-
-
Save gachet/2b2b43cc43e0852f2d60d82be21e5ad5 to your computer and use it in GitHub Desktop.
Clean tweets json for tensorflow or gensim based word2vec plain text
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import json | |
import re | |
import os | |
import nltk | |
input_file = open('<JSON FILE To INPUT>','r').readlines() | |
for line in input_file: | |
try: | |
tweet = json.loads(line) | |
raw_tweet_text = tweet.get('text') | |
# Discard tweets with URL. | |
urls = re.findall('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', raw_tweet_text) | |
if not urls: | |
# Strip User Mentions. | |
tweet_text = ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)"," ", tweet_text).split()) | |
# Strip Stopwords. | |
tweet_text = ' '.join([word for word in tweet_text.split().lower() if word not in stopwords]) | |
# Strip if tweet have less than 2 words. | |
if len(tweet_text.split()) > 2: | |
# Keep only len(words) >= 4. | |
tweet_text = [w for w in tweet_text.split() if len(w) >= 4] | |
tweet_text_str = " ".join(tweet_text) | |
cleaned_tweets = cleaned_tweets + " " + tweet_text_str | |
except: | |
continue | |
input_file.close() | |
text_file = open("cleaned_data/<OUTPUTTXTFILE>.txt", "a") | |
text_file.write(cleaned_tweets) | |
text_file.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment