Created
May 28, 2019 16:25
-
-
Save bsridatta/ce0fdcf4ce6aca425416c64e9ca03e37 to your computer and use it in GitHub Desktop.
Creating TFRecords Dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
SHUFFLE_BUFFER = 1000 | |
BATCH_SIZE = 32 | |
NUM_CLASSES = 12 | |
# Create a description of the features. | |
feature_description = { | |
'feature0': tf.FixedLenFeature([32768], tf.float32), | |
'feature1': tf.FixedLenFeature([1], tf.int64) | |
} | |
def _parse_function(example_proto): | |
# Parse the input tf.Example proto using the dictionary above. | |
parsed_example = tf.parse_single_example(example_proto, feature_description) | |
parsed_example["feature0"] = tf.transpose(tf.reshape(parsed_example['feature0'], (256,128))) | |
return parsed_example | |
def create_dataset(filepath): | |
dataset = tf.data.TFRecordDataset(filepath) | |
dataset = dataset.map(_parse_function) #, num_parallel_calls=8) | |
# This dataset will go on forever | |
dataset = dataset.repeat() | |
# Set the number of datapoints you want to load and shuffle | |
dataset = dataset.shuffle(SHUFFLE_BUFFER) | |
dataset = dataset.batch(BATCH_SIZE) | |
# Create an iterator | |
iterator = dataset.make_one_shot_iterator() | |
# Create your tf representation of the iterator | |
feature = iterator.get_next() | |
#print(feature) | |
lmfcc = feature["feature0"] | |
label = feature["feature1"] | |
# Bring your picture back in shape | |
lmfcc = tf.reshape(lmfcc, [1,128, 256]) | |
# Create a one hot array for your labels | |
label = tf.one_hot(label, NUM_CLASSES) | |
label = tf.reshape(label, [1,1, 12]) | |
print(lmfcc.shape) | |
print(label.shape) | |
return lmfcc, label |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment