Created
May 31, 2016 18:38
-
-
Save elliptic-shiho/40d42dbab87065e06d6c473ef93e244e to your computer and use it in GitHub Desktop.
TJCTF 2016 Crypto 200 curvature2 Writeup
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scryptos import * | |
from ecpy import * # https://github.com/elliptic-shiho/ecpy | |
p = 0xd3ceec4c84af8fa5f3e9af91e00cabacaaaecec3da619400e29a25abececfdc9bd678e2708a58acb1bd15370acc39c596807dab6229dca11fd3a217510258d1b | |
A = 0x95fc77eb3119991a0022168c83eee7178e6c3eeaf75e0fdf1853b8ef4cb97a9058c271ee193b8b27938a07052f918c35eccb027b0b168b4e2566b247b91dc07 | |
B = 0x926b0e42376d112ca971569a8d3b3eda12172dfb4929aea13da7f10fb81f3b96bf1e28b4a396a1fcf38d80b463582e45d06a548e0dc0d567fc668bd119c346b2 | |
Gx = 0xcf634030986cf41c1add87e71d638b9cc723c764059cf4c9b8ed2a0aaf5d51dc770372503ebfaad746ab9220e992c09822916978226465ad31d354a3efee51da | |
Gy = 0x65eaad8848b2787103fce02358b45d8a61420031989eb6b4b70d82fe20d85583ae542eb8f76749dc640b0f13f682228819b8b2f04bd7a5a17a4c675540fe1c90 | |
Px = 10150325274093651859575658519947563789222194633356867789068177057343771571940302488270622886585658965620106459791565259790154958179860547267338437952379763 | |
Py = 6795014289013853849339410895464797184780777251924203530417684718894057583288011725702609805686960505075072642102076744937056900144377846048950215257629102 | |
F = FiniteField(p) | |
E = EllipticCurve(F, A, B) | |
G = E(Gx, Gy) | |
P = E(Px, Py) | |
print G | |
x = SSSA_Attack(F, E, G, P) | |
print "[+] x = %d" % x | |
print hex(x) | |
assert G * x == P | |
print long_to_bytes(x) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Wed Jun 1 03:37:18 JST 2016 ~/ctf/tjctf-2016/cr200 100% | |
> python solve.py | |
[+] found gmpy! use gmpy.is_prime | |
Point (10861775096169286150205319688117417914848123109121745067635541337017032620284063473400066861512935256258915840659666881491995138752871261707640938043429338 : 5337811241444738635104333336651682435333375485474589886962155976578217543214247962118129491172191299739399710969955348487423009201403727326401683735321744 : 1) on Elliptic Curve y^2 = x^3 + 490963434153515882934487973185142842357175523008183292296815140698999054658777820556076794490414610737654365807063916602037816955706321036900113929329671Lx + 7668542654793784988436499086739239442915170287346121645884096222948338279165302213440060079141960679678526016348025029558335977042712382611197995002316466L over FiniteField(11093300438765357787693823122068501933326829181518693650897090781749379503427651954028543076247583697669597230934286751428880673539155279232304301123931419) | |
[+] p, q = 3450880828084072449998818663271808542767631363147343225817395542202114481551729789, 1 | |
[+] x = 3450880828084072449998818663271808542767631363147343225817395542202114481551729789 | |
0x746a6374667b6f6f70735f656c6c31707431635f6375727665735f525f683472647d | |
tjctf{oops_ell1pt1c_curves_R_h4rd} |
I can't load "scryptos" in the first,can you help me?thanks:-)
packages : scryptos
From https://github.com/scryptos/scryptoslib
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Writeup: Solve ECDLP by SSSA Attack
First, given script doesn't have a parameter
b
. so, I calculateb
as follows:In sage:
Well, I got
b
. I calculate order of that curve:Oh,
#E = p
! This is Anomalous Elliptic Curve. well, I wrote some script and (first) solve challenge!Flag:
tjctf{oops_ell1pt1c_curves_R_h4rd}