Skip to content

Instantly share code, notes, and snippets.

@danijar
Last active January 17, 2023 01:58
Show Gist options
  • Save danijar/8663d3bbfd586bffecf6a0094cd116f2 to your computer and use it in GitHub Desktop.
Save danijar/8663d3bbfd586bffecf6a0094cd116f2 to your computer and use it in GitHub Desktop.
TensorFlow Scope Decorator
# Working example for my blog post at:
# https://danijar.github.io/structuring-your-tensorflow-models
import functools
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def doublewrap(function):
"""
A decorator decorator, allowing to use the decorator to be used without
parentheses if no arguments are provided. All arguments must be optional.
"""
@functools.wraps(function)
def decorator(*args, **kwargs):
if len(args) == 1 and len(kwargs) == 0 and callable(args[0]):
return function(args[0])
else:
return lambda wrapee: function(wrapee, *args, **kwargs)
return decorator
@doublewrap
def define_scope(function, scope=None, *args, **kwargs):
"""
A decorator for functions that define TensorFlow operations. The wrapped
function will only be executed once. Subsequent calls to it will directly
return the result so that operations are added to the graph only once.
The operations added by the function live within a tf.variable_scope(). If
this decorator is used with arguments, they will be forwarded to the
variable scope. The scope name defaults to the name of the wrapped
function.
"""
attribute = '_cache_' + function.__name__
name = scope or function.__name__
@property
@functools.wraps(function)
def decorator(self):
if not hasattr(self, attribute):
with tf.variable_scope(name, *args, **kwargs):
setattr(self, attribute, function(self))
return getattr(self, attribute)
return decorator
class Model:
def __init__(self, image, label):
self.image = image
self.label = label
self.prediction
self.optimize
self.error
@define_scope(initializer=tf.contrib.slim.xavier_initializer())
def prediction(self):
x = self.image
x = tf.contrib.slim.fully_connected(x, 200)
x = tf.contrib.slim.fully_connected(x, 200)
x = tf.contrib.slim.fully_connected(x, 10, tf.nn.softmax)
return x
@define_scope
def optimize(self):
logprob = tf.log(self.prediction + 1e-12)
cross_entropy = -tf.reduce_sum(self.label * logprob)
optimizer = tf.train.RMSPropOptimizer(0.03)
return optimizer.minimize(cross_entropy)
@define_scope
def error(self):
mistakes = tf.not_equal(
tf.argmax(self.label, 1), tf.argmax(self.prediction, 1))
return tf.reduce_mean(tf.cast(mistakes, tf.float32))
def main():
mnist = input_data.read_data_sets('./mnist/', one_hot=True)
image = tf.placeholder(tf.float32, [None, 784])
label = tf.placeholder(tf.float32, [None, 10])
model = Model(image, label)
sess = tf.Session()
sess.run(tf.initialize_all_variables())
for _ in range(10):
images, labels = mnist.test.images, mnist.test.labels
error = sess.run(model.error, {image: images, label: labels})
print('Test error {:6.2f}%'.format(100 * error))
for _ in range(60):
images, labels = mnist.train.next_batch(100)
sess.run(model.optimize, {image: images, label: labels})
if __name__ == '__main__':
main()
@rllin
Copy link

rllin commented Jan 26, 2017

Great design! Any idea how it works with tensorflow saver? How would you restore a checkpoint of a session that's baked into this class?

@mihaic
Copy link

mihaic commented Jan 27, 2017

@danijar, is it OK to use this code in a project licensed under Apache 2.0?

@pucktada
Copy link

Hi -- will "define_scope" work when the wrapped function have argument others than self? for example, if i try

@define_scope
def prediction(self, batch_size):
...
and I get "TypeError: prediction() missing 1 required positional argument"

@yuh8
Copy link

yuh8 commented May 23, 2017

@pucktada, you may want to redefine "def decorator(self)" to "def decorator(self, *args, **kwargs)". Likewise for function(self, *args, **kwargs) inside the wrapper function

@spk921
Copy link

spk921 commented May 28, 2017

@pucktada Have you solve the problem? @yuh8 how can I redefine it?

@lakshayg
Copy link

@rllin Have you found a way to use Saver with this model?
@danijar It would we very useful if you can incorporate the ability to save and load trained model using this class. Do you have some ideas on how this can be done?

@tartavull
Copy link

Hey, I tried extending the idea of the decorator here to set the variable names as well

@madvn
Copy link

madvn commented Sep 18, 2017

Thanks for this gist @danijar Could you please explain how the feed_dict in line 87 (or any similar line) works? Are the feed_dict keys same as the args in init ? Thanks.

@madvn
Copy link

madvn commented Sep 18, 2017

I got that part! But I have another question now - Is it possible to define the attributes such as "optimize" in another file that imports this class? If yes, how? Thanks.

@jren2017
Copy link

jren2017 commented Oct 4, 2017

Hello, I changed the code a little bit.
I want to change the cost function dynamically in each iteration, the code is here https://github.com/jren2017/accessAccuracyFromLossFunc/blob/master/from_gist_example.py

I want to access the error of last iteration, use the error to calculate the cross-entropy, this sounds weird, but just an example.
Hope you can help have a look.
changed 65th row of the code:
logprob = tf.log(self.prediction + 1e-12) *(1-current_error) #Here changed ????????????

@richlysakowski
Copy link

I get the error message below when I run the example. How do I fix it? It appears to be missing the _gru_ops library.
Great article. Thank you.

File "C:\ProgramData\Anaconda3\envs\TensorFlow\lib\site-packages\tensorflow\python\framework\load_library.py", line 56, in load_op_library
lib_handle = py_tf.TF_LoadLibrary(library_filename)

NotFoundError: C:\ProgramData\Anaconda3\envs\TensorFlow\lib\site-packages\tensorflow\contrib\rnn\python\ops_gru_ops.so not found

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment