Skip to content

Instantly share code, notes, and snippets.

@ferologics
Forked from tkersey/algebra-to-co-monads.md
Created February 21, 2023 09:34
Show Gist options
  • Save ferologics/183c2d45efec7d06184f60176e26b0f3 to your computer and use it in GitHub Desktop.
Save ferologics/183c2d45efec7d06184f60176e26b0f3 to your computer and use it in GitHub Desktop.

[fit] Algebra to

[fit] (Co)monads


$$Cᴮᴬ = (Cᴮ)ᴬ$$


$$Cᴮᴬ = (Cᴮ)ᴬ$$

$$Pair<A,B> → C ≅ A → B → C$$

[fit] Algebraic

[fit] Structures


[fit] Ring-like

[fit] structures


[fit] Group-like

[fit] one binary operation


[fit] Ring-like

[fit] two binary operations,

[fit] often called addition and multiplication,

[fit] with multiplication distributing over addition.


[fit] Lattice-like

[fit] two or more binary operations,

[fit] including operations called meet and join,

[fit] connected by the absorption law


[fit] Module-like

[fit] composite systems involving two sets

[fit] and employing at least two binary operations


[fit] Algebra-like

[fit] composite system defined over two sets,

[fit] a ring R and an R-module M equipped with

[fit] an operation called multiplication


[fit] Group-like

[fit] structures


fit


[fit] Magma


Magma

A type with a (closed) binary operation


$$A × A → A$$

protocol Magma {
  static func <> (lhs: Self, rhs: Self) -> Self
}

$$A × A → A$$

interface Magma<A> {
  readonly concat: (x: A, y: A) => A
}

[fit] Semigroup


[fit] Semigroup

A magma where the operation is associative


$$A × A → A$$

protocol Semigroup: Magma {}

$$A × A → A$$

interface Semigroup<A> extends Magma<A> {}

[fit] Semigroup Law

[fit] Associativity


[fit] Associativity

$$a <> (b <> c) ≅ (a <> b) <> c$$ $$a + (b + c) ≅ (a + b) + c$$ $$a × (b × c) ≅ (a × b) × c$$ $$a → (b → c) ≅ (a → b) → c$$


[fit] Monoid


[fit] Monoid

A semigroup with an identity element


$$A × A + 1 → A$$

protocol Monoid: Semigroup {
  static var empty: Self { get }
}

$$A × A + 1 → A$$

interface Monoid<A> extends Semigroup<A> {
  readonly empty: A
}

[fit] Monoid Law

[fit] Identity


[fit] Identity

$$a <> empty = empty <> a = a$$ $$a + empty = empty + a = a$$ $$a × empty = empty × a = a$$


[fit] Monoid

[fit] Examples


Sum

struct Sum<A: Numeric>: Monoid {
 let sum: A

  init(_ sum: A) {
    self.sum = sum
  }
  
  static func <> (lhs: Sum, rhs: Sum) -> Sum {
    self.init(lhs.sum + rhs.sum)
  }
  
  static var empty: Sum {
    0
  }
}

Sum

const Sum: monoid<number> = {
  empty: 0,
  concat: (u: number, v: number) => u + v
}

Product

struct Product<A: Numeric>: Monoid {
 let product: A

  init(_ product: A) {
    self.product = product
  }
  
  static func <> (lhs: Product, rhs: Product) -> Product {
    self.init(lhs.product * rhs.product)
  }
  
  static var empty: Product {
    1
  }
}

Product

const Product: monoid<number> = {
  empty: 1,
  concat: (u: number, v: number) => u * v
}

Endo

struct Endo<A>: Monoid {
  let call: (A) -> A

  init(_ call: @escaping (A) -> A) {
    self.call = call
  }
  
  static func <> (lhs: Endo<A>, rhs: Endo<A>) -> Endo<A> {
    .init { rhs.call(lhs.call($0)) }
  }
  
  static var empty: Endo<A> {
    .init { $0 }
  }
}

Endo

const Endo = <A>(): Monoid<Endo<A>> => ({
  empty: (a) => a,
  concat: (lhs: Endo<A>, rhs: Endo<A>) => rhs(lhs())
})

All

struct All: Monoid {
  let bool: Bool

  init(_ bool: Bool) {
    self.bool = bool
  }

  static func <> (lhs: Bool, rhs: Bool) -> Bool {
    .init(lhs.bool && rhs.bool)
  }

  static var empty: Bool {
    .init(true)
  }
}

All

const All: monoid<boolean> = {
  empty: true,
  concat: (x, y) => x && y
}

Any

struct Any: Monoid {
  let bool: Bool

  init(_ bool: Bool) {
    self.bool = bool
  }

  static func <> (lhs: Bool, rhs: Bool) -> Bool {
    .init(lhs.bool || rhs.bool)
  }

  static var empty: Bool {
    .init(false)
  }
}

Any

const Any: monoid<boolean> = {
  empty: false,
  concat: (x, y) => x || y
}

Array

extension Array: Monoid {
  static func <> (lhs: Array, rhs: Array) -> Array {
    lhs + rhs
  }

  static var empty: Array {
    []
  }
}

List

const List: monoid<Array<A>> = {
  empty: [],
  concat: (x, y) => x.concat(y)
}

String

extension String: Monoid {
  static func <> (lhs: String, rhs: String) -> String {
    lhs + rhs
  }

  static var empty: String {
    ""
  }
}

String

const String: monoid<string> = {
  empty: '',
  concat: (x, y) => x + y
}

Maybe

extension Optional: Monoid where Wrapped: Monoid {
  static func <> (lhs: Optioanl, rhs: Optional) -> Optional {
    switch (lhs, rhs) {
    case (.none, _):
      return rhs
    case (_, .none):
      return lhs
    case let (.some(l), some(r)):
      return .some(l <> r)
    }
  }

  static var empty: Optional {
    .none
  }
}

Maybe

export interface None {
  readonly _tag: 'None'
}

export interface Some<A> {
  readonly _tag: 'Some'
  readonly value: A
}

export type Option<A> = None | Some<A>

export const isSome: <A>(fa: Option<A>) => fa is Some<A> = _.isSome
export const isNone = (fa: Option<unknown>): fa is None => fa._tag === 'None'

export const Maybe = <A>(S: Semigroup<A>): Monoid<Option<A>> => ({
  empty: none,
  concat: (x, y) => (isNone(x) ? y : isNone(y) ? x : some(S.concat(x.value, y.value)))
})

use cases


performance optimization


reversing a list


O(N²)

reverse :: [a] -> [a]
reverse [] = []
reverse (a : as) = reverse as ++ [a]

List monoid

instance Monoid [a] where
  mempty = []
  mappend as bs = as ++ bs


Every monoid can be represented by a set of endo-functions.


type DList a = [a] -> [a]
rep :: [a] -> DList a
rep as = \xs -> as ++ xs
unRep :: DList a -> [a]
unRep f = f []
rep [] = id
rep (xs ++ ys) = rep xs . rep ys
rev :: [a] -> DList a
rev [] = rep []
rev (a : as) = rev as . rep [a]

O(N)

fastReverse :: [a] -> [a]
fastReverse = unRep . rev

Foldable

protocol Foldable {
  associatedtype A
  associatedtype B

  func foldr(_ folder : (A) -> (B) -> B, _ initial : B) -> B

  func foldl(_ folder : (B) -> (A) -> B, _ initial : B) -> B

  func foldMap<M : Monoid>(_ map : (A) -> M) -> M
}
https://github.com/alskipp/Monoid/commit/86b6f0f85e85f0eec5a005f092501f8dc8f2da80

Recursion schemes


fit


How the abstract algebra and probabilistic data structures help solve fast versus big data issues that many are struggling with.

autoscale: true

[fit] Algebraic

[fit] Types


Algebra

Symbols Operations Laws
0, 1, 2, x, y, z +, –, ×, % 0 + x = x

Algebra

Symbols Operations Laws
Types Type constructors ?
(Void, Int, Bool) (Optional, Either) ?

Algebra

Symbols Operations Laws
Things Ways to make
new things
Rules the
things follow

[fit] Zero


$$0$$

enum Never {}

$$0$$

type Void = never

[fit] One


$$1$$

struct Unit {}

$$1$$

type Unit = void

[fit] Two


$$2$$

enum Bool {
  case true
  case false
}

$$2$$

type Bool = False | True

[fit] Three


$$3$$

enum Three {
  case one
  case two
  case three
}

$$3$$

type Three = One | Two | Three

[fit] Addition


[fit] $$L + R$$


$$+$$

enum Either<L, R> {
  case left(L)
  case right(R)
}

$$+$$

type Either<L, R> = Left<L> | Right<R>

[fit] How many values of type

[fit] Either<Bool, Three>

[fit] are there?


$$+$$

Either<Bool, Three>
.left(.false)
.left(.true)
.right(.one)
.right(.two)
.right(.three)

$$+$$

Either<Bool, Three>
Left<False>
Left<True>
Right<One>
Right<Two>
Right<Three>

[fit] $$+$$ Laws


$$0 + X = X$$

Either<Never,X> ≅ X


$$X + Y = Y + X$$

Either<X,Y> ≅ Either<Y,X>


[fit] Multiplication


$$×$$

struct Pair<First, Second> {
  let first: First
  let second: Second
}

$$×$$

type Pair<First, Second> = [First, Second]

[fit] How many values of type

[fit] Pair<Bool, Three>

[fit] are there?


$$×$$

Pair<Bool, Three>
Pair(.false, .one)
Pair(.false, .two)
Pair(.false, .three)
Pair(.true, .one)
Pair(.true, .two)
Pair(.true, .three)

$$×$$

Pair<False,One>
Pair<False,Two>
Pair<False,Three>
Pair<True,One>
Pair<True,Two>
Pair<True,Three>

[fit] $$×$$ Laws


$$0 × X = 0$$

$$Pair&lt;Never,X&gt; ≅ Never$$


$$1 × X = X$$

$$Pair&lt;Unit,X&gt; ≅ X$$


$$X × Y = Y × X$$

$$Pair&lt;X,Y&gt; ≅ Pair&lt;Y,X&gt;$$


[fit] Exponentiation


AR

struct Reader<R, A> {
  let run: (R) -> A
}

AR

interface Reader<R, A> {
  (r: R): A
}

[fit] How many values of type

[fit] BoolThree

[fit] are there?


AR

Set<(Three) -> Bool>
(.false, .false, .false),
(.false, .false, .true),  
(.false, .true,  .true),  
(.false, .true,  .false), 
(.true,  .true,  .true), 
(.true,  .true,  .false), 
(.true,  .false, .false), 
(.true,  .false, .true),

[fit] AR Laws


1A = 1

$$A → Unit ≅ Unit$$


A1 = 1

$$Unit → A ≅ A$$


$$(B × C)ᴬ = Bᴬ × Cᴬ$$

$$A → Pair&lt;B,C&gt; ≅ Pair&lt;A → B, A → C&gt;$$


$$Cᴮᴬ = (Cᴮ)ᴬ$$

$$Pair&lt;A,B&gt; → C ≅ A → B → C$$


[fit] Types

[fit] Algebraically


[fit] Partiality


$$1 + A$$


$$1 + A$$

struct Optional<A> {
  case none
  case some(A)
}

$$1 + A$$

type Option<A> = None | Some<A>

[fit] Recursive

[fit] Types


[fit] Lists


$$1 + A × List$$


$$1 + A × List$$

enum List<A> {
  case empty
  indirect case cons(A, List<A>)
}

$$1 + A × List$$

type List<A> = Nil | Cons<Pair<A, List<A>>>

$$List = 1 + A × List$$


$$List = 1 + A × List$$

$$List = 1 + A × (1 + A × List)$$


$$List = 1 + A × List$$

$$List = 1 + A × (1 + A × List)$$

$$List = 1 + A + (A×A) × List$$


$$List = 1 + A × List$$

$$List = 1 + A × (1 + A × List)$$

$$List = 1 + A + (A×A) × List$$

$$List = 1 + A + (A×A) × (1 + A × List)$$


$$List = 1 + A × List$$

$$List = 1 + A × (1 + A × List)$$

$$List = 1 + A + (A×A) × List$$

$$List = 1 + A + (A×A) × (1 + A × List)$$

$$List = 1 + A + (A×A) + (A×A×A) × List$$


$$List = 1 + A × List$$

$$List = 1 + A × (1 + A × List)$$

$$List = 1 + A + (A×A) × List$$

$$List = 1 + A + (A×A) × (1 + A × List)$$

$$List = 1 + A + (A×A) + (A×A×A)× List$$

$$List = 1 + A + (A×A) + (A×A×A) × (1 + A × List)$$


$$List = 1 + A × List$$

$$List = 1 + A × (1 + A × List)$$

$$List = 1 + A + (A×A) × List$$

$$List = 1 + A + (A×A) × (1 + A × List)$$

$$List = 1 + A + (A×A) + (A×A×A)× List$$

$$List = 1 + A + (A×A) + (A×A×A) × (1 + A × List)$$

$$List = 1 + A + (A×A) + (A×A×A) + (A×A×A×A) × List$$

$$...$$


$$List = 1 + A × List$$


$$List = 1 + A × List$$

$$List - A × List = 1$$


$$List = 1 + A × LiSt$$

$$List - A × List = 1$$

$$List × (1 - A) = 1$$


$$List = 1 + A × LiSt$$

$$List - A × List = 1$$

$$List × (1 - A) = 1$$

$$List = 1 / (1 - A)$$


$$List = 1 / (1 - A)$$

List<A> = 1 / (1 - A)
        = 1 + A + A×A + A×A×A + A×A×A×A + ...
        = 1 + A + A² + A³ + A⁴ + ...

[fit] Trees


$$T = 1 + A × T²$$


$$T = 1 + A × T²$$

enum Tree<A> {
  case empty
  indirect case node(A, Pair<Tree<A>, Tree<A>>)
}

$$T = 1 + A × T²$$

type Tree<A> = Empty | Node<A, Pair<Tree<A>, Tree<A>>>

$$T = 1 + A × T²$$

$$A × T² - T + 1 = 0$$


T<A> = (1 - √1-4A) % 2A


$$T = 1 + A × T²$$

$$A × T² - T + 1 = 0$$

$$1 + A + 2A² + 5A³ + 14A⁴ + ...$$


[fit] Algebraic

[fit] Structures


fit

autoscale: true

[fit] Speed


[fit] Iteration

[fit] Deliver working software in

[fit] small batches of user value


[fit] Quality


[fit] Code Review


[fit] Code Review1

[fit] Pairing


[fit] Sustainable Pace


[fit] Sustainable Pace2

[fit] An unstressed, well rested, not overworked

[fit] team that is happy with its job

[fit] will produce orders of magnitude better quality


[fit] Improvement


[fit] Reflection


[fit] Reflection

[fit] The team will regularly reflect

[fit] on how to become more effective,

[fit] then tune and adjust behavior accordingly

Footnotes

  1. [Intro to Empirical Software Engineering: What We Know We Don't Know]((https://youtu.be/WELBnE33dpY?t=1698)

  2. Intro to Empirical Software Engineering: What We Know We Don't Know

autoscale: true

[fit] TDD


[fit] $$λ$$-calculus


$$λ$$-calculus

Syntax Name Description
x Variable A character or string representing a parameter or mathematical/logical value
(λx.M) Abstraction Function definition (M is a lambda term). The variable x becomes bound in the expression
(M N) Application Applying a function to an argument. M and N are lambda terms

[fit] Let's think of a unit test

[fit] like function application


[fit] we'll vary our inputs

[fit] while asserting on our outputs


[fit] Unit test

[fit] Input → Output


[fit] Local reasoning

the idea that the reader can make sense of the code directly in front of them, without going on a journey discovering how the code works.


[fit] Pure

[fit] Functions


[fit] Pure Functions

The function return values are identical for identical arguments

The function application has no side effects


[fit] Curry-Howard-Lambek

[fit] correspondence


[fit] Intuitionistic Logic

[fit] ≅

[fit] Typed Lambda Calculus

[fit] ≅

[fit] Cartesian Closed Categories


[fit] Logic

[fit] ≅

[fit] Types

[fit] ≅

[fit] Categories


[fit] Curry-Howard-Lambek

Logic Types Categories
propositions types objects
proofs terms arrows
proof of proposition A inhabitation of type A arrow f: t → A
implication function type exponential
conjunction product type product
disjunction sum type coproduct
falsity void type (empty) initial object
truth unit type (singleton) terminal object T

[fit] Propositions

[fit] as types


[fit] proofs

[fit] as programs


[fit] normalization of proofs

[fit] as evaluation of programs


[fit] Curry-Howard-Lambek

Logic Types Categories
propositions types objects
proofs terms arrows
proof of proposition A inhabitation of type A arrow f: t → A
implication function type exponential
conjunction product type product
disjunction sum type coproduct
falsity void type (empty) initial object
truth unit type (singleton) terminal object T

[fit] implication

[fit] a → b

[fit] if a then b


[fit] Tagged

type Dollars = number & { readonly __tag: unique symbol };

[fit] Scoping

[fit] The extent of the area or subject matter

[fit] that something deals with or to which it is relevant.


[fit] Total Functions


Just another name for a regular function to make it clear that it is defined for all elements of its input.


head :: [a] -> a

safehead :: [a] -> Maybe a

type NonEmptyArray<T> = [T, ...T[]];


[fit] Make impossible

[fit] states impossible


[fit] Functions with side effects


A function that has an observable effect besides returning a value.


interface Writer<W, A> {
  (): [A, W]
}

[fit] Architecture


[fit] UI is a function of state


UI = fn(state)

[fit] Model–view–viewmodel (MVVM)


[fit] Moore machine


a finite-state machine whose output values are determined only by its current state.


[fit] elm


[fit] Redux


[fit] Janus


[fit] The Composable

[fit] Architecture


[fit] Property tests


[fit] Galaxy brain


[fit] Dependent types



[fit] Write tests


[fit] Thank you for

[fit] attending my Tim Talk


[fit] Write txxxs


[fit] Feed

[fit] back


[fit] Write fewer

[fit] Runtime tests

^ Possibly fewer tests ^ Will show techniques to reduce the scope of what needs to be runtime tested ^ In some cases for things are hard to or nearly impossible to test otherwise


[fit] Write more

[fit] Compile-time

[fit] types

^ Types can be a form of testing, proving that the code does what you think it does


[fit] Rule of least power

[fit]

[fit]

[fit]

[fit] Parse, don't validate

[fit]

[fit]

[fit]

[fit] Make impossible

[fit] states impossible


[fit] Correspondence

^ A direct relationship between computer programs and mathematical proofs ^ Pictures and bios of Curry and Howard ^ Give a little explaination of your passion for mathematical thinking


[fit] Intuitionistic Logic

[fit] ≅

[fit] Typed Lambda Calculus


[fit] Logic

[fit] ≅

[fit] Types


[fit] Curry-Howard

Logic Types
propositions types
proofs terms
proof of proposition A inhabitation of type A
implication function type
conjunction product type
disjunction sum type
falsity void type (empty)
truth unit type (singleton)

[fit] Propositions

[fit] as types


[fit] proofs

[fit] as programs


[fit] normalization of proofs

[fit] as evaluation of programs


[fit] Curry-Howard

Logic Types
propositions types
proofs terms
proof of proposition A inhabitation of type A
implication function type
conjunction product type
disjunction sum type
falsity void type (empty)
truth unit type (singleton)
^ It's enough to have an instance (inhabitant) of a type to prove it

[fit] Curry-Howard

Logic Types
propositions types
proofs terms
proof of proposition A inhabitation of type A
implication function type
conjunction product type
disjunction sum type
falsity void type (empty)
truth unit type (singleton)

[fit] implication

[fit] a → b

[fit] if a then b





[fit] Rule of least power


[fit] Parse, don't validate


[fit] Parsing?


[fit] Turning nebulous data

[fit] into structured data


const head = (i: Array<a>): a = {...}

const head = (i: Array<a>): Maybe<a> = {...}

export interface None {
  readonly _tag: 'None'
}

export interface Some<A> {
  readonly _tag: 'Some'
  readonly value: A
}

export type Maybe<A> = None | Some<A>

[fit] Make impossible states impossible


[fit] Red, Green, Refactor


[fit] Red, Green, Refactor

| Red | Green | Refactor | | Types | Implementation | Refactor |

[fit] Type Driven Development?


[fit] Pragmatism


[fit] Notes

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment