
=> node #6 --> $(9,#)
 
(0)──ooo─(6)┬─$
└─o─(5)┬─$
└─o─(4)┬─$
└─o─(3)┬─$
└─o─(2)┬─$
└─o─(1)┬─$
└─o$
 
The next suffix of 'ooooooooo$' to add is 'oo{$}' at indices 7,9
=> ActiveNode: node #0
=> ActiveEdge: ooo(0,2)
=> DistanceIntoActiveEdge: 2
=> UnresolvedSuffixes: 2
Splitting edge ooo(0,2) at index 2 ('o')
=> Hierarchy is now: node #0 --> oo(0,1) --> node #7 --> o(2,2)
=> ActiveEdge is now: oo(0,1)
=> Connected node #6 to node #7
Adding new edge to node #7
=> node #7 --> $(9,#)
 
(0)──oo─(7)┬─$
└─o─(6)┬─$
└─o─(5)┬─$
└─o─(4)┬─$
└─o─(3)┬─$
└─o─(2)┬─$
└─o─(1)┬─$
└─o$
 
The next suffix of 'ooooooooo$' to add is 'o{$}' at indices 8,9
=> ActiveNode: node #0
=> ActiveEdge: oo(0,1)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge oo(0,1) at index 1 ('o')
=> Hierarchy is now: node #0 --> o(0,0) --> node #8 --> o(1,1)
=> ActiveEdge is now: o(0,0)
=> Connected node #7 to node #8
Adding new edge to node #8
=> node #8 --> $(9,#)
 
(0)──o─(8)┬─$
└─o─(7)┬─$
└─o─(6)┬─$
└─o─(5)┬─$
└─o─(4)┬─$
└─o─(3)┬─$
└─o─(2)┬─$
└─o─(1)┬─$
└─o$
 
The next suffix of 'ooooooooo$' to add is '{$}' at indices 9,9
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with '$' not found
Adding new edge to node #0
=> node #0 --> $(9,#)
 
(0)┬─$
└─o─(8)┬─$
└─o─(7)┬─$
└─o─(6)┬─$
└─o─(5)┬─$
└─o─(4)┬─$
└─o─(3)┬─$
└─o─(2)┬─$
└─o─(1)┬─$
└─o$
7.output.mississippi.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
=== ITERATION 0 ===
The next suffix of 'mississippi$' to add is '{m}' at indices 0,0
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'm' not found
Adding new edge to node #0
=> node #0 --> m(0,#)
 
(0)──m
 
=== ITERATION 1 ===
The next suffix of 'mississippi$' to add is '{i}' at indices 1,1
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'i' not found
Adding new edge to node #0
=> node #0 --> i(1,#)
 
(0)┬─i
└─mi
 
=== ITERATION 2 ===
The next suffix of 'mississippi$' to add is '{s}' at indices 2,2
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 's' not found
Adding new edge to node #0
=> node #0 --> s(2,#)
 
(0)┬─is
├─mis
└─s
 
=== ITERATION 3 ===
The next suffix of 'mississippi$' to add is '{s}' at indices 3,3
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 's' found. Values adjusted to:
=> ActiveEdge is now: ss(2,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─iss
├─miss
└─ss
 
=== ITERATION 4 ===
The next suffix of 'mississippi$' to add is 's{i}' at indices 3,4
=> ActiveNode: node #0
=> ActiveEdge: ssi(2,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge ssi(2,#) at index 3 ('s')
=> Hierarchy is now: node #0 --> s(2,2) --> node #1 --> si(3,#)
=> ActiveEdge is now: s(2,2)
Adding new edge to node #1
=> node #1 --> i(4,#)
 
(0)┬─issi
├─missi
└─s─────(1)┬─i
└─si
 
The next suffix of 'mississippi$' to add is '{i}' at indices 4,4
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'i' found. Values adjusted to:
=> ActiveEdge is now: issi(1,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─issi
├─missi
└─s─────(1)┬─i
└─si
 
=== ITERATION 5 ===
The next suffix of 'mississippi$' to add is 'i{s}' at indices 4,5
=> ActiveNode: node #0
=> ActiveEdge: issis(1,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
The next character on the current edge is 's' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 2
 
(0)┬─issis
├─missis
└─s──────(1)┬─is
└─sis
 
=== ITERATION 6 ===
The next suffix of 'mississippi$' to add is 'is{s}' at indices 4,6
=> ActiveNode: node #0
=> ActiveEdge: ississ(1,#)
=> DistanceIntoActiveEdge: 2
=> UnresolvedSuffixes: 2
The next character on the current edge is 's' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 3
 
(0)┬─ississ
├─mississ
└─s───────(1)┬─iss
└─siss
 
=== ITERATION 7 ===
The next suffix of 'mississippi$' to add is 'iss{i}' at indices 4,7
=> ActiveNode: node #0
=> ActiveEdge: ississi(1,#)
=> DistanceIntoActiveEdge: 3
=> UnresolvedSuffixes: 3
The next character on the current edge is 'i' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 4
 
(0)┬─ississi
├─mississi
└─s────────(1)┬─issi
└─sissi
 
=== ITERATION 8 ===
The next suffix of 'mississippi$' to add is 'issi{p}' at indices 4,8
=> ActiveNode: node #0
=> ActiveEdge: ississip(1,#)
=> DistanceIntoActiveEdge: 4
=> UnresolvedSuffixes: 4
Splitting edge ississip(1,#) at index 5 ('s')
=> Hierarchy is now: node #0 --> issi(1,4) --> node #2 --> ssip(5,#)
=> ActiveEdge is now: issi(1,4)
Adding new edge to node #2
=> node #2 --> p(8,#)
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
 
(0)┬─issi──────(2)┬─p
│ └─ssip
├─mississip
└─s─────────(1)┬─issip
└─sissip
 
The next suffix of 'mississippi$' to add is 'ssi{p}' at indices 5,8
=> ActiveNode: node #1
=> ActiveEdge: sissip(3,#)
=> DistanceIntoActiveEdge: 2
=> UnresolvedSuffixes: 3
Splitting edge sissip(3,#) at index 5 ('s')
=> Hierarchy is now: node #1 --> si(3,4) --> node #3 --> ssip(5,#)
=> ActiveEdge is now: si(3,4)
=> Connected node #2 to node #3
Adding new edge to node #3
=> node #3 --> p(8,#)
The linked node for active node node #1 is [null]
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
 
(0)┬─issi──────(2)┬─p
│ └─ssip
├─mississip
└─s─────────(1)┬─issip
└─si────(3)┬─p
└─ssip
 
The next suffix of 'mississippi$' to add is 'si{p}' at indices 6,8
=> ActiveNode: node #1
=> ActiveEdge: issip(4,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 2
Splitting edge issip(4,#) at index 5 ('s')
=> Hierarchy is now: node #1 --> i(4,4) --> node #4 --> ssip(5,#)
=> ActiveEdge is now: i(4,4)
=> Connected node #3 to node #4
Adding new edge to node #4
=> node #4 --> p(8,#)
The linked node for active node node #1 is [null]
 
(0)┬─issi──────(2)┬─p
│ └─ssip
├─mississip
└─s─────────(1)┬─i──(4)┬─p
│ └─ssip
└─si─(3)┬─p
└─ssip
 
The next suffix of 'mississippi$' to add is 'i{p}' at indices 7,8
=> ActiveNode: node #0
=> ActiveEdge: issi(1,4)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge issi(1,4) at index 2 ('s')
=> Hierarchy is now: node #0 --> i(1,1) --> node #5 --> ssi(2,4)
=> ActiveEdge is now: i(1,1)
=> Connected node #4 to node #5
Adding new edge to node #5
=> node #5 --> p(8,#)
 
(0)┬─i─────────(5)┬─p
│ └─ssi─(2)┬─p
│ └─ssip
├─mississip
└─s─────────(1)┬─i──(4)┬─p
│ └─ssip
└─si─(3)┬─p
└─ssip
 
The next suffix of 'mississippi$' to add is '{p}' at indices 8,8
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'p' not found
Adding new edge to node #0
=> node #0 --> p(8,#)
 
(0)┬─i─────────(5)┬─p
│ └─ssi─(2)┬─p
│ └─ssip
├─mississip
├─p
└─s─────────(1)┬─i──(4)┬─p
│ └─ssip
└─si─(3)┬─p
└─ssip
 
=== ITERATION 9 ===
The next suffix of 'mississippi$' to add is '{p}' at indices 9,9
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'p' found. Values adjusted to:
=> ActiveEdge is now: pp(8,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─i──────────(5)┬─pp
│ └─ssi─(2)┬─pp
│ └─ssipp
├─mississipp
├─pp
└─s──────────(1)┬─i──(4)┬─pp
│ └─ssipp
└─si─(3)┬─pp
└─ssipp
 
=== ITERATION 10 ===
The next suffix of 'mississippi$' to add is 'p{i}' at indices 9,10
=> ActiveNode: node #0
=> ActiveEdge: ppi(8,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge ppi(8,#) at index 9 ('p')
=> Hierarchy is now: node #0 --> p(8,8) --> node #6 --> pi(9,#)
=> ActiveEdge is now: p(8,8)
Adding new edge to node #6
=> node #6 --> i(10,#)
 
(0)┬─i───────────(5)┬─ppi
│ └─ssi─(2)┬─ppi
│ └─ssippi
├─mississippi
├─p───────────(6)┬─i
│ └─pi
└─s───────────(1)┬─i──(4)┬─ppi
│ └─ssippi
└─si─(3)┬─ppi
└─ssippi
 
The next suffix of 'mississippi$' to add is '{i}' at indices 10,10
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'i' found. Values adjusted to:
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
=> ActiveEdge is now:
=> DistanceIntoActiveEdge is now: 0
=> UnresolvedSuffixes is now: 0
 
(0)┬─i───────────(5)┬─ppi
│ └─ssi─(2)┬─ppi
│ └─ssippi
├─mississippi
├─p───────────(6)┬─i
│ └─pi
└─s───────────(1)┬─i──(4)┬─ppi
│ └─ssippi
└─si─(3)┬─ppi
└─ssippi
 
=== ITERATION 11 ===
The next suffix of 'mississippi$' to add is 'i{$}' at indices 10,11
=> ActiveNode: node #5
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 1
Existing edge for node #5 starting with '$' not found
Adding new edge to node #5
=> node #5 --> $(11,#)
The linked node for active node node #5 is [null]
 
(0)┬─i────────────(5)┬─$
│ ├─ppi$
│ └─ssi──(2)┬─ppi$
│ └─ssippi$
├─mississippi$
├─p────────────(6)┬─i$
│ └─pi$
└─s────────────(1)┬─i──(4)┬─ppi$
│ └─ssippi$
└─si─(3)┬─ppi$
└─ssippi$
 
The next suffix of 'mississippi$' to add is '{$}' at indices 11,11
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with '$' not found
Adding new edge to node #0
=> node #0 --> $(11,#)
 
(0)┬─$
├─i────────────(5)┬─$
│ ├─ppi$
│ └─ssi──(2)┬─ppi$
│ └─ssippi$
├─mississippi$
├─p────────────(6)┬─i$
│ └─pi$
└─s────────────(1)┬─i──(4)┬─ppi$
│ └─ssippi$
└─si─(3)┬─ppi$
└─ssippi$
8.output.almasamolmaz.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
=== ITERATION 0 ===
The next suffix of 'almasamolmaz' to add is '{a}' at indices 0,0
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'a' not found
Adding new edge to node #0
=> node #0 --> a(0,#)
 
(0)──a
 
=== ITERATION 1 ===
The next suffix of 'almasamolmaz' to add is '{l}' at indices 1,1
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'l' not found
Adding new edge to node #0
=> node #0 --> l(1,#)
 
(0)┬─al
└─l
 
=== ITERATION 2 ===
The next suffix of 'almasamolmaz' to add is '{m}' at indices 2,2
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'm' not found
Adding new edge to node #0
=> node #0 --> m(2,#)
 
(0)┬─alm
├─lm
└─m
 
=== ITERATION 3 ===
The next suffix of 'almasamolmaz' to add is '{a}' at indices 3,3
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'a' found. Values adjusted to:
=> ActiveEdge is now: alma(0,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─alma
├─lma
└─ma
 
=== ITERATION 4 ===
The next suffix of 'almasamolmaz' to add is 'a{s}' at indices 3,4
=> ActiveNode: node #0
=> ActiveEdge: almas(0,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge almas(0,#) at index 1 ('l')
=> Hierarchy is now: node #0 --> a(0,0) --> node #1 --> lmas(1,#)
=> ActiveEdge is now: a(0,0)
Adding new edge to node #1
=> node #1 --> s(4,#)
 
(0)┬─a────(1)┬─lmas
│ └─s
├─lmas
└─mas
 
The next suffix of 'almasamolmaz' to add is '{s}' at indices 4,4
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 's' not found
Adding new edge to node #0
=> node #0 --> s(4,#)
 
(0)┬─a────(1)┬─lmas
│ └─s
├─lmas
├─mas
└─s
 
=== ITERATION 5 ===
The next suffix of 'almasamolmaz' to add is '{a}' at indices 5,5
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'a' found. Values adjusted to:
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
=> ActiveEdge is now:
=> DistanceIntoActiveEdge is now: 0
=> UnresolvedSuffixes is now: 0
 
(0)┬─a─────(1)┬─lmasa
│ └─sa
├─lmasa
├─masa
└─sa
 
=== ITERATION 6 ===
The next suffix of 'almasamolmaz' to add is 'a{m}' at indices 5,6
=> ActiveNode: node #1
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 1
Existing edge for node #1 starting with 'm' not found
Adding new edge to node #1
=> node #1 --> m(6,#)
The linked node for active node node #1 is [null]
 
(0)┬─a──────(1)┬─lmasam
│ ├─m
│ └─sam
├─lmasam
├─masam
└─sam
 
The next suffix of 'almasamolmaz' to add is '{m}' at indices 6,6
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'm' found. Values adjusted to:
=> ActiveEdge is now: masam(2,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─a──────(1)┬─lmasam
│ ├─m
│ └─sam
├─lmasam
├─masam
└─sam
 
=== ITERATION 7 ===
The next suffix of 'almasamolmaz' to add is 'm{o}' at indices 6,7
=> ActiveNode: node #0
=> ActiveEdge: masamo(2,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
Splitting edge masamo(2,#) at index 3 ('a')
=> Hierarchy is now: node #0 --> m(2,2) --> node #2 --> asamo(3,#)
=> ActiveEdge is now: m(2,2)
Adding new edge to node #2
=> node #2 --> o(7,#)
 
(0)┬─a───────(1)┬─lmasamo
│ ├─mo
│ └─samo
├─lmasamo
├─m───────(2)┬─asamo
│ └─o
└─samo
 
The next suffix of 'almasamolmaz' to add is '{o}' at indices 7,7
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'o' not found
Adding new edge to node #0
=> node #0 --> o(7,#)
 
(0)┬─a───────(1)┬─lmasamo
│ ├─mo
│ └─samo
├─lmasamo
├─m───────(2)┬─asamo
│ └─o
├─o
└─samo
 
=== ITERATION 8 ===
The next suffix of 'almasamolmaz' to add is '{l}' at indices 8,8
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'l' found. Values adjusted to:
=> ActiveEdge is now: lmasamol(1,#)
=> DistanceIntoActiveEdge is now: 1
=> UnresolvedSuffixes is now: 0
 
(0)┬─a────────(1)┬─lmasamol
│ ├─mol
│ └─samol
├─lmasamol
├─m────────(2)┬─asamol
│ └─ol
├─ol
└─samol
 
=== ITERATION 9 ===
The next suffix of 'almasamolmaz' to add is 'l{m}' at indices 8,9
=> ActiveNode: node #0
=> ActiveEdge: lmasamolm(1,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 1
The next character on the current edge is 'm' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 2
 
(0)┬─a─────────(1)┬─lmasamolm
│ ├─molm
│ └─samolm
├─lmasamolm
├─m─────────(2)┬─asamolm
│ └─olm
├─olm
└─samolm
 
=== ITERATION 10 ===
The next suffix of 'almasamolmaz' to add is 'lm{a}' at indices 8,10
=> ActiveNode: node #0
=> ActiveEdge: lmasamolma(1,#)
=> DistanceIntoActiveEdge: 2
=> UnresolvedSuffixes: 2
The next character on the current edge is 'a' (suffix added implicitly)
=> DistanceIntoActiveEdge is now: 3
 
(0)┬─a──────────(1)┬─lmasamolma
│ ├─molma
│ └─samolma
├─lmasamolma
├─m──────────(2)┬─asamolma
│ └─olma
├─olma
└─samolma
 
=== ITERATION 11 ===
The next suffix of 'almasamolmaz' to add is 'lma{z}' at indices 8,11
=> ActiveNode: node #0
=> ActiveEdge: lmasamolmaz(1,#)
=> DistanceIntoActiveEdge: 3
=> UnresolvedSuffixes: 3
Splitting edge lmasamolmaz(1,#) at index 4 ('s')
=> Hierarchy is now: node #0 --> lma(1,3) --> node #3 --> samolmaz(4,#)
=> ActiveEdge is now: lma(1,3)
Adding new edge to node #3
=> node #3 --> z(11,#)
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
 
(0)┬─a────────(1)┬─lmasamolmaz
│ ├─molmaz
│ └─samolmaz
├─lma──────(3)┬─samolmaz
│ └─z
├─m────────(2)┬─asamolmaz
│ └─olmaz
├─olmaz
└─samolmaz
 
The next suffix of 'almasamolmaz' to add is 'ma{z}' at indices 9,11
=> ActiveNode: node #2
=> ActiveEdge: asamolmaz(3,#)
=> DistanceIntoActiveEdge: 1
=> UnresolvedSuffixes: 2
Splitting edge asamolmaz(3,#) at index 4 ('s')
=> Hierarchy is now: node #2 --> a(3,3) --> node #4 --> samolmaz(4,#)
=> ActiveEdge is now: a(3,3)
=> Connected node #3 to node #4
Adding new edge to node #4
=> node #4 --> z(11,#)
The linked node for active node node #2 is [null]
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary
 
(0)┬─a────────(1)┬─lmasamolmaz
│ ├─molmaz
│ └─samolmaz
├─lma──────(3)┬─samolmaz
│ └─z
├─m────────(2)┬─a─────(4)┬─samolmaz
│ │ └─z
│ └─olmaz
├─olmaz
└─samolmaz
 
The next suffix of 'almasamolmaz' to add is 'a{z}' at indices 10,11
=> ActiveNode: node #1
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 1
Existing edge for node #1 starting with 'z' not found
Adding new edge to node #1
=> node #1 --> z(11,#)
The linked node for active node node #1 is [null]
 
(0)┬─a────────(1)┬─lmasamolmaz
│ ├─molmaz
│ ├─samolmaz
│ └─z
├─lma──────(3)┬─samolmaz
│ └─z
├─m────────(2)┬─a─────(4)┬─samolmaz
│ │ └─z
│ └─olmaz
├─olmaz
└─samolmaz
 
The next suffix of 'almasamolmaz' to add is '{z}' at indices 11,11
=> ActiveNode: node #0
=> ActiveEdge: none
=> DistanceIntoActiveEdge: 0
=> UnresolvedSuffixes: 0
Existing edge for node #0 starting with 'z' not found
Adding new edge to node #0
=> node #0 --> z(11,#)
 
(0)┬─a────────(1)┬─lmasamolmaz
│ ├─molmaz
│ ├─samolmaz
│ └─z
├─lma──────(3)┬─samolmaz
│ └─z
├─m────────(2)┬─a─────(4)┬─samolmaz
│ │ └─z
│ └─olmaz
├─olmaz
├─samolmaz
└─z

pheww....atlast i found and article and well written code on suffix tree.Thanks for saving my life.

I have one doubt in the code , I hope you can clarify it.
in UpdateActivePointToLinkedNodeOrRoot() function , when below condition executes :-
if(ActiveEdge != null)
{
var firstIndexOfOriginalActiveEdge = ActiveEdge.StartIndex;
ActiveEdge = ActiveNode.Edges[Word[ActiveEdge.StartIndex]];
TriggerChanged();
NormalizeActivePointIfNowAtOrBeyondEdgeBoundary(firstIndexOfOriginalActiveEdge);
}

should not we do "var firstIndexOfOriginalActiveEdge = ActiveEdge.StartIndex;" AFTER "ActiveEdge = ActiveNode.Edges[Word[ActiveEdge.StartIndex]];"

Because what i can understand from the code is that ...when we mode to linked node using suffix link then we should check if we are at the end of the edge or not ..if yes then normalize it but this normalization should occur at the new node (i.e node we have reached using suffix link).So according to me , code should look like below :-
if(ActiveEdge != null)
{
ActiveEdge = ActiveNode.Edges[Word[ActiveEdge.StartIndex]];
var firstIndexOfOriginalActiveEdge = ActiveEdge.StartIndex;
TriggerChanged();
NormalizeActivePointIfNowAtOrBeyondEdgeBoundary(firstIndexOfOriginalActiveEdge);
}

The SO question brings me here and I find your code very helpful! Thank you for sharing!

However, I think there might be some minor problems. The test case "abcdefabxybcdmnabcdex" should be "abcdefabxybcdmnabcdex$" because the end of the original string is "x", which is a substring that occurs before. Also, the sufix tree of "dedododeeodo" has only 12 leaves while the string "dedododeeodo$" has 13 suffixes(You can't find "do$" in the tree). So maybe you leave out some suffix-links in the tree?

Hello, yes I believe there's a bug in the code. I haven't had time to fix it as currently I no longer have a use for the algorithm. Somebody on the StackOverflow thread posted a fix to the theory, but I've yet to see somebody fork the Gist and implement the fix. Feel free to do so.

Please sign in to comment on this gist.

Something went wrong with that request. Please try again.