Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
3d Wireframe Cube demo for Codea
-- Classic 3d wireframe cube demo in LUA
-- based on version for PSP by Nils -
-- modified for Codea - Tom Bortels November 2011
function setup()
--focal length to determine perspective scaling
focalLength = 300
-- here we set up a function to make an object with
-- x, y and z properties to represent a 3D point.
make3DPoint = function(x,y,z)
local point = {}
point.x = x
point.y = y
point.z = z
return point
-- similarly set up a function to make an object with
-- x and y properties to represent a 2D point.
make2DPoint = function(x, y)
local point = {}
point.x = x+240
point.y = y+131
return point
-- conversion function for changing an array of 3D points to an
-- array of 2D points which is to be returned.
Transform3DPointsTo2DPoints = function(points, axisRotations)
-- the array to hold transformed 2D points - the 3D points
-- from the point array which are here rotated and scaled
--to generate a point as it would appear on the screen
local TransformedPointsArray = {}
-- Math calcs for angles - sin and cos for each (trig)
-- this will be the only time sin or cos is used for the
-- entire portion of calculating all rotations
local sx = math.sin(axisRotations.x)
local cx = math.cos(axisRotations.x)
local sy = math.sin(axisRotations.y)
local cy = math.cos(axisRotations.y)
local sz = math.sin(axisRotations.z)
local cz = math.cos(axisRotations.z)
-- a couple of variables to be used in the looping
-- of all the points in the transform process
local x,y,z, xy,xz, yx,yz, zx,zy, scaleRatio
-- loop through all the points in your object/scene/space
-- whatever - those points passed - so each is transformed
local i = table.getn(points)
while (i >0) do
--apply Math to making transformations
-- based on rotations
-- assign variables for the current x, y and z
x = points[i].x
y = points[i].y
z = points[i].z
-- perform the rotations around each axis
-- rotation around x
xy = cx*y - sx*z
xz = sx*y + cx*z
-- rotation around y
yz = cy*xz - sy*x
yx = sy*xz + cy*x
-- rotation around z
zx = cz*yx - sz*xy
zy = sz*yx + cz*xy
-- now determine perspective scaling factor
-- yz was the last calculated z value so its the
-- final value for z depth
scaleRatio = focalLength/(focalLength + yz)
-- assign the new x and y
x = zx*scaleRatio
y = zy*scaleRatio
-- create transformed 2D point with the calculated values
-- adding it to the array holding all 2D points
TransformedPointsArray[i] = make2DPoint(x, y)
i = i -1
-- after looping return the array of points as they
-- exist after the rotation and scaling
return TransformedPointsArray
-- the points array contains all the points in the 3D
-- scene. These 8 make a square on the screen.
pointsArray = {
-- initial decays of 3D cube
userX = - 0.01
userY = 0.01
cubeAxisRotations = make3DPoint(0,0,0)
end -- init()
function draw()
cubeAxisRotations.y = cubeAxisRotations.y + userY
cubeAxisRotations.x = cubeAxisRotations.x + userX
-- create a new array to contain the 2D x and y positions of the
-- points in the pointsArray as they would exist on the screen
local sp = Transform3DPointsTo2DPoints(pointsArray, cubeAxisRotations)
-- clear the scene
background(0, 0, 0, 255)
-- draw the lines needed to make the square
-- top
stroke(0, 255, 0, 255) -- green
line(sp[1].x, sp[1].y, sp[2].x, sp[2].y)
line(sp[2].x, sp[2].y, sp[3].x, sp[3].y)
line(sp[3].x, sp[3].y, sp[4].x, sp[4].y)
line(sp[4].x, sp[4].y, sp[1].x, sp[1].y)
-- bottom
stroke(255, 0, 0, 255) -- red
line(sp[5].x, sp[5].y, sp[6].x, sp[6].y)
line(sp[6].x, sp[6].y, sp[7].x, sp[7].y)
line(sp[7].x, sp[7].y, sp[8].x, sp[8].y)
line(sp[8].x, sp[8].y, sp[5].x, sp[5].y)
-- connecting bottom and top
stroke(255, 255, 255, 255) -- white
line(sp[1].x, sp[1].y, sp[5].x, sp[5].y)
line(sp[2].x, sp[2].y, sp[6].x, sp[6].y)
stroke(0, 0, 255, 255) -- blue
line(sp[3].x, sp[3].y, sp[7].x, sp[7].y)
line(sp[4].x, sp[4].y, sp[8].x, sp[8].y)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.