Skip to content

Instantly share code, notes, and snippets.

@hellman
Last active April 10, 2019 08:47
Show Gist options
  • Save hellman/b4f9efbdfa9da7846568a0ae2b913219 to your computer and use it in GitHub Desktop.
Save hellman/b4f9efbdfa9da7846568a0ae2b913219 to your computer and use it in GitHub Desktop.
Midnight Sun CTF 2019 Quals - open-gyckel-krypto
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
while True:
p = next_prime(random.randint(0, 10**500))
if len(str(p)) != 500:
continue
q = Integer(int(str(p)[250:] + str(p)[:250]))
if q.is_prime():
break
>> p * q
6146024643941503757217715363256725297474582575057128830681803952150464985329239705861504172069973746764596350359462277397739134788481500502387716062571912861345331755396960400668616401300689786263797654804338789112750913548642482662809784602704174564885963722422299918304645125966515910080631257020529794610856299507980828520629245187681653190311198219403188372517508164871722474627810848320169613689716990022730088459821267951447201867517626158744944551445617408339432658443496118067189012595726036261168251749186085493288311314941584653172141498507582033165337666796171940245572657593635107816849481870784366174740265906662098222589242955869775789843661127411493630943226776741646463845546396213149027737171200372484413863565567390083316799725434855960709541328144058411807356607316377373917707720258565704707770352508576366053160404360862976120784192082599228536166245480722359263166146184992593735550019325337524138545418186493193366973466749752806880403086988489013389009843734224502284325825989
>> pow(m, 65537, p * q)
3572030904528013180691184031825875018560018830056027446538585108046374607199842488138228426133620939067295245642162497675548656988031367698701161407333098336631469820625758165691216722102954230039803062571915807926805842311530808555825502457067483266045370081698397234434007948071948000301674260889742505705689105049976374758307610890478956315615270346544731420764623411884522772647227485422185741972880247913540403503772495257290866993158120540920089734332219140638231258380844037266185237491107152677366121632644100162619601924591268704611229987050199163281293994502948372872259033482851597923104208041748275169138684724529347356731689014177146308752441720676090362823472528200449780703866597108548404590800249980122989260948630061847682889941399385098680402067366390334436739269305750501804725143228482932118740926602413362231953728010397307348540059759689560081517028515279382023371274623802620886821099991568528927696544505357451279263250695311793770159474896431625763008081110926072287874375257
#-*- coding:utf-8 -*-
from sage.all import *
from libnum import *
CT = 3572030904528013180691184031825875018560018830056027446538585108046374607199842488138228426133620939067295245642162497675548656988031367698701161407333098336631469820625758165691216722102954230039803062571915807926805842311530808555825502457067483266045370081698397234434007948071948000301674260889742505705689105049976374758307610890478956315615270346544731420764623411884522772647227485422185741972880247913540403503772495257290866993158120540920089734332219140638231258380844037266185237491107152677366121632644100162619601924591268704611229987050199163281293994502948372872259033482851597923104208041748275169138684724529347356731689014177146308752441720676090362823472528200449780703866597108548404590800249980122989260948630061847682889941399385098680402067366390334436739269305750501804725143228482932118740926602413362231953728010397307348540059759689560081517028515279382023371274623802620886821099991568528927696544505357451279263250695311793770159474896431625763008081110926072287874375257
n = 6146024643941503757217715363256725297474582575057128830681803952150464985329239705861504172069973746764596350359462277397739134788481500502387716062571912861345331755396960400668616401300689786263797654804338789112750913548642482662809784602704174564885963722422299918304645125966515910080631257020529794610856299507980828520629245187681653190311198219403188372517508164871722474627810848320169613689716990022730088459821267951447201867517626158744944551445617408339432658443496118067189012595726036261168251749186085493288311314941584653172141498507582033165337666796171940245572657593635107816849481870784366174740265906662098222589242955869775789843661127411493630943226776741646463845546396213149027737171200372484413863565567390083316799725434855960709541328144058411807356607316377373917707720258565704707770352508576366053160404360862976120784192082599228536166245480722359263166146184992593735550019325337524138545418186493193366973466749752806880403086988489013389009843734224502284325825989
T = 250
ablo = n % 10**T
abhi = (n - ablo) // 10**(3*T)
x = PolynomialRing(QQ, names='x').gen()
for delta in xrange(3):
c = (abhi - delta) * 10**T + ablo
poly = 10**(2*T)*c*x**2 + 10**T*(x**4 + c**2) + c*x**2 - n*x**2
for a, m in poly.roots():
print "delta", delta, "root", a
b = c / a
p = 10**T*a+b
q = 10**T*b+a
d = inverse_mod(0x10001, (p-1)*(q-1))
print `n2s(int(pow(CT, d, n)))`
quit()
#midnight{w3ll_wh47_d0_y0u_kn0w_7h15_15_4c7u4lly_7h3_w0rld5_l0n6357_fl46_4nd_y0u_f0und_17_50_y0u_5h0uld_b3_pr0ud_0f_y0ur53lf_50_uhmm_60_pr1n7_7h15_0n_4_75h1r7_0r_50m37h1n6_4nd_4m4z3_7h3_p30pl3_4r0und_y0u}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment