Last active
July 27, 2024 17:10
-
-
Save goldsborough/865e6717e64fbae75cdaf6c9914a130d to your computer and use it in GitHub Desktop.
Convolution with cuDNN
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <cudnn.h> | |
#include <cassert> | |
#include <cstdlib> | |
#include <iostream> | |
#include <opencv2/opencv.hpp> | |
#define checkCUDNN(expression) \ | |
{ \ | |
cudnnStatus_t status = (expression); \ | |
if (status != CUDNN_STATUS_SUCCESS) { \ | |
std::cerr << "Error on line " << __LINE__ << ": " \ | |
<< cudnnGetErrorString(status) << std::endl; \ | |
std::exit(EXIT_FAILURE); \ | |
} \ | |
} | |
cv::Mat load_image(const char* image_path) { | |
cv::Mat image = cv::imread(image_path, CV_LOAD_IMAGE_COLOR); | |
image.convertTo(image, CV_32FC3); | |
cv::normalize(image, image, 0, 1, cv::NORM_MINMAX); | |
std::cerr << "Input Image: " << image.rows << " x " << image.cols << " x " | |
<< image.channels() << std::endl; | |
return image; | |
} | |
void save_image(const char* output_filename, | |
float* buffer, | |
int height, | |
int width) { | |
cv::Mat output_image(height, width, CV_32FC3, buffer); | |
// Make negative values zero. | |
cv::threshold(output_image, | |
output_image, | |
/*threshold=*/0, | |
/*maxval=*/0, | |
cv::THRESH_TOZERO); | |
cv::normalize(output_image, output_image, 0.0, 255.0, cv::NORM_MINMAX); | |
output_image.convertTo(output_image, CV_8UC3); | |
cv::imwrite(output_filename, output_image); | |
std::cerr << "Wrote output to " << output_filename << std::endl; | |
} | |
int main(int argc, const char* argv[]) { | |
if (argc < 2) { | |
std::cerr << "usage: conv <image> [gpu=0] [sigmoid=0]" << std::endl; | |
std::exit(EXIT_FAILURE); | |
} | |
int gpu_id = (argc > 2) ? std::atoi(argv[2]) : 0; | |
std::cerr << "GPU: " << gpu_id << std::endl; | |
bool with_sigmoid = (argc > 3) ? std::atoi(argv[3]) : 0; | |
std::cerr << "With sigmoid: " << std::boolalpha << with_sigmoid << std::endl; | |
cv::Mat image = load_image(argv[1]); | |
cudaSetDevice(gpu_id); | |
cudnnHandle_t cudnn; | |
cudnnCreate(&cudnn); | |
cudnnTensorDescriptor_t input_descriptor; | |
checkCUDNN(cudnnCreateTensorDescriptor(&input_descriptor)); | |
checkCUDNN(cudnnSetTensor4dDescriptor(input_descriptor, | |
/*format=*/CUDNN_TENSOR_NHWC, | |
/*dataType=*/CUDNN_DATA_FLOAT, | |
/*batch_size=*/1, | |
/*channels=*/3, | |
/*image_height=*/image.rows, | |
/*image_width=*/image.cols)); | |
cudnnFilterDescriptor_t kernel_descriptor; | |
checkCUDNN(cudnnCreateFilterDescriptor(&kernel_descriptor)); | |
checkCUDNN(cudnnSetFilter4dDescriptor(kernel_descriptor, | |
/*dataType=*/CUDNN_DATA_FLOAT, | |
/*format=*/CUDNN_TENSOR_NCHW, | |
/*out_channels=*/3, | |
/*in_channels=*/3, | |
/*kernel_height=*/3, | |
/*kernel_width=*/3)); | |
cudnnConvolutionDescriptor_t convolution_descriptor; | |
checkCUDNN(cudnnCreateConvolutionDescriptor(&convolution_descriptor)); | |
checkCUDNN(cudnnSetConvolution2dDescriptor(convolution_descriptor, | |
/*pad_height=*/1, | |
/*pad_width=*/1, | |
/*vertical_stride=*/1, | |
/*horizontal_stride=*/1, | |
/*dilation_height=*/1, | |
/*dilation_width=*/1, | |
/*mode=*/CUDNN_CROSS_CORRELATION, | |
/*computeType=*/CUDNN_DATA_FLOAT)); | |
int batch_size{0}, channels{0}, height{0}, width{0}; | |
checkCUDNN(cudnnGetConvolution2dForwardOutputDim(convolution_descriptor, | |
input_descriptor, | |
kernel_descriptor, | |
&batch_size, | |
&channels, | |
&height, | |
&width)); | |
std::cerr << "Output Image: " << height << " x " << width << " x " << channels | |
<< std::endl; | |
cudnnTensorDescriptor_t output_descriptor; | |
checkCUDNN(cudnnCreateTensorDescriptor(&output_descriptor)); | |
checkCUDNN(cudnnSetTensor4dDescriptor(output_descriptor, | |
/*format=*/CUDNN_TENSOR_NHWC, | |
/*dataType=*/CUDNN_DATA_FLOAT, | |
/*batch_size=*/1, | |
/*channels=*/3, | |
/*image_height=*/image.rows, | |
/*image_width=*/image.cols)); | |
cudnnConvolutionFwdAlgo_t convolution_algorithm; | |
checkCUDNN( | |
cudnnGetConvolutionForwardAlgorithm(cudnn, | |
input_descriptor, | |
kernel_descriptor, | |
convolution_descriptor, | |
output_descriptor, | |
CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, | |
/*memoryLimitInBytes=*/0, | |
&convolution_algorithm)); | |
size_t workspace_bytes{0}; | |
checkCUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn, | |
input_descriptor, | |
kernel_descriptor, | |
convolution_descriptor, | |
output_descriptor, | |
convolution_algorithm, | |
&workspace_bytes)); | |
std::cerr << "Workspace size: " << (workspace_bytes / 1048576.0) << "MB" | |
<< std::endl; | |
assert(workspace_bytes > 0); | |
void* d_workspace{nullptr}; | |
cudaMalloc(&d_workspace, workspace_bytes); | |
int image_bytes = batch_size * channels * height * width * sizeof(float); | |
float* d_input{nullptr}; | |
cudaMalloc(&d_input, image_bytes); | |
cudaMemcpy(d_input, image.ptr<float>(0), image_bytes, cudaMemcpyHostToDevice); | |
float* d_output{nullptr}; | |
cudaMalloc(&d_output, image_bytes); | |
cudaMemset(d_output, 0, image_bytes); | |
// clang-format off | |
const float kernel_template[3][3] = { | |
{1, 1, 1}, | |
{1, -8, 1}, | |
{1, 1, 1} | |
}; | |
// clang-format on | |
float h_kernel[3][3][3][3]; | |
for (int kernel = 0; kernel < 3; ++kernel) { | |
for (int channel = 0; channel < 3; ++channel) { | |
for (int row = 0; row < 3; ++row) { | |
for (int column = 0; column < 3; ++column) { | |
h_kernel[kernel][channel][row][column] = kernel_template[row][column]; | |
} | |
} | |
} | |
} | |
float* d_kernel{nullptr}; | |
cudaMalloc(&d_kernel, sizeof(h_kernel)); | |
cudaMemcpy(d_kernel, h_kernel, sizeof(h_kernel), cudaMemcpyHostToDevice); | |
const float alpha = 1.0f, beta = 0.0f; | |
checkCUDNN(cudnnConvolutionForward(cudnn, | |
&alpha, | |
input_descriptor, | |
d_input, | |
kernel_descriptor, | |
d_kernel, | |
convolution_descriptor, | |
convolution_algorithm, | |
d_workspace, | |
workspace_bytes, | |
&beta, | |
output_descriptor, | |
d_output)); | |
if (with_sigmoid) { | |
cudnnActivationDescriptor_t activation_descriptor; | |
checkCUDNN(cudnnCreateActivationDescriptor(&activation_descriptor)); | |
checkCUDNN(cudnnSetActivationDescriptor(activation_descriptor, | |
CUDNN_ACTIVATION_SIGMOID, | |
CUDNN_PROPAGATE_NAN, | |
/*relu_coef=*/0)); | |
checkCUDNN(cudnnActivationForward(cudnn, | |
activation_descriptor, | |
&alpha, | |
output_descriptor, | |
d_output, | |
&beta, | |
output_descriptor, | |
d_output)); | |
cudnnDestroyActivationDescriptor(activation_descriptor); | |
} | |
float* h_output = new float[image_bytes]; | |
cudaMemcpy(h_output, d_output, image_bytes, cudaMemcpyDeviceToHost); | |
save_image("cudnn-out.png", h_output, height, width); | |
delete[] h_output; | |
cudaFree(d_kernel); | |
cudaFree(d_input); | |
cudaFree(d_output); | |
cudaFree(d_workspace); | |
cudnnDestroyTensorDescriptor(input_descriptor); | |
cudnnDestroyTensorDescriptor(output_descriptor); | |
cudnnDestroyFilterDescriptor(kernel_descriptor); | |
cudnnDestroyConvolutionDescriptor(convolution_descriptor); | |
cudnnDestroy(cudnn); | |
} |
What is the execution time of this
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I've read your blog, it helps a lot!