Skip to content

Instantly share code, notes, and snippets.

@gyglim
Last active August 23, 2023 21:29
Show Gist options
  • Save gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 to your computer and use it in GitHub Desktop.
Save gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 to your computer and use it in GitHub Desktop.
Logging to tensorboard without tensorflow operations. Uses manually generated summaries instead of summary ops
"""Simple example on how to log scalars and images to tensorboard without tensor ops.
License: BSD License 2.0
"""
__author__ = "Michael Gygli"
import tensorflow as tf
from StringIO import StringIO
import matplotlib.pyplot as plt
import numpy as np
class Logger(object):
"""Logging in tensorboard without tensorflow ops."""
def __init__(self, log_dir):
"""Creates a summary writer logging to log_dir."""
self.writer = tf.summary.FileWriter(log_dir)
def log_scalar(self, tag, value, step):
"""Log a scalar variable.
Parameter
----------
tag : basestring
Name of the scalar
value
step : int
training iteration
"""
summary = tf.Summary(value=[tf.Summary.Value(tag=tag,
simple_value=value)])
self.writer.add_summary(summary, step)
def log_images(self, tag, images, step):
"""Logs a list of images."""
im_summaries = []
for nr, img in enumerate(images):
# Write the image to a string
s = StringIO()
plt.imsave(s, img, format='png')
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
im_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, nr),
image=img_sum))
# Create and write Summary
summary = tf.Summary(value=im_summaries)
self.writer.add_summary(summary, step)
def log_histogram(self, tag, values, step, bins=1000):
"""Logs the histogram of a list/vector of values."""
# Convert to a numpy array
values = np.array(values)
# Create histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill fields of histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
# See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30
# Thus, we drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
@JinProton
Copy link

tested it and every things worked great with tf 2.4

In tf 2.3, it fails with AttributeError: module 'tensorboard.summary._tf.summary' has no attribute 'FileWriter'

@Robotislove
Copy link

Anyone can tell me how can I use summary add_graph to show modal structure.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment