I hereby claim:
- I am eclarke on github.
- I am erikclarke (https://keybase.io/erikclarke) on keybase.
- I have a public key ASDtTlFKxCJoOWfwfhHy-MJtbmGKnvzo-zxrJETJmi1kNQo
To claim this, I am signing this object:
#!/bin/bash | |
curl --header 'Access-Token: <your_access_token_here>' \ | |
--header 'Content-Type: application/json' \ | |
--data-binary '{"body":":)","title":"$@","type":"note"}' \ | |
--request POST \ | |
https://api.pushbullet.com/v2/pushes |
I hereby claim:
To claim this, I am signing this object:
# This is the testing function that builds the models | |
testMixedEffects <- function(test.col) { | |
# We return this default in case of error/no fit | |
default <- list(null.model=NA, model=NA) | |
counts <- .mat[, colnames(.mat)==test.col] | |
if (sum(counts > 0)/length(counts) < sparsity) { | |
message(sprintf("%s: too sparse, skipping", test.col)) | |
return(default) | |
} |
# Using indicspecies with a melted data frame | |
# Their input is actually not hard to work with. First we need to re-create the count matrix. | |
# This creates a data frame with the sample ID and study group as the first two columns, then each column after that is an OTU name | |
# (Replace column names as appropriate) | |
mat <- melted.df %>% reshape2::dcast(SampleID + StudyGroup ~ otu) | |
# Next, we actually convert things into inputs | |
# Hadley's stuff hates rownames, so we have to remake them | |
rownames(mat) = mat$SampleID |
docs: | |
Rscript -e "devtools::document(roclets=c('rd', 'collate', 'namespace', 'vignette'))" | |
gh-pages: | |
git checkout gh-pages | |
git merge master -X theirs -m "merge master" | |
site:docs gh-pages | |
Rscript -e "staticdocs::build_site(site_path='.', launch=FALSE)" | |
git commit -am 'updated docs' |
# Indicator value functions ----------------------------------------------- | |
#' Returns the indicator value (Dufrene, 1997) for a given row of species counts | |
#' along with a vector of class assignments. | |
#' @param row: vector of counts (usually a row in a counts matrix) | |
#' @param class: which level in the grouping variable to test | |
#' @param classes: factor describing the grouping of the counts vector | |
.indval <- function(row, class, classes) { | |
idxs <- classes == class | |
A.ij <- sum(row[idxs]) / sum(row) |
alpha_diversity <- function(df, group.col, freq.col) { | |
# Returns a variety of diversity indices, including the Gini-Simpson index, | |
# the inverse Simpson index, and the Shannon-Weaver index. The SW index is | |
# calculated using the natural logarithm. | |
# | |
# Arguments: | |
# df: a data frame where the rows are species, with a column containing the | |
# grouping variable and another column containing the proportional | |
# abundances of each species | |
# group: the name of the column defining the grouping variable |
>denovo1793 | |
GGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTATGTATCGTCGCCTTGGTGAGCCGTTACCCCACCAACTAGCTAATACAACGCAGGTCCATCTGGTAGTGATGCAATTGCACCTTTTAATTGACTATCATGCAATAGTCAATATTATGCGGTATTAGCTATCGTTTCCAATAGTTATCCCCCGCTACCAGGCAGGTTACCTACGCGTTACTCACCCGTTCGCAACTCATCCAGAGAAGCAAGCTCCTCCTTCAGCGTTCTACTTGCATGTATTAGGCACGCCGCCAGCGTTCGTC | |
>denovo2518 | |
GGAGTTTGGGCCGTGTCTCAGTCCCAATGTGGCCGATCACCCTCTCAGGTCGGCTATGCATCACGGCCTTGGTGAGCCGTTACCTCACCAACTAGCTAATGCACCGCGGGTCCATCCATCAGCAGAAGCTTGCGCCTCTTTTCCTCTTCAAACCATGCGGTTCGAAGACCTATGCGGTTTTAGCATCCGTTTCCGAATGTTATCCCCCTCTGATGGGCAGGTTACCCACGTGTTACTCACCCGTTCGCCACTAGATTGACCAGTGCAAGCACCGGTCGCTCTCGTTCGACTTGCATGTATTAGGCACGCCGCCAGCGTTCGTC | |
>denovo271 | |
GGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTATGTATCGTCGCCTTGGTGAGCCGTTACCCCACCAACTAGCTAATACAACGCAGGTCCATCTGGTAGTGATGCAATTGCACCTTTTAAGCAAATGTCATGCAACATTTACTGTTATGCGGTATTAGCTATCGTTTCCAATAGTTATCCCCCGNTACCAGGCAGGTTACCTACGCGTTACTCACCCGTTCGCAACTCGTCCAGAAGAGCAAGCTCTCCCTTCAGCGTTCTACTTGCATGTATTAGGCACGCCGCCAGCGTTCGTC | |
>denovo3052 | |
GGAGTCTGGTCCG |
# -*- coding: utf-8 -*- | |
""" | |
Uses a context manager to provide a dictionary as a 'namespace' of sorts, | |
allowing you to use dot notation to work with the dictionary. Example: | |
d = {'a': 5, 'b': 10} | |
with named(d) as n: | |
# prints 5 | |
print n.a | |
# reassignment changes both n and d |