Skip to content

Instantly share code, notes, and snippets.

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
import sunpy.map
from astropy.wcs import WCS
from reproject import reproject_interp
import matplotlib.pyplot as plt
import astropy.units as u
# Load WISPR map
m = sunpy.map.Map('~/Downloads/psp_L1_wispr_20200125T000229_V1_2302.fits')
# Create a new WCS in a helioprojective (HPLN/HPLT) coordinate system with a
from astropy.coordinates import SkyCoord
import astropy.units as u
from matplotlib.colors import LogNorm
import matplotlib.pyplot as plt
import sunpy.data.sample
import sunpy.map
from skimage.transform import warp_polar
import astropy.constants as const
import astropy.units as u
import numpy as np
import sunpy.map
from astropy.coordinates import SkyCoord
import pfsspy
from pfsspy import tracing
from pfsspy.sample_data import get_gong_map
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
def load_data(files):
# Number of data points for each variable and time
npoints = 360 * 180
# Variable names
variables = ['lons', 'lats', 'b_all', 'b_feet', 'b_ss']
# Empty array to store data
all_data = np.zeros((len(variables), len(files), npoints)) * np.nan
dtimes = []
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import SkyCoord
from matplotlib.patches import Rectangle
import sunpy.data.sample
import sunpy.map
aia_map = sunpy.map.Map(sunpy.data.sample.AIA_171_IMAGE)
import matplotlib.pyplot as plt
from reproject import reproject_interp
import sunpy.data.sample
import sunpy.map
map_aia = sunpy.map.Map(sunpy.data.sample.AIA_171_IMAGE)
map_hmi = sunpy.map.Map(sunpy.data.sample.HMI_LOS_IMAGE)
map_hmi.plot_settings['cmap'] = "hmimag"
@dstansby
dstansby / clean_mdi_synoptic.py
Created February 19, 2021 22:39
Cleaning MDI synoptic map metadata
self.m.meta['CTYPE1'] = 'CRLN-CEA'
self.m.meta['CTYPE2'] = 'CRLT-CEA'
self.m.meta['CDELT1'] = np.abs(self.m.meta['CDELT1'])
self.m.meta['CDELT2'] = 180 / np.pi * self.m.meta['CDELT2']
self.m.meta['CRVAL1'] = 0.0
self.m.meta['CUNIT1'] = 'deg'
self.m.meta['CUNIT2'] = 'deg'
self.m.meta['date-obs'] = parse_time(self.m.meta['t_start']).isot

MPL code of conduct (CoC)

Purpose of meeting

  • To decide on a process for selecting CoC for matplotlib

So far