Video Blanking Detection
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import os | |
import cv2 | |
import numpy as np | |
import time | |
from tqdm import tqdm | |
from plyer import notification | |
# Detection threshold margin in pixels | |
spatial_thresh = 5 # How many black pixels will trigger detection | |
lum_thresh = 5 # How dark the black pixels need to be to trigger detection | |
skip_frames = 2 # Skip a frame unless it's a multiple of... | |
manually_approve = True # Confirmation prompt on detection? | |
window_height = 1080 # Vertical height to resize window to if img too small or too large | |
args = sys.argv | |
if (len(args) > 2): | |
print(f"One file at a time please!") | |
# Create a VideoCapture object and read from input file | |
cap = cv2.VideoCapture(sys.argv[1]) | |
filename = os.path.basename(sys.argv[1]) | |
w_res = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h_res = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT )) | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
scale_factor = window_height/h_res | |
print(f"Video resolution: {w_res}x{h_res}") | |
print(f"Video framerate: {fps}") | |
print(f"Video length: {total_frames} frames") | |
print(f"Window scale factor: {scale_factor}") | |
print("\n") | |
x_thresh = spatial_thresh | |
y_thresh = spatial_thresh | |
w_thresh = w_res - spatial_thresh | |
h_thresh = h_res - spatial_thresh | |
# Check if camera opened successfully | |
if (cap.isOpened()== False): | |
print(f"Error opening {filename}") | |
# Loop variables | |
count = 0 | |
waiting_reset = False | |
found = [] | |
# Progress bar | |
for i in tqdm (range (total_frames), desc="Analysing Video..."): | |
# Read until video is completed | |
count += 1 | |
# Capture frame-by-frame | |
ret, frame = cap.read() | |
if ret == True: | |
if skip_frames: | |
if (count % skip_frames) == 0: | |
continue | |
# Resize frame | |
frame = cv2.resize(frame, (0, 0), fx=scale_factor, fy=scale_factor, interpolation = cv2.INTER_AREA) | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
_,thresh = cv2.threshold(gray, 0, lum_thresh, cv2.THRESH_BINARY) | |
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
cnt = contours[0] | |
x,y,w,h = cv2.boundingRect(cnt) | |
# tqdm.write(f"X-{x}, Y-{y}, W-{w}, H-{h}") | |
# tqdm.write(f"Margins: X-{x_thresh}, Y-{y_thresh}, W-{w_thresh}, H-{h_thresh}") | |
cv2.imshow('Frame', frame) | |
if x > x_thresh or y > y_thresh or w < w_thresh or h < h_thresh: | |
if waiting_reset == False: | |
if manually_approve == True: | |
tqdm.write("\a") | |
cv2.rectangle(frame, (x, y), (w, h), (255, 0, 0), 2) | |
cv2.imshow('Frame', frame) | |
cv2.waitKey(10) | |
check = input(f"\nAt frame {count}: Any blanking visible here?") | |
else: | |
check = "y" | |
if "y" in check.lower(): | |
tqdm.write("Marked frame") | |
waiting_reset = True | |
found.append(count) | |
# else: | |
# tqdm.write("Waiting for next unqiue detection...") | |
else: | |
waiting_reset = False | |
# Press Q on keyboard to exit | |
if cv2.waitKey(25) & 0xFF == ord('q'): | |
break | |
# Break the loop | |
else: | |
break | |
cap.release() | |
print("\n") | |
print(f"Blanking found in frames: {found}") | |
# Toast notify | |
notification.notify( | |
title='Video Blanking Checker', | |
message=f'Done analysing "{filename}"', | |
app_icon=None, | |
timeout=5, | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment