Skip to content

Instantly share code, notes, and snippets.

@endolith
Last active August 13, 2024 11:27
Show Gist options
  • Save endolith/3066664 to your computer and use it in GitHub Desktop.
Save endolith/3066664 to your computer and use it in GitHub Desktop.
Sethares dissmeasure function in Python

Adaptation of Sethares' dissonance measurement function to Python

Example is meant to match the curve in Figure 3:

Figure 3

Original model used products of the two amplitudes a1⋅a2, but this was changed to minimum of the two amplitudes min(a1, a2), as explained in G: Analysis of the Time Domain Model appendix of Tuning, Timbre, Spectrum, Scale.

This weighting is incorporated into the dissonance model (E.2) by assuming that the roughness is proportional to the loudness of the beating. ... Thus, the amplitude of the beating is given by the minimum of the two amplitudes.

With the first 6 harmonics at amplitudes 1/n starting at 261.63 Hz, using the product model, it also perfectly matches Figure 4 of Davide Verotta - Dissonance & Composition, so it should be trustworthy.

"""
Python translation of http://sethares.engr.wisc.edu/comprog.html
"""
import numpy as np
def dissmeasure(fvec, amp, model='min'):
"""
Given a list of partials in fvec, with amplitudes in amp, this routine
calculates the dissonance by summing the roughness of every sine pair
based on a model of Plomp-Levelt's roughness curve.
The older model (model='product') was based on the product of the two
amplitudes, but the newer model (model='min') is based on the minimum
of the two amplitudes, since this matches the beat frequency amplitude.
"""
# Sort by frequency
sort_idx = np.argsort(fvec)
am_sorted = np.asarray(amp)[sort_idx]
fr_sorted = np.asarray(fvec)[sort_idx]
# Used to stretch dissonance curve for different freqs:
Dstar = 0.24 # Point of maximum dissonance
S1 = 0.0207
S2 = 18.96
C1 = 5
C2 = -5
# Plomp-Levelt roughness curve:
A1 = -3.51
A2 = -5.75
# Generate all combinations of frequency components
idx = np.transpose(np.triu_indices(len(fr_sorted), 1))
fr_pairs = fr_sorted[idx]
am_pairs = am_sorted[idx]
Fmin = fr_pairs[:, 0]
S = Dstar / (S1 * Fmin + S2)
Fdif = fr_pairs[:, 1] - fr_pairs[:, 0]
if model == 'min':
a = np.amin(am_pairs, axis=1)
elif model == 'product':
a = np.prod(am_pairs, axis=1) # Older model
else:
raise ValueError('model should be "min" or "product"')
SFdif = S * Fdif
D = np.sum(a * (C1 * np.exp(A1 * SFdif) + C2 * np.exp(A2 * SFdif)))
return D
if __name__ == '__main__':
from numpy import array, linspace, empty, concatenate
import matplotlib.pyplot as plt
"""
Reproduce Sethares Figure 3
http://sethares.engr.wisc.edu/consemi.html#anchor15619672
"""
freq = 500 * array([1, 2, 3, 4, 5, 6])
amp = 0.88**array([0, 1, 2, 3, 4, 5])
r_low = 1
alpharange = 2.3
method = 'product'
# # Davide Verotta Figure 4 example
# freq = 261.63 * array([1, 2, 3, 4, 5, 6])
# amp = 1 / array([1, 2, 3, 4, 5, 6])
# r_low = 1
# alpharange = 2.0
# method = 'product'
n = 3000
diss = empty(n)
a = concatenate((amp, amp))
for i, alpha in enumerate(linspace(r_low, alpharange, n)):
f = concatenate((freq, alpha*freq))
d = dissmeasure(f, a, method)
diss[i] = d
plt.figure(figsize=(7, 3))
plt.plot(linspace(r_low, alpharange, len(diss)), diss)
plt.xscale('log')
plt.xlim(r_low, alpharange)
plt.xlabel('frequency ratio')
plt.ylabel('sensory dissonance')
intervals = [(1, 1), (6, 5), (5, 4), (4, 3), (3, 2), (5, 3), (2, 1)]
for n, d in intervals:
plt.axvline(n/d, color='silver')
plt.yticks([])
plt.minorticks_off()
plt.xticks([n/d for n, d in intervals],
['{}/{}'.format(n, d) for n, d in intervals])
plt.tight_layout()
plt.show()
@BradKML
Copy link

BradKML commented Aug 12, 2021

@jpivarski

I guess some intervals in the 12-tone scale are more consonant than others, particularly where the equal-temperament makes them miss the minima of the curves above, and an index could rate songs differently if they use more of these "bad notes."

Somewhat this. Imagine a musical hash and visualization based on interval changes

@mauro-belgiovine
Copy link

mauro-belgiovine commented Sep 25, 2023

Just modified the code to calculate up to 19th harmonic and it looks great for microtonal usages. Thanks!

dissonance_map

Code: https://replit.com/@01010101lzy/Dissonance

@lynzrand Sorry to resurrect this thread, but this is not available anymore. I'd be curious to check your implementation, thanks!

@endolith Thanks for this translated code.

@lynzrand
Copy link

lynzrand commented Sep 26, 2023

@lynzrand Sorry to resurrect this thread, but this is not available anymore. I'd be curious to check your implementation, thanks!

Hi! The old code repository was accidentally deleted at some time by me, probably because I was cleaning up my replit account. The implementation is just a simple edit from the code in the original code.

Anyway, the code should be available again in the same repository (https://replit.com/@01010101lzy/Dissonance). I also created a gist for it: https://gist.github.com/lynzrand/e65c777d501289ae3876b59b27bd0f62


Update: I have updated my code to also contain (microtonal) scales as a reference, and also different frequency functions!

out

@mauro-belgiovine
Copy link

@lynzrand Sorry to resurrect this thread, but this is not available anymore. I'd be curious to check your implementation, thanks!

Hi! The old code repository was accidentally deleted at some time by me, probably because I was cleaning up my replit account. The implementation is just a simple edit from the code in the original code.

Anyway, the code should be available again in the same repository (https://replit.com/@01010101lzy/Dissonance). I also created a gist for it: https://gist.github.com/lynzrand/e65c777d501289ae3876b59b27bd0f62

Update: I have updated my code to also contain (microtonal) scales as a reference, and also different frequency functions!

out

@lynzrand thank you so much for this!!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment