This gist includes the topical descriptor ontology from MeSH (Medical Subject Headings). Here is a link that loads the data from this gist and prepopulates the cosmograph configuration
The visualization will look something like:
This gist includes the topical descriptor ontology from MeSH (Medical Subject Headings). Here is a link that loads the data from this gist and prepopulates the cosmograph configuration
The visualization will look something like:
<mxfile host="Electron" modified="2022-01-11T22:24:44.620Z" agent="5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) draw.io/16.1.2 Chrome/96.0.4664.55 Electron/16.0.5 Safari/537.36" etag="3d_x8ajHgV-OkkuHk2Cl" version="16.1.2" type="device"><diagram id="CRBQrBPZslJF9kaArlf7" name="Page-1">7Vttj5s4EP41ke4+JALzEvJx3+5aqadbqVLb+7Qy2El8SzBnzCbprz8TzIuJQ3YbCGm6W6mLB3sYZjwzz4zZkXW32vzJYLz8iyIcjoCBNiPrfgSAaTmu+JVRtpIym1o5ZcEIkrSK8Jl8x5JoSGpKEE6UiZzSkJNYJQY0inDAFRpkjK7VaXMaqk+N4QLvET4HMNynfiWIL3Oq5xgV/QMmi2XxZNOQd1awmCwJyRIiuq6RrIeRdcco5fnVanOHw0x7hV7ydX8cuFsKxnDEX7Pgg/v3Atyv14/if299/yV6/BiPzZkUjm+LN8ZIKEAOKeNLuqARDB8q6i2jaYRwxtYQo2rOJ0pjQTQF8V/M+VZaE6acCtKSr0J5F28I/5Ytn0wdOfxHcsuu7zf1wbYYRJxt81WW4xSEbJ05MUBJqBbvRsrqR8zICnPMJDF/9+yFD+pUkhKasgC3KVLuTcgWmLfNc0vTC6fBVIjDtmIhwyHk5EUVBMrNuyjnVfYVF9LEbzB3sRdfYJjKRyU8RUR4mG4bfIK+8GfFdDAki0hcB0JDmR5vXzDjRPjLjbyxIgjluwQn5Dv0d/wyZceURHz3Qs7tyLkv1Z8xwJuRxpnl4sqF6oZp2c772pXsjQlwLRl/ZEAa2/nw1fqXzB+zt6k4j02VrasyoPN5IrZF03ylhD9uUXPPoCPghkJHt4i8KBZ1/0uzUHMrlM3H0ow3YkaI |
Information for comment at Ubuntu uses only the top left quarter of the screen
Output from lsb_release -a
:
No LSB modules are available.
Distributor ID: Pop
Description: Pop!_OS 22.04 LTS
Release: 22.04
Codename: jammy
DISEASES 2.0: a weekly updated database of disease–gene associations from text mining and data integration
Dhouha Grissa, Alexander Junge, Tudor I Oprea, Lars Juhl Jensen
bioRxiv (2021-12-09) https://doi.org/gn3fj4
DOI: 10.1101/2021.12.07.471296
The webapp and latest downloads are available at . Version 1 is described in the 2015 publication.
<mxfile host="app.diagrams.net" modified="2021-06-08T17:05:33.560Z" agent="5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36" etag="oN2ExXKtZoTKyfjxyag6" version="14.7.6" type="device"><diagram id="CpBVq6cUYyMfxSufbEmF" name="Page-1">5Vxbd6q6Fv41HeOch3aEAF4eFail22CtdHXbN4oUowgeQBF+/ZnhouK9u9ius05vkpDMzMzLN5NJ6A0vzVYd35iPiTeynBuMRqsbXr7BmOPrGD5YTZzXwE9WY/t0lNdtKgY0sfJKlNcu6MgKSg1Dz3NCOi9Xmp7rWmZYqjN834vKzT48pzzq3LCtvYqBaTj7ta90FI6z2oaINvUPFrXHxcgcyu/MjKJxXhGMjZEXbVXxyg0v+Z4XZlezlWQ5THqFXLJ+90furhnzLTe8pANvL8YT7i/nXR74b7b+13zYS275nLcwLibs+eHYsz3XcLqeN4c67oZvT6wwjHPlGIvQg6pxOHPyuxkNa7QnyQ1reVXgLXzTOsEPV+jY8G0rPNEQi2sRgvFZ3swK/Rg6+pZjhHRZ5sTIjcBet9vICS5yUX1CbEJGd2k4i3ykG1xzgN/2O1zY7AJmH1KTzoEbzy3uwmDrBuseflHzl9Lp3GBp/8azZZghsL6nLCbzrvEOTldSiOFQ24VrE+Rv+VCxtBgzhtPKb8zoaMRotH0roInxntJDjGuPumEqLbF9I8pr5TIC1uqQx+WdN3a+rfbjNrevuZw6uhMF1MxI5aCRG+nFqs1pP7G5bAjf1spUb3GzTML7+AjA5nZtY83iPzcXsQovs1Y0/Jup6a7ZqOflYVqu4Vpelle5HtNCvFV4snwK02DWkNZV7rNfcMXD+hIbqKQvscDcgkSGEXmvjdJavm/ |
TIGA: Target illumination GWAS analytics
Jeremy J. Yang, Dhouha Grissa, Christophe G. Lambert, Cristian G. Bologa, Stephen L. Mathias, Anna Waller, David J. Wild, Lars Juhl Jensen, Tudor I. Oprea
bioRxiv (2020-11-12) https://www.biorxiv.org/content/10.1101/2020.11.11.378596v1
DOI: 10.1101/2020.11.11.378596
Related links:
Review of version 2 of the following preprint:
Rigor and Transparency Index, a new metric of quality for assessing biological and medical science methods
Joe Menke, Martijn Roelandse, Burak Ozyurt, Maryann Martone, Anita Bandrowski
bioRxiv (2020-01-18) https://doi.org/dkg6
DOI: 10.1101/2020.01.15.908111
The study introduces an automated method called SciScore to detect whether an article's methods section mentions any of 15 categories, such as a consent statement or an organism. These metrics are combined to create a single score for each article called the "Rigor and Transparency Index". The authors applied the method to the PubMed Central Open Access subset with over 1 million articles to identify trends in the level of details provided by method sections.
metaedge | abbreviation | n_edges | n_connected_source_nodes | n_connected_target_nodes | n_source_wedges | n_target_wedges | n_wedges | n_valid_xswaps | |
---|---|---|---|---|---|---|---|---|---|
Anatomy–downregulates–Gene | AdG | 102240 | 36 | 15097 | 173440264 | 493897 | 173934161 | 5052523519 | |
Anatomy–expresses–Gene | AeG | 526407 | 241 | 18094 | 2290279787 | 10749138 | 2301028925 | 136250872696 | |
Anatomy–upregulates–Gene | AuG | 97848 | 36 | 15929 | 149352969 | 359661 | 149712630 | 4637353998 | |
Compound–binds–Gene | CbG | 11571 | 1389 | 1689 | 104024 | 476540 | 580564 | 66357671 | |
Compound–causes–Side Effect | CcSE | 138944 | 1071 | 5701 | 16998055 | 16764774 | 33762829 | 9618885267 | |
Compound–downregulates–Gene | CdG | 21102 | 734 | 2880 | 1683615 | 291789 | 1975404 | 220661247 | |
Compound–palliates–Disease | CpD | 390 | 221 | 50 | 326 | 2857 | 3183 | 72672 | |
Compound–resembles–Compound | CrC | 12972 | 1281 | 1281 | 120047 | 120047 | 240094 | 83889812 | |
Compound–treats–Disease | CtD | 755 | 387 | 77 | 1420 | 8070 | 9490 | 275145 |