Skip to content

Instantly share code, notes, and snippets.

@jackersson
Created February 1, 2021 15:12
Show Gist options
  • Save jackersson/ad6190ec5c4d5fdfc43cc6a1ba7813e1 to your computer and use it in GitHub Desktop.
Save jackersson/ad6190ec5c4d5fdfc43cc6a1ba7813e1 to your computer and use it in GitHub Desktop.
PyTable
import tables as tb
class Record(tb.IsDescription):
first_track_id = tb.StringCol(16) # 16-character String
second_tracK_id = tb.StringCol(16) # 16-character String
distance = tb.Float32Col() # Float (single-precision)
# Open a file in "w"rite mode
fileh = tb.open_file("table1.h5", mode="w")
# Create a new group
group = fileh.create_group(fileh.root, "newgroup")
# Create a new table in newgroup group
table = fileh.create_table(group, 'table', Record, "A table",
tb.Filters(1))
single_record = table.row
# Fill the table with 10 particles
for i in range(28000000):
# First, assign the values to the Particle record
single_record['first_track_id'] = "track_id_1"
single_record['second_tracK_id'] = "track_id_2"
single_record['distance'] = 0.5
single_record.append()
# We need to flush the buffers in table in order to get an
# accurate number of records on it.
table.flush()
fileh.close()
k = 0
with tb.open_file("table1.h5", mode="r") as h5file:
table = h5file.root.newgroup.table
for x in table.iterrows():
if k < 10:
print(x['distance'])
k += 1
print(k)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment