Skip to content

Instantly share code, notes, and snippets.

@danijar
Last active January 12, 2024 15:18
Show Gist options
  • Save danijar/61f9226f7ea498abce36187ddaf51ed5 to your computer and use it in GitHub Desktop.
Save danijar/61f9226f7ea498abce36187ddaf51ed5 to your computer and use it in GitHub Desktop.
TensorFlow Sequence Labelling
# Example for my blog post at:
# http://danijar.com/introduction-to-recurrent-networks-in-tensorflow/
import functools
import sets
import tensorflow as tf
def lazy_property(function):
attribute = '_' + function.__name__
@property
@functools.wraps(function)
def wrapper(self):
if not hasattr(self, attribute):
setattr(self, attribute, function(self))
return getattr(self, attribute)
return wrapper
class SequenceLabelling:
def __init__(self, data, target, dropout, num_hidden=200, num_layers=3):
self.data = data
self.target = target
self.dropout = dropout
self._num_hidden = num_hidden
self._num_layers = num_layers
self.prediction
self.error
self.optimize
@lazy_property
def prediction(self):
# Recurrent network.
network = tf.nn.rnn_cell.GRUCell(self._num_hidden)
network = tf.nn.rnn_cell.DropoutWrapper(
network, output_keep_prob=self.dropout)
network = tf.nn.rnn_cell.MultiRNNCell([network] * self._num_layers)
output, _ = tf.nn.dynamic_rnn(network, data, dtype=tf.float32)
# Softmax layer.
max_length = int(self.target.get_shape()[1])
num_classes = int(self.target.get_shape()[2])
weight, bias = self._weight_and_bias(self._num_hidden, num_classes)
# Flatten to apply same weights to all time steps.
output = tf.reshape(output, [-1, self._num_hidden])
prediction = tf.nn.softmax(tf.matmul(output, weight) + bias)
prediction = tf.reshape(prediction, [-1, max_length, num_classes])
return prediction
@lazy_property
def cost(self):
cross_entropy = -tf.reduce_sum(
self.target * tf.log(self.prediction), [1, 2])
cross_entropy = tf.reduce_mean(cross_entropy)
return cross_entropy
@lazy_property
def optimize(self):
learning_rate = 0.003
optimizer = tf.train.RMSPropOptimizer(learning_rate)
return optimizer.minimize(self.cost)
@lazy_property
def error(self):
mistakes = tf.not_equal(
tf.argmax(self.target, 2), tf.argmax(self.prediction, 2))
return tf.reduce_mean(tf.cast(mistakes, tf.float32))
@staticmethod
def _weight_and_bias(in_size, out_size):
weight = tf.truncated_normal([in_size, out_size], stddev=0.01)
bias = tf.constant(0.1, shape=[out_size])
return tf.Variable(weight), tf.Variable(bias)
def read_dataset():
dataset = sets.Ocr()
dataset = sets.OneHot(dataset.target, depth=2)(dataset, columns=['target'])
dataset['data'] = dataset.data.reshape(
dataset.data.shape[:-2] + (-1,)).astype(float)
train, test = sets.Split(0.66)(dataset)
return train, test
if __name__ == '__main__':
train, test = read_dataset()
_, length, image_size = train.data.shape
num_classes = train.target.shape[2]
data = tf.placeholder(tf.float32, [None, length, image_size])
target = tf.placeholder(tf.float32, [None, length, num_classes])
dropout = tf.placeholder(tf.float32)
model = SequenceLabelling(data, target, dropout)
sess = tf.Session()
sess.run(tf.initialize_all_variables())
for epoch in range(10):
for _ in range(100):
batch = train.sample(10)
sess.run(model.optimize, {
data: batch.data, target: batch.target, dropout: 0.5})
error = sess.run(model.error, {
data: test.data, target: test.target, dropout: 1})
print('Epoch {:2d} error {:3.1f}%'.format(epoch + 1, 100 * error))
@QoT
Copy link

QoT commented Aug 12, 2017

@adelsalehali1982 You may want to install [sets] like this:

$ pip install -e git+https://github.com/danijar/sets/#egg=sets

Now, [AttributeError: 'module' object has no attribute 'Ocr'] problem should disappear.

@zdarktknight
Copy link

Thank you for the post.
I am learning RNN but I have a ValueError when I run this code:

I have a hard time to debug this. Could you please help with it?

ValueError: Dimensions must be equal, but are 400 and 328 for 'rnn/while/rnn/multi_rnn_cell/cell_0/cell_0/gru_cell/MatMul_2' (op: 'MatMul') with input shapes: [?,400], [328,400].

@surfertas
Copy link

@zdarktknight try the below. I refactored the original implementation and commented heavily for easy understanding. Danijar's sets library makes the job super easy as allows us to focus purely on understanding the algorithm. Good luck.
https://github.com/surfertas/deep_learning/blob/master/experiments/1-char_sequence_labeling_lstm.ipynb

@carusyte
Copy link

carusyte commented Feb 2, 2018

@QoT, @adelsalehali1982 I suspect it is due to the name shadowing issue with the standard python library. I'm facing the same problem here. No idea how every other guys run the code successfully...I'm using python 2.7.13, and virtualenv, in a virtual environment dedicated for tensorflow. Running the following command tries to compile danijar's sets library from the source, am I guessing right?

$ pip install -e git+https://github.com/danijar/sets/#egg=sets

Frustratingly, it gives me the following error:

      ...
      File "/Users/jx/ProgramData/tensorflow/src/sets/setup.py", line 94, in finalize_options
        super().finalize_options()
    TypeError: super() takes at least 1 argument (0 given)
    
    ----------------------------------------
  Rolling back uninstall of sets
Command "/Users/jx/ProgramData/tensorflow/bin/python2.7 -c "import setuptools, 
tokenize;__file__='/Users/jx/ProgramData/tensorflow/src/sets/setup.py';f=getattr(tokenize, 'open', open)
(__file__);code=f.read().replace('\r\n', '\n');f.close();exec(compile(code, __file__, 'exec'))" develop --no-deps" failed with error code 1 in 
/Users/jx/ProgramData/tensorflow/src/sets/

@rolanvc
Copy link

rolanvc commented Aug 6, 2018

@sufertas, What you did is awesome. Thank you!!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment