Created
February 6, 2016 19:39
-
-
Save elliptic-shiho/e76e7c2a2aff228d7807 to your computer and use it in GitHub Desktop.
Sharif University CTF 2016: Crypto 350 British Elevator Solver
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# original file name: solve_sssa_attack.sage | |
from sage.all import * | |
p = 16857450949524777441941817393974784044780411511252189319 | |
A = 16857450949524777441941817393974784044780411507861094535 | |
B = 77986137112576 | |
E = EllipticCurve(GF(p), [A, B]) | |
print E.order() == p | |
g = E(5732560139258194764535999929325388041568732716579308775, 14532336890195013837874850588152996214121327870156054248) | |
v = E(2609506039090139098835068603396546214836589143940493046, 8637771092812212464887027788957801177574860926032421582) | |
def hensel_lift(curve, p, point): | |
A, B = map(long, (E.a4(), E.a6())) | |
x, y = map(long, point.xy()) | |
fr = y**2 - (x**3 + A*x + B) | |
t = (- fr / p) % p | |
t *= inverse_mod(2 * y, p) # (y**2)' = 2 * y | |
t %= p | |
new_y = y + p * t | |
return x, new_y | |
# lift points | |
x1, y1 = hensel_lift(E, p, g) | |
x2, y2 = hensel_lift(E, p, v) | |
# calculate new A, B (actually, they will be the same here) | |
mod = p ** 2 | |
A2 = y2**2 - y1**2 - (x2**3 - x1**3) | |
A2 = A2 * inverse_mod(x2 - x1, mod) | |
A2 %= mod | |
B2 = y1**2 - x1**3 - A2 * x1 | |
B2 %= mod | |
# new curve | |
E2 = EllipticCurve(IntegerModRing(p**2), [A2, B2]) | |
# calculate dlog | |
g2s = (p - 1) * E2(x1, y1) | |
v2s = (p - 1) * E2(x2, y2) | |
x1s, y1s = map(long, g2s.xy()) | |
x2s, y2s = map(long, v2s.xy()) | |
dx1 = (x1s - x1) / p % p | |
dx2 = (y1s - y1) / p | |
dy1 = (x2s - x2) | |
dy2 = (y2s - y2) % p | |
print "%d, %d, %d, %d, %d" % (dx1, dy1, dx2, dy2, p) | |
m = dy1 * inverse_mod(dx1, p) * dx2 * inverse_mod(dy2, p) | |
m %= p | |
print m |
Writeup:
Given Elliptic Curve is Anomalous Elliptic Curve. so, I apply SSSA-Attack.
Flag is 6418297401790414611703852603267852625498215178707956450
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
from: http://mslc.ctf.su/wp/polictf-2012-crypto-500/