This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class AC_Network(): | |
def __init__(self,s_size,a_size,scope,trainer): | |
with tf.variable_scope(scope): | |
#Input and visual encoding layers | |
self.inputs = tf.placeholder(shape=[None,s_size],dtype=tf.float32) | |
self.imageIn = tf.reshape(self.inputs,shape=[-1,84,84,1]) | |
self.conv1 = slim.conv2d(activation_fn=tf.nn.elu, | |
inputs=self.imageIn,num_outputs=16, | |
kernel_size=[8,8],stride=[4,4],padding='VALID') | |
self.conv2 = slim.conv2d(activation_fn=tf.nn.elu, | |
inputs=self.conv1,num_outputs=32, | |
kernel_size=[4,4],stride=[2,2],padding='VALID') | |
hidden = slim.fully_connected(slim.flatten(self.conv2),256,activation_fn=tf.nn.elu) | |
#Recurrent network for temporal dependencies | |
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(256,state_is_tuple=True) | |
c_init = np.zeros((1, lstm_cell.state_size.c), np.float32) | |
h_init = np.zeros((1, lstm_cell.state_size.h), np.float32) | |
self.state_init = [c_init, h_init] | |
c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c]) | |
h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h]) | |
self.state_in = (c_in, h_in) | |
rnn_in = tf.expand_dims(hidden, [0]) | |
step_size = tf.shape(self.imageIn)[:1] | |
state_in = tf.nn.rnn_cell.LSTMStateTuple(c_in, h_in) | |
lstm_outputs, lstm_state = tf.nn.dynamic_rnn( | |
lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size, | |
time_major=False) | |
lstm_c, lstm_h = lstm_state | |
self.state_out = (lstm_c[:1, :], lstm_h[:1, :]) | |
rnn_out = tf.reshape(lstm_outputs, [-1, 256]) | |
#Output layers for policy and value estimations | |
self.policy = slim.fully_connected(rnn_out,a_size, | |
activation_fn=tf.nn.softmax, | |
weights_initializer=normalized_columns_initializer(0.01), | |
biases_initializer=None) | |
self.value = slim.fully_connected(rnn_out,1, | |
activation_fn=None, | |
weights_initializer=normalized_columns_initializer(1.0), | |
biases_initializer=None) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment