Skip to content

Instantly share code, notes, and snippets.

Christian Setzkorn csetzkorn

  • United Kingdom
Block or report user

Report or block csetzkorn

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
@csetzkorn
csetzkorn / gist:7b134cd25ccf08c508aeb002ddf699a9
Last active Sep 5, 2018
simple text classification example using keras and word embedding
View gist:7b134cd25ccf08c508aeb002ddf699a9
from numpy import array
from keras.preprocessing.text import one_hot
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.embeddings import Embedding
# see also: https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/
@csetzkorn
csetzkorn / gist:0440cf16f27011609aceda8d052f7877
Created Aug 29, 2018
monte carlo integration - see data camp
View gist:0440cf16f27011609aceda8d052f7877
# Define the sim_integrate function
def sim_integrate(func, xmin, xmax, sims):
x = np.random.uniform(xmin, xmax, sims)
y = np.random.uniform(min(min(func(x)), 0), max(func(x)), sims)
area = (max(y) - min(y))*(xmax-xmin)
result = area * sum(abs(y) < abs(func(x)))/sims
return result
# Call the sim_integrate function and print results
result = sim_integrate(func = lambda x: x*np.exp(x), xmin = 0, xmax = 1, sims = 50)
@csetzkorn
csetzkorn / gist:f5bbe72d5225151730d60734be3dc4a6
Created Aug 29, 2018
jackknife estimate of median and CI
View gist:f5bbe72d5225151730d60734be3dc4a6
# Leave one observation out to get the jackknife sample and store the median length
median_lengths = []
for i in range(n):
jk_sample = wrench_lengths[index != i]
median_lengths.append(np.median(jk_sample))
median_lengths = np.array(median_lengths)
# Calculate jackknife estimate and it's variance
jk_median_length = np.mean(median_lengths)
View gist:84cfb993328904e07c4fd0908552d38c
rsquared_boot, coefs_boot, sims = [], [], 1000
reg_fit = sm.OLS(df['y'], df.iloc[:,1:]).fit()
# Run 1K iterations
for i in range(sims):
# First create a bootstrap sample with replacement with n=df.shape[0]
bootstrap = df.sample(n=df.shape[0], replace=True)
# Fit the regression and append the r square to rsquared_boot
rsquared_boot.append(sm.OLS(bootstrap['y'],bootstrap.iloc[:,1:]).fit().rsquared)
View gist:88fccf1fdb5bfc27bc406f52d763a631
library(dplyr)
library(ggplot2)
setwd('D:\\ToyData')
OrginalData <- read.table("https://s3.amazonaws.com/christiandata887342ac-a3ce-4600-94d0-9092f4a6bd20/IrisTabSepData/IrisData.txt",
header = TRUE, sep = "\t")
head(OrginalData)
View gist:628621c87fd97fb018f14882a8497dbf
library(dplyr)
library(ggplot2)
setwd('D:\\ToyData')
OrginalData <- read.table("IrisData.txt",
header = TRUE, sep = "\t")
SubsetData <- subset(OrginalData, select = c(
#"SepalLength"
View gist:5b58794316c1983f85d39c29153034ec
import os
from scipy.misc import imread
from scipy.linalg import norm
from scipy import sum, average
def compare_images(img1, img2):
# normalize to compensate for exposure difference, this may be unnecessary
# consider disabling it
img1 = normalize(img1)
View gist:843c2916364618b81e12b926e5b73c0f
import numpy
import pandas
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
View gist:9bb42a4a0dc26686d1a8991706acc11f
import pandas as pd
from fbprophet import Prophet
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
df = pd.read_csv('D:/PyCharmProjects/Prophet/Data/AirPassengers.csv')
df['Month'] = pd.DatetimeIndex(df['Month'])
#Prophet also imposes the strict condition that the input columns be named ds (the time column) and y (the metric column)
df = df.rename(columns={'Month': 'ds',
@csetzkorn
csetzkorn / gist:8ab0c61b06107f10ed5bc542da47240a
Created May 21, 2017
Fit SOM, cluster prototypes and add cluster membership to original dataset
View gist:8ab0c61b06107f10ed5bc542da47240a
library(dplyr)
library(kohonen)
setwd('C:\\Users\\Christian\\Source\\Repos\\RClusteringMixedDataPam')
OrginalData <- read.table("IrisData.txt",
header = TRUE, sep = "\t")
SubsetData <- subset(OrginalData, select = c("SepalLength", "SepalWidth", "PetalLength", "PetalWidth"))
#TrainingMatrix <- as.matrix(scale(SubsetData))
You can’t perform that action at this time.